18 Search Results for "Zhang, Le"


Document
Targeted Branching for the Maximum Independent Set Problem Using Graph Neural Networks

Authors: Kenneth Langedal, Demian Hespe, and Peter Sanders

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Identifying a maximum independent set is a fundamental NP-hard problem. This problem has several real-world applications and requires finding the largest possible set of vertices not adjacent to each other in an undirected graph. Over the past few years, branch-and-bound and branch-and-reduce algorithms have emerged as some of the most effective methods for solving the problem exactly. Specifically, the branch-and-reduce approach, which combines branch-and-bound principles with reduction rules, has proven particularly successful in tackling previously unmanageable real-world instances. This progress was largely made possible by the development of more effective reduction rules. Nevertheless, other key components that can impact the efficiency of these algorithms have not received the same level of interest. Among these is the branching strategy, which determines which vertex to branch on next. Until recently, the most widely used strategy was to choose the vertex of the highest degree. In this work, we present a graph neural network approach for selecting the next branching vertex. The intricate nature of current branch-and-bound solvers makes supervised and reinforcement learning difficult. Therefore, we use a population-based genetic algorithm to evolve the model’s parameters instead. Our proposed approach results in a speedup on 73% of the benchmark instances with a median speedup of 24%.

Cite as

Kenneth Langedal, Demian Hespe, and Peter Sanders. Targeted Branching for the Maximum Independent Set Problem Using Graph Neural Networks. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 20:1-20:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{langedal_et_al:LIPIcs.SEA.2024.20,
  author =	{Langedal, Kenneth and Hespe, Demian and Sanders, Peter},
  title =	{{Targeted Branching for the Maximum Independent Set Problem Using Graph Neural Networks}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{20:1--20:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.20},
  URN =		{urn:nbn:de:0030-drops-203853},
  doi =		{10.4230/LIPIcs.SEA.2024.20},
  annote =	{Keywords: Graphs, Independent Set, Vertex Cover, Graph Neural Networks, Branch-and-Reduce}
}
Document
Improved Cut Strategy for Tensor Network Contraction Orders

Authors: Christoph Staudt, Mark Blacher, Julien Klaus, Farin Lippmann, and Joachim Giesen

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
In the field of quantum computing, simulating quantum systems on classical computers is crucial. Tensor networks are fundamental in simulating quantum systems. A tensor network is a collection of tensors, that need to be contracted into a result tensor. Tensor contraction is a generalization of matrix multiplication to higher order tensors. The contractions can be performed in different orders, and the order has a significant impact on the number of floating point operations (flops) needed to get the result tensor. It is known that finding an optimal contraction order is NP-hard. The current state-of-the-art approach for finding efficient contraction orders is to combinine graph partitioning with a greedy strategy. Although heavily used in practice, the current approach ignores so-called free indices, chooses node weights without regarding previous computations, and requires numerous hyperparameters that need to be tuned at runtime. In this paper, we address these shortcomings by developing a novel graph cut strategy. The proposed modifications yield contraction orders that significantly reduce the number of flops in the tensor contractions compared to the current state of the art. Moreover, by removing the need for hyperparameter tuning at runtime, our approach converges to an efficient solution faster, which reduces the required optimization time by at least an order of magnitude.

Cite as

Christoph Staudt, Mark Blacher, Julien Klaus, Farin Lippmann, and Joachim Giesen. Improved Cut Strategy for Tensor Network Contraction Orders. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 27:1-27:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{staudt_et_al:LIPIcs.SEA.2024.27,
  author =	{Staudt, Christoph and Blacher, Mark and Klaus, Julien and Lippmann, Farin and Giesen, Joachim},
  title =	{{Improved Cut Strategy for Tensor Network Contraction Orders}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{27:1--27:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.27},
  URN =		{urn:nbn:de:0030-drops-203924},
  doi =		{10.4230/LIPIcs.SEA.2024.27},
  annote =	{Keywords: tensor network, contraction order, graph partitioniong, quantum simulation}
}
Document
Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness

Authors: Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso

Published in: LIPIcs, Volume 298, 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)


Abstract
Microcontrollers (MCUs) are steadily embracing multi-core technology to meet growing performance demands. This trend marks a shift from their traditionally simple, deterministic designs to more complex and inherently less predictable architectures. While shared resource contention is well-studied in mid to high-end embedded systems, the emergence of multi-core architectures in MCUs introduces unique challenges and characteristics that existing research has not fully explored. In this paper, we conduct an in-depth investigation of both mainstream and next-generation MCU-based platforms, aiming to identify the sources of contention on systems typically lacking these problems. We empirically demonstrate substantial contention effects across different MCU architectures (i.e., from single- to multi-core configurations), highlighting significant application slowdowns. Notably, we observe that slowdowns can reach several orders of magnitude, with the most extreme cases showing up to a 3800x (times, not percent) increase in execution time. To address these issues, we propose and evaluate muTPArtc, a novel mechanism designed for Timely Progress Assessment (TPA) and TPA-based runtime control specifically tailored to MCUs. muTPArtc is an MCU-specialized TPA-based mechanism that leverages hardware facilities widely available in commercial off-the-shelf MCUs (i.e., hardware breakpoints and cycle counters) to successfully monitor applications' progress, detect, and mitigate timing violations. Our results demonstrate that muTPArtc effectively manages performance degradation due to interference, requiring only minimal modifications to the build pipeline and no changes to the source code of the target application, while incurring minor overheads.

Cite as

Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso. Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness. In 36th Euromicro Conference on Real-Time Systems (ECRTS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 298, pp. 5:1-5:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{oliveira_et_al:LIPIcs.ECRTS.2024.5,
  author =	{Oliveira, Daniel and Chen, Weifan and Pinto, Sandro and Mancuso, Renato},
  title =	{{Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness}},
  booktitle =	{36th Euromicro Conference on Real-Time Systems (ECRTS 2024)},
  pages =	{5:1--5:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-324-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{298},
  editor =	{Pellizzoni, Rodolfo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2024.5},
  URN =		{urn:nbn:de:0030-drops-203088},
  doi =		{10.4230/LIPIcs.ECRTS.2024.5},
  annote =	{Keywords: multi-core microcontrollers, shared resources contention, progress-aware regulation}
}
Document
Track A: Algorithms, Complexity and Games
Fast Approximate Counting of Cycles

Authors: Keren Censor-Hillel, Tomer Even, and Virginia Vassilevska Williams

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the problem of approximate counting of triangles and longer fixed length cycles in directed graphs. For triangles, Tětek [ICALP'22] gave an algorithm that returns a (1±ε)-approximation in Õ(n^ω/t^{ω-2}) time, where t is the unknown number of triangles in the given n node graph and ω < 2.372 is the matrix multiplication exponent. We obtain an improved algorithm whose running time is, within polylogarithmic factors the same as that for multiplying an n× n/t matrix by an n/t × n matrix. We then extend our framework to obtain the first nontrivial (1± ε)-approximation algorithms for the number of h-cycles in a graph, for any constant h ≥ 3. Our running time is Õ(MM(n,n/t^{1/(h-2)},n)), the time to multiply n × n/(t^{1/(h-2)}) by n/(t^{1/(h-2)) × n matrices. Finally, we show that under popular fine-grained hypotheses, this running time is optimal.

Cite as

Keren Censor-Hillel, Tomer Even, and Virginia Vassilevska Williams. Fast Approximate Counting of Cycles. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 37:1-37:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{censorhillel_et_al:LIPIcs.ICALP.2024.37,
  author =	{Censor-Hillel, Keren and Even, Tomer and Vassilevska Williams, Virginia},
  title =	{{Fast Approximate Counting of Cycles}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{37:1--37:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.37},
  URN =		{urn:nbn:de:0030-drops-201809},
  doi =		{10.4230/LIPIcs.ICALP.2024.37},
  annote =	{Keywords: Approximate triangle counting, Approximate cycle counting Fast matrix multiplication, Fast rectangular matrix multiplication}
}
Document
Track A: Algorithms, Complexity and Games
Faster Algorithms for Dual-Failure Replacement Paths

Authors: Shiri Chechik and Tianyi Zhang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Given a simple weighted directed graph G = (V, E, ω) on n vertices as well as two designated terminals s, t ∈ V, our goal is to compute the shortest path from s to t avoiding any pair of presumably failed edges f₁, f₂ ∈ E, which is a natural generalization of the classical replacement path problem which considers single edge failures only. This dual failure replacement paths problem was recently studied by Vassilevska Williams, Woldeghebriel and Xu [FOCS 2022] who designed a cubic time algorithm for general weighted digraphs which is conditionally optimal; in the same paper, for unweighted graphs where ω ≡ 1, the authors presented an algebraic algorithm with runtime Õ(n^{2.9146}), as well as a conditional lower bound of n^{8/3-o(1)} against combinatorial algorithms. However, it was unknown in their work whether fast matrix multiplication is necessary for a subcubic runtime in unweighted digraphs. As our primary result, we present the first truly subcubic combinatorial algorithm for dual failure replacement paths in unweighted digraphs. Our runtime is Õ(n^{3-1/18}). Besides, we also study algebraic algorithms for digraphs with small integer edge weights from {-M, -M+1, ⋯, M-1, M}. As our secondary result, we obtained a runtime of Õ(Mn^{2.8716}), which is faster than the previous bound of Õ(M^{2/3}n^{2.9144} + Mn^{2.8716}) from [Vassilevska Williams, Woldeghebriela and Xu, 2022].

Cite as

Shiri Chechik and Tianyi Zhang. Faster Algorithms for Dual-Failure Replacement Paths. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 41:1-41:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chechik_et_al:LIPIcs.ICALP.2024.41,
  author =	{Chechik, Shiri and Zhang, Tianyi},
  title =	{{Faster Algorithms for Dual-Failure Replacement Paths}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{41:1--41:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.41},
  URN =		{urn:nbn:de:0030-drops-201849},
  doi =		{10.4230/LIPIcs.ICALP.2024.41},
  annote =	{Keywords: graph algorithms, shortest paths, replacement paths}
}
Document
Track A: Algorithms, Complexity and Games
Nearly Optimal Independence Oracle Algorithms for Edge Estimation in Hypergraphs

Authors: Holger Dell, John Lapinskas, and Kitty Meeks

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Consider a query model of computation in which an n-vertex k-hypergraph can be accessed only via its independence oracle or via its colourful independence oracle, and each oracle query may incur a cost depending on the size of the query. Several recent results (Dell and Lapinskas, STOC 2018; Dell, Lapinskas, and Meeks, SODA 2020) give efficient algorithms to approximately count the hypergraph’s edges in the colourful setting. These algorithms immediately imply fine-grained reductions from approximate counting to decision, with overhead only log^Θ(k) n over the running time n^α of the original decision algorithm, for many well-studied problems including k-Orthogonal Vectors, k-SUM, subgraph isomorphism problems including k-Clique and colourful-H, graph motifs, and k-variable first-order model checking. We explore the limits of what is achievable in this setting, obtaining unconditional lower bounds on the oracle cost of algorithms to approximately count the hypergraph’s edges in both the colourful and uncoloured settings. In both settings, we also obtain algorithms which essentially match these lower bounds; in the colourful setting, this requires significant changes to the algorithm of Dell, Lapinskas, and Meeks (SODA 2020) and reduces the total overhead to log^{Θ(k-α)}n. Our lower bound for the uncoloured setting shows that there is no fine-grained reduction from approximate counting to the corresponding uncoloured decision problem (except in the case α ≥ k-1): without an algorithm for the colourful decision problem, we cannot hope to avoid the much larger overhead of roughly n^{(k-α)²/4}. The uncoloured setting has previously been studied for the special case k = 2 (Peled, Ramamoorthy, Rashtchian, Sinha, ITCS 2018; Chen, Levi, and Waingarten, SODA 2020), and our work generalises the existing algorithms and lower bounds for this special case to k > 2 and to oracles with cost.

Cite as

Holger Dell, John Lapinskas, and Kitty Meeks. Nearly Optimal Independence Oracle Algorithms for Edge Estimation in Hypergraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 54:1-54:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dell_et_al:LIPIcs.ICALP.2024.54,
  author =	{Dell, Holger and Lapinskas, John and Meeks, Kitty},
  title =	{{Nearly Optimal Independence Oracle Algorithms for Edge Estimation in Hypergraphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{54:1--54:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.54},
  URN =		{urn:nbn:de:0030-drops-201977},
  doi =		{10.4230/LIPIcs.ICALP.2024.54},
  annote =	{Keywords: Graph oracles, Fine-grained complexity, Approximate counting, Hypergraphs}
}
Document
Track A: Algorithms, Complexity and Games
Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time

Authors: Nick Fischer and Leo Wennmann

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this work we revisit the elementary scheduling problem 1||∑ p_j U_j. The goal is to select, among n jobs with processing times and due dates, a subset of jobs with maximum total processing time that can be scheduled in sequence without violating their due dates. This problem is NP-hard, but a classical algorithm by Lawler and Moore from the 60s solves this problem in pseudo-polynomial time O(nP), where P is the total processing time of all jobs. With the aim to develop best-possible pseudo-polynomial-time algorithms, a recent wave of results has improved Lawler and Moore’s algorithm for 1||∑ p_j U_j: First to time Õ(P^{7/4}) [Bringmann, Fischer, Hermelin, Shabtay, Wellnitz; ICALP'20], then to time Õ(P^{5/3}) [Klein, Polak, Rohwedder; SODA'23], and finally to time Õ(P^{7/5}) [Schieber, Sitaraman; WADS'23]. It remained an exciting open question whether these works can be improved further. In this work we develop an algorithm in near-linear time Õ(P) for the 1||∑ p_j U_j problem. This running time not only significantly improves upon the previous results, but also matches conditional lower bounds based on the Strong Exponential Time Hypothesis or the Set Cover Hypothesis and is therefore likely optimal (up to subpolynomial factors). Our new algorithm also extends to the case of m machines in time Õ(P^m). In contrast to the previous improvements, we take a different, more direct approach inspired by the recent reductions from Modular Subset Sum to dynamic string problems. We thereby arrive at a satisfyingly simple algorithm.

Cite as

Nick Fischer and Leo Wennmann. Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 64:1-64:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fischer_et_al:LIPIcs.ICALP.2024.64,
  author =	{Fischer, Nick and Wennmann, Leo},
  title =	{{Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{64:1--64:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.64},
  URN =		{urn:nbn:de:0030-drops-202079},
  doi =		{10.4230/LIPIcs.ICALP.2024.64},
  annote =	{Keywords: Scheduling, Fine-Grained Complexity, Dynamic Strings}
}
Document
Track A: Algorithms, Complexity and Games
Polylogarithmic Approximations for Robust s-t Path

Authors: Shi Li, Chenyang Xu, and Ruilong Zhang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The paper revisits the Robust s-t Path problem, one of the most fundamental problems in robust optimization. In the problem, we are given a directed graph with n vertices and k distinct cost functions (scenarios) defined over edges, and aim to choose an s-t path such that the total cost of the path is always provable no matter which scenario is realized. Viewing each cost function as an agent, our goal is to find a fair s-t path, which minimizes the maximum cost among all agents. The problem is NP-hard to approximate within a factor of o(log k) unless NP ⊆ DTIME(n^{polylog n}), and the best-known approximation ratio is Õ(√n), which is based on the natural flow linear program. A longstanding open question is whether we can achieve a polylogarithmic approximation for the problem; it remains open even if a quasi-polynomial running time is allowed. Our main result is a O(log n log k) approximation for the Robust s-t Path problem in quasi-polynomial time, solving the open question in the quasi-polynomial time regime. The algorithm is built on a novel linear program formulation for a decision-tree-type structure, which enables us to overcome the Ω(√n) integrality gap for the natural flow LP. Furthermore, we show that for graphs with bounded treewidth, the quasi-polynomial running time can be improved to a polynomial. We hope our techniques can offer new insights into this problem and other related problems in robust optimization.

Cite as

Shi Li, Chenyang Xu, and Ruilong Zhang. Polylogarithmic Approximations for Robust s-t Path. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 106:1-106:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ICALP.2024.106,
  author =	{Li, Shi and Xu, Chenyang and Zhang, Ruilong},
  title =	{{Polylogarithmic Approximations for Robust s-t Path}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{106:1--106:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.106},
  URN =		{urn:nbn:de:0030-drops-202497},
  doi =		{10.4230/LIPIcs.ICALP.2024.106},
  annote =	{Keywords: Approximation Algorithm, Randomized LP Rounding, Robust s-t Path}
}
Document
Track A: Algorithms, Complexity and Games
Oracle-Augmented Prophet Inequalities

Authors: Sariel Har-Peled, Elfarouk Harb, and Vasilis Livanos

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the classical prophet inequality setting, a gambler is given a sequence of n random variables X₁, … , X_n, taken from known distributions, observes their values in adversarial order and selects one of them, immediately after it is being observed, aiming to select a value that is as high as possible. The classical prophet inequality shows a strategy that guarantees a value at least half of the value of an omniscience prophet that always picks the maximum, and this ratio is optimal. Here, we generalize the prophet inequality, allowing the gambler some additional information about the future that is otherwise privy only to the prophet. Specifically, at any point in the process, the gambler is allowed to query an oracle 𝒪. The oracle responds with a single bit answer: YES if the current realization is greater than the remaining realizations, and NO otherwise. We show that the oracle model with m oracle calls is equivalent to the Top-1-of-(m+1) model when the objective is maximizing the probability of selecting the maximum. This equivalence fails to hold when the objective is maximizing the competitive ratio, but we still show that any algorithm for the oracle model implies an equivalent competitive ratio for the Top-1-of-(m+1) model. We resolve the oracle model for any m, giving tight lower and upper bound on the best possible competitive ratio compared to an almighty adversary. As a consequence, we provide new results as well as improvements on known results for the Top-1-of-m model.

Cite as

Sariel Har-Peled, Elfarouk Harb, and Vasilis Livanos. Oracle-Augmented Prophet Inequalities. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 81:1-81:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{harpeled_et_al:LIPIcs.ICALP.2024.81,
  author =	{Har-Peled, Sariel and Harb, Elfarouk and Livanos, Vasilis},
  title =	{{Oracle-Augmented Prophet Inequalities}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{81:1--81:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.81},
  URN =		{urn:nbn:de:0030-drops-202245},
  doi =		{10.4230/LIPIcs.ICALP.2024.81},
  annote =	{Keywords: prophet inequalities, predictions, top-1-of-k model}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Domain Reasoning in TopKAT

Authors: Cheng Zhang, Arthur Azevedo de Amorim, and Marco Gaboardi

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
TopKAT is the algebraic theory of Kleene algebra with tests (KAT) extended with a top element. Compared to KAT, one pleasant feature of TopKAT is that, in relational models, the top element allows us to express the domain and codomain of a relation. This enables several applications in program logics, such as proving under-approximate specifications or reachability properties of imperative programs. However, while TopKAT inherits many pleasant features of KATs, such as having a decidable equational theory, it is incomplete with respect to relational models. In other words, there are properties that hold true of all relational TopKATs but cannot be proved with the axioms of TopKAT. This issue is potentially worrisome for program-logic applications, in which relational models play a key role. In this paper, we further investigate the completeness properties of TopKAT with respect to relational models. We show that TopKAT is complete with respect to (co)domain comparison of KAT terms, but incomplete when comparing the (co)domain of arbitrary TopKAT terms. Since the encoding of under-approximate specifications in TopKAT hinges on this type of formula, the aforementioned incompleteness results have a limited impact when using TopKAT to reason about such specifications.

Cite as

Cheng Zhang, Arthur Azevedo de Amorim, and Marco Gaboardi. Domain Reasoning in TopKAT. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 157:1-157:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{zhang_et_al:LIPIcs.ICALP.2024.157,
  author =	{Zhang, Cheng and de Amorim, Arthur Azevedo and Gaboardi, Marco},
  title =	{{Domain Reasoning in TopKAT}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{157:1--157:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.157},
  URN =		{urn:nbn:de:0030-drops-203003},
  doi =		{10.4230/LIPIcs.ICALP.2024.157},
  annote =	{Keywords: Kleene algebra, Kleene Algebra With Tests, Kleene Algebra With Domain, Kleene Algebra With Top and Tests, Completeness, Decidability}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Quantum Distributed Algorithm for Triangle Finding in the CONGEST Model

Authors: Taisuke Izumi, François Le Gall, and Frédéric Magniez

Published in: LIPIcs, Volume 154, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)


Abstract
This paper considers the triangle finding problem in the CONGEST model of distributed computing. Recent works by Izumi and Le Gall (PODC'17), Chang, Pettie and Zhang (SODA'19) and Chang and Saranurak (PODC'19) have successively reduced the classical round complexity of triangle finding (as well as triangle listing) from the trivial upper bound O(n) to Õ(n^{1/3}), where n denotes the number of vertices in the graph. In this paper we present a quantum distributed algorithm that solves the triangle finding problem in Õ(n^{1/4}) rounds in the CONGEST model. This gives another example of quantum algorithm beating the best known classical algorithms in distributed computing. Our result also exhibits an interesting phenomenon: while in the classical setting the best known upper bounds for the triangle finding and listing problems are identical, in the quantum setting the round complexities of these two problems are now Õ(n^{1/4}) and Θ~(n^{1/3}), respectively. Our result thus shows that triangle finding is easier than triangle listing in the quantum CONGEST model.

Cite as

Taisuke Izumi, François Le Gall, and Frédéric Magniez. Quantum Distributed Algorithm for Triangle Finding in the CONGEST Model. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 154, pp. 23:1-23:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{izumi_et_al:LIPIcs.STACS.2020.23,
  author =	{Izumi, Taisuke and Le Gall, Fran\c{c}ois and Magniez, Fr\'{e}d\'{e}ric},
  title =	{{Quantum Distributed Algorithm for Triangle Finding in the CONGEST Model}},
  booktitle =	{37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)},
  pages =	{23:1--23:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-140-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{154},
  editor =	{Paul, Christophe and Bl\"{a}ser, Markus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.23},
  URN =		{urn:nbn:de:0030-drops-118840},
  doi =		{10.4230/LIPIcs.STACS.2020.23},
  annote =	{Keywords: Quantum computing, distributed computing, CONGEST model}
}
Document
Track A: Algorithms, Complexity and Games
Faster Algorithms for All Pairs Non-Decreasing Paths Problem

Authors: Ran Duan, Ce Jin, and Hongxun Wu

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
In this paper, we present an improved algorithm for the All Pairs Non-decreasing Paths (APNP) problem on weighted simple digraphs, which has running time O~(n^{{3 + omega}/{2}}) = O~(n^{2.686}). Here n is the number of vertices, and omega < 2.373 is the exponent of time complexity of fast matrix multiplication [Williams 2012, Le Gall 2014]. This matches the current best upper bound for (max, min)-matrix product [Duan, Pettie 2009] which is reducible to APNP. Thus, further improvement for APNP will imply a faster algorithm for (max, min)-matrix product. The previous best upper bound for APNP on weighted digraphs was O~(n^{1/2(3 + {3 - omega}/{omega + 1} + omega)}) = O~(n^{2.78}) [Duan, Gu, Zhang 2018]. We also show an O~(n^2) time algorithm for APNP in undirected simple graphs which also reaches optimal within logarithmic factors.

Cite as

Ran Duan, Ce Jin, and Hongxun Wu. Faster Algorithms for All Pairs Non-Decreasing Paths Problem. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 48:1-48:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{duan_et_al:LIPIcs.ICALP.2019.48,
  author =	{Duan, Ran and Jin, Ce and Wu, Hongxun},
  title =	{{Faster Algorithms for All Pairs Non-Decreasing Paths Problem}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{48:1--48:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.48},
  URN =		{urn:nbn:de:0030-drops-106241},
  doi =		{10.4230/LIPIcs.ICALP.2019.48},
  annote =	{Keywords: graph optimization, matrix multiplication, non-decreasing paths}
}
Document
Improved Time Bounds for All Pairs Non-decreasing Paths in General Digraphs

Authors: Ran Duan, Yong Gu, and Le Zhang

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We present improved algorithms for solving the All Pairs Non-decreasing Paths (APNP) problem on weighted digraphs. Currently, the best upper bound on APNP is O~(n^{(9+omega)/4})=O(n^{2.844}), obtained by Vassilevska Williams [TALG 2010 and SODA'08], where omega<2.373 is the usual exponent of matrix multiplication. Our first algorithm improves the time bound to O~(n^{2+omega/3})=O(n^{2.791}). The algorithm determines, for every pair of vertices s, t, the minimum last edge weight on a non-decreasing path from s to t, where a non-decreasing path is a path on which the edge weights form a non-decreasing sequence. The algorithm proposed uses the combinatorial properties of non-decreasing paths. Also a slightly improved algorithm with running time O(n^{2.78}) is presented.

Cite as

Ran Duan, Yong Gu, and Le Zhang. Improved Time Bounds for All Pairs Non-decreasing Paths in General Digraphs. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 44:1-44:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{duan_et_al:LIPIcs.ICALP.2018.44,
  author =	{Duan, Ran and Gu, Yong and Zhang, Le},
  title =	{{Improved Time Bounds for All Pairs Non-decreasing Paths in General Digraphs}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{44:1--44:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.44},
  URN =		{urn:nbn:de:0030-drops-90487},
  doi =		{10.4230/LIPIcs.ICALP.2018.44},
  annote =	{Keywords: Graph algorithms, Matrix multiplication, Non-decreasing paths}
}
  • Refine by Author
  • 2 Duan, Ran
  • 2 Le Gall, François
  • 1 Blacher, Mark
  • 1 Boncz, Peter A.
  • 1 Bonte, Pieter
  • Show More...

  • Refine by Classification
  • 4 Mathematics of computing → Graph algorithms
  • 2 Theory of computation → Design and analysis of algorithms
  • 1 Applied computing → Physics
  • 1 Computer systems organization → Real-time systems
  • 1 Computing methodologies → Artificial intelligence
  • Show More...

  • Refine by Keyword
  • 1 Applications of logics
  • 1 Approximate counting
  • 1 Approximate cycle counting Fast matrix multiplication
  • 1 Approximate triangle counting
  • 1 Approximation Algorithm
  • Show More...

  • Refine by Type
  • 18 document

  • Refine by Publication Year
  • 12 2024
  • 1 2007
  • 1 2016
  • 1 2017
  • 1 2018
  • Show More...