12 Search Results for "Zhao, Yu"


Document
Short Paper
GeoQAMap - Geographic Question Answering with Maps Leveraging LLM and Open Knowledge Base (Short Paper)

Authors: Yu Feng, Linfang Ding, and Guohui Xiao

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
GeoQA (Geographic Question Answering) is an emerging research field in GIScience, aimed at answering geographic questions in natural language. However, developing systems that seamlessly integrate structured geospatial data with unstructured natural language queries remains challenging. Recent advancements in Large Language Models (LLMs) have facilitated the application of natural language processing in various tasks. To achieve this goal, this study introduces GeoQAMap, a system that first translates natural language questions into SPARQL queries, then retrieves geospatial information from Wikidata, and finally generates interactive maps as visual answers. The system exhibits great potential for integration with other geospatial data sources such as OpenStreetMap and CityGML, enabling complicated geographic question answering involving further spatial operations.

Cite as

Yu Feng, Linfang Ding, and Guohui Xiao. GeoQAMap - Geographic Question Answering with Maps Leveraging LLM and Open Knowledge Base (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 28:1-28:7, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{feng_et_al:LIPIcs.GIScience.2023.28,
  author =	{Feng, Yu and Ding, Linfang and Xiao, Guohui},
  title =	{{GeoQAMap - Geographic Question Answering with Maps Leveraging LLM and Open Knowledge Base}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{28:1--28:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.28},
  URN =		{urn:nbn:de:0030-drops-189233},
  doi =		{10.4230/LIPIcs.GIScience.2023.28},
  annote =	{Keywords: Geographic Question Answering, Large Language Models, SPARQL, Knowledge Base, Wikidata}
}
Document
Short Paper
Characterizing Urban Expansion Processes Using Dynamic Spatial Models – a European Application (Short Paper)

Authors: Alex Hagen-Zanker, Jingyan Yu, Naratip Santitissadeekorn, and Susan Hughes

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
Characterisation of the urban expansion processes using time series of binary urban/non-urban land cover data is complex due to the need to account for the initial configuration and the rate of urban expansion over the analysed period. Failure to account for these factors makes the interpretation of landscape metrics for compactness, fragmentation, or clumpiness problematic and the comparison between geographical areas and time periods contentious. This paper presents an approach for characterisation using spatio-dynamic modelling which is data-centred using a process based model, Bayesian optimization, cluster identification, and maximum likelihood classification. An application of the approach across 652 functional urban areas in Europe (1975-2014) demonstrates the consistency of the approach and its ability to identify spatial and temporal trends in urban expansion processes.

Cite as

Alex Hagen-Zanker, Jingyan Yu, Naratip Santitissadeekorn, and Susan Hughes. Characterizing Urban Expansion Processes Using Dynamic Spatial Models – a European Application (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 36:1-36:6, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{hagenzanker_et_al:LIPIcs.GIScience.2023.36,
  author =	{Hagen-Zanker, Alex and Yu, Jingyan and Santitissadeekorn, Naratip and Hughes, Susan},
  title =	{{Characterizing Urban Expansion Processes Using Dynamic Spatial Models – a European Application}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{36:1--36:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.36},
  URN =		{urn:nbn:de:0030-drops-189312},
  doi =		{10.4230/LIPIcs.GIScience.2023.36},
  annote =	{Keywords: Urban expansion, morphology, spatio-temporal dynamics, simulation, compactness}
}
Document
Fast Reachability Using DAG Decomposition

Authors: Giorgos Kritikakis and Ioannis G. Tollis

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
We present a fast and practical algorithm to compute the transitive closure (TC) of a directed graph. It is based on computing a reachability indexing scheme of a directed acyclic graph (DAG), G = (V, E). Given any path/chain decomposition of G we show how to compute in parameterized linear time such a reachability scheme that can answer reachability queries in constant time. The experimental results reveal that our method is significantly faster in practice than the theoretical bounds imply, indicating that path/chain decomposition algorithms can be applied to obtain fast and practical solutions to the transitive closure (TC) problem. Furthermore, we show that the number of non-transitive edges of a DAG G is ≤ width*|V| and that we can find a substantially large subset of the transitive edges of G in linear time using a path/chain decomposition. Our extensive experimental results show the interplay between these concepts in various models of DAGs.

Cite as

Giorgos Kritikakis and Ioannis G. Tollis. Fast Reachability Using DAG Decomposition. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 2:1-2:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kritikakis_et_al:LIPIcs.SEA.2023.2,
  author =	{Kritikakis, Giorgos and Tollis, Ioannis G.},
  title =	{{Fast Reachability Using DAG Decomposition}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{2:1--2:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.2},
  URN =		{urn:nbn:de:0030-drops-183526},
  doi =		{10.4230/LIPIcs.SEA.2023.2},
  annote =	{Keywords: graph algorithms, hierarchy, directed acyclic graphs (DAG), path/chain decomposition, transitive closure, transitive reduction, reachability, reachability indexing scheme}
}
Document
Efficient Yao Graph Construction

Authors: Daniel Funke and Peter Sanders

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
Yao graphs are geometric spanners that connect each point of a given point set to its nearest neighbor in each of k cones drawn around it. Yao graphs were introduced to construct minimum spanning trees in d dimensional spaces. Moreover, they are used for instance in topology control in wireless networks. An optimal 𝒪(n log n)-time algorithm to construct Yao graphs for a given point set has been proposed in the literature but - to the best of our knowledge - never been implemented. Instead, algorithms with a quadratic complexity are used in popular packages to construct these graphs. In this paper we present the first implementation of the optimal Yao graph algorithm. We engineer the data structures required to achieve the 𝒪(n log n) time bound and detail algorithmic adaptations necessary to take the original algorithm from theory to practice. We propose a priority queue data structure that separates static and dynamic events and might be of independent interest for other sweepline algorithms. Additionally, we propose a new Yao graph algorithm based on a uniform grid data structure that performs well for medium-sized inputs. We evaluate our implementations on a wide variety of synthetic and real-world datasets and show that our implementation outperforms current publicly available implementations by at least an order of magnitude.

Cite as

Daniel Funke and Peter Sanders. Efficient Yao Graph Construction. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 20:1-20:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{funke_et_al:LIPIcs.SEA.2023.20,
  author =	{Funke, Daniel and Sanders, Peter},
  title =	{{Efficient Yao Graph Construction}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.20},
  URN =		{urn:nbn:de:0030-drops-183706},
  doi =		{10.4230/LIPIcs.SEA.2023.20},
  annote =	{Keywords: computational geometry, geometric spanners, Yao graphs, sweepline algorithms, optimal algorithms}
}
Document
A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

Authors: Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
Designing and modeling complex cyber-physical systems (CPS) faces the double challenge of combined discrete-continuous dynamics and concurrent behavior. Existing formal modeling and verification languages for CPS expose the underlying proof search technology. They lack high-level structuring elements and are not efficiently executable. The ensuing modeling gap renders formal CPS models hard to understand and to validate. We propose a high-level programming-based approach to formal modeling and verification of hybrid systems as a hybrid extension of an Active Objects language. Well-structured hybrid active programs and requirements allow automatic, reachability-preserving translation into differential dynamic logic, a logic for hybrid (discrete-continuous) programs. Verification is achieved by discharging the resulting formulas with the theorem prover KeYmaera X. We demonstrate the usability of our approach with case studies.

Cite as

Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle. A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 04:1-04:34, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{kamburjan_et_al:LITES.8.2.4,
  author =	{Kamburjan, Eduard and Mitsch, Stefan and H\"{a}hnle, Reiner},
  title =	{{A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems}},
  booktitle =	{LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems},
  pages =	{04:1--04:34},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  editor =	{Kamburjan, Eduard and Mitsch, Stefan and H\"{a}hnle, Reiner},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.4},
  doi =		{10.4230/LITES.8.2.4},
  annote =	{Keywords: Active Objects, Differential Dynamic Logic, Hybrid Systems}
}
Document
Susceptibility to Image Resolution in Face Recognition and Training Strategies to Enhance Robustness

Authors: Martin Knoche, Stefan Hörmann, and Gerhard Rigoll

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
Many face recognition approaches expect the input images to have similar image resolution. However, in real-world applications, the image resolution varies due to different image capture mechanisms or sources, affecting the performance of face recognition systems. This work first analyzes the image resolution susceptibility of modern face recognition. Face verification on the very popular LFW dataset drops from 99.23% accuracy to almost 55% when image dimensions of both images are reduced to arguable very poor resolution. With cross-resolution image pairs (one HR and one LR image), face verification accuracy is even worse. This characteristic is investigated more in-depth by analyzing the feature distances utilized for face verification. To increase the robustness, we propose two training strategies applied to a state-of-the-art face recognition model: 1) Training with 50% low resolution images within each batch and 2) using the cosine distance loss between high and low resolution features in a siamese network structure. Both methods significantly boost face verification accuracy for matching training and testing image resolutions. Training a network with different resolutions simultaneously instead of adding only one specific low resolution showed improvements across all resolutions and made a single model applicable to unknown resolutions. However, models trained for one particular low resolution perform better when using the exact resolution for testing. We improve the face verification accuracy from 96.86% to 97.72% on the popular LFW database with uniformly distributed image dimensions between 112 × 112 px and 5 × 5 px. Our approaches improve face verification accuracy even more from 77.56% to 87.17% for distributions focusing on lower images resolutions. Lastly, we propose specific image dimension sets focusing on high, mid, and low resolution for five well-known datasets to benchmark face verification accuracy in cross-resolution scenarios.

Cite as

Martin Knoche, Stefan Hörmann, and Gerhard Rigoll. Susceptibility to Image Resolution in Face Recognition and Training Strategies to Enhance Robustness. In LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1, pp. 01:1-01:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{knoche_et_al:LITES.8.1.1,
  author =	{Knoche, Martin and H\"{o}rmann, Stefan and Rigoll, Gerhard},
  title =	{{Susceptibility to Image Resolution in Face Recognition and Training Strategies to Enhance Robustness}},
  booktitle =	{LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision},
  pages =	{01:1--01:20},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Knoche, Martin and H\"{o}rmann, Stefan and Rigoll, Gerhard},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.1},
  doi =		{10.4230/LITES.8.1.1},
  annote =	{Keywords: recognition, resolution, cross, face, identification}
}
Document
HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

Authors: Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri, Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
Convolutional neural networks (CNNs) have produced unprecedented accuracy for many computer vision problems in the recent past. In power and compute-constrained embedded platforms, deploying modern CNNs can present many challenges. Most CNN architectures do not run in real-time due to the high number of computational operations involved during the inference phase. This emphasizes the role of CNN optimization techniques in early design space exploration. To estimate their efficacy in satisfying the target constraints, existing techniques are either hardware (HW) agnostic, pseudo-HW-aware by considering parameter and operation counts, or HW-aware through inflexible hardware-in-the-loop (HIL) setups. In this work, we introduce HW-Flow, a framework for optimizing and exploring CNN models based on three levels of hardware abstraction: Coarse, Mid and Fine. Through these levels, CNN design and optimization can be iteratively refined towards efficient execution on the target hardware platform. We present HW-Flow in the context of CNN pruning by augmenting a reinforcement learning agent with key metrics to understand the influence of its pruning actions on the inference hardware. With 2× reduction in energy and latency, we prune ResNet56, ResNet50, and DeepLabv3 with minimal accuracy degradation on the CIFAR-10, ImageNet, and CityScapes datasets, respectively.

Cite as

Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri, Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele. HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology. In LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1, pp. 03:1-03:30, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{vemparala_et_al:LITES.8.1.3,
  author =	{Vemparala, Manoj-Rohit and Fasfous, Nael and Frickenstein, Alexander and Valpreda, Emanuele and Camalleri, Manfredi and Zhao, Qi and Unger, Christian and Nagaraja, Naveen-Shankar and Martina, Maurizio and Stechele, Walter},
  title =	{{HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology}},
  booktitle =	{LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision},
  pages =	{03:1--03:30},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Vemparala, Manoj-Rohit and Fasfous, Nael and Frickenstein, Alexander and Valpreda, Emanuele and Camalleri, Manfredi and Zhao, Qi and Unger, Christian and Nagaraja, Naveen-Shankar and Martina, Maurizio and Stechele, Walter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.3},
  doi =		{10.4230/LITES.8.1.3},
  annote =	{Keywords: Convolutional Neural Networks, Optimization, Hardware Modeling, Pruning}
}
Document
Track A: Algorithms, Complexity and Games
Near-Optimal Two-Pass Streaming Algorithm for Sampling Random Walks over Directed Graphs

Authors: Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
For a directed graph G with n vertices and a start vertex u_start, we wish to (approximately) sample an L-step random walk over G starting from u_start with minimum space using an algorithm that only makes few passes over the edges of the graph. This problem found many applications, for instance, in approximating the PageRank of a webpage. If only a single pass is allowed, the space complexity of this problem was shown to be Θ̃(n ⋅ L). Prior to our work, a better space complexity was only known with Õ(√L) passes. We essentially settle the space complexity of this random walk simulation problem for two-pass streaming algorithms, showing that it is Θ̃(n ⋅ √L), by giving almost matching upper and lower bounds. Our lower bound argument extends to every constant number of passes p, and shows that any p-pass algorithm for this problem uses Ω̃(n ⋅ L^{1/p}) space. In addition, we show a similar Θ̃(n ⋅ √L) bound on the space complexity of any algorithm (with any number of passes) for the related problem of sampling an L-step random walk from every vertex in the graph.

Cite as

Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu. Near-Optimal Two-Pass Streaming Algorithm for Sampling Random Walks over Directed Graphs. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 52:1-52:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2021.52,
  author =	{Chen, Lijie and Kol, Gillat and Paramonov, Dmitry and Saxena, Raghuvansh R. and Song, Zhao and Yu, Huacheng},
  title =	{{Near-Optimal Two-Pass Streaming Algorithm for Sampling Random Walks over Directed Graphs}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{52:1--52:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.52},
  URN =		{urn:nbn:de:0030-drops-141218},
  doi =		{10.4230/LIPIcs.ICALP.2021.52},
  annote =	{Keywords: streaming algorithms, random walk sampling}
}
Document
On Closeness to k-Wise Uniformity

Authors: Ryan O'Donnell and Yu Zhao

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
A probability distribution over {-1, 1}^n is (epsilon, k)-wise uniform if, roughly, it is epsilon-close to the uniform distribution when restricted to any k coordinates. We consider the problem of how far an (epsilon, k)-wise uniform distribution can be from any globally k-wise uniform distribution. We show that every (epsilon, k)-wise uniform distribution is O(n^{k/2}epsilon)-close to a k-wise uniform distribution in total variation distance. In addition, we show that this bound is optimal for all even k: we find an (epsilon, k)-wise uniform distribution that is Omega(n^{k/2}epsilon)-far from any k-wise uniform distribution in total variation distance. For k=1, we get a better upper bound of O(epsilon), which is also optimal. One application of our closeness result is to the sample complexity of testing whether a distribution is k-wise uniform or delta-far from k-wise uniform. We give an upper bound of O(n^{k}/delta^2) (or O(log n/delta^2) when k = 1) on the required samples. We show an improved upper bound of O~(n^{k/2}/delta^2) for the special case of testing fully uniform vs. delta-far from k-wise uniform. Finally, we complement this with a matching lower bound of Omega(n/delta^2) when k = 2. Our results improve upon the best known bounds from [Alon et al., 2007], and have simpler proofs.

Cite as

Ryan O'Donnell and Yu Zhao. On Closeness to k-Wise Uniformity. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 54:1-54:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{odonnell_et_al:LIPIcs.APPROX-RANDOM.2018.54,
  author =	{O'Donnell, Ryan and Zhao, Yu},
  title =	{{On Closeness to k-Wise Uniformity}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{54:1--54:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.54},
  URN =		{urn:nbn:de:0030-drops-94581},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.54},
  annote =	{Keywords: k-wise independence, property testing, Fourier analysis, Boolean function}
}
Document
Some Lower Bounds in Dynamic Networks with Oblivious Adversaries

Authors: Irvan Jahja, Haifeng Yu, and Yuda Zhao

Published in: LIPIcs, Volume 91, 31st International Symposium on Distributed Computing (DISC 2017)


Abstract
This paper considers several closely-related problems in synchronous dynamic networks with oblivious adversaries, and proves novel Omega(d + poly(m)) lower bounds on their time complexity (in rounds). Here d is the dynamic diameter of the dynamic network and m is the total number of nodes. Before this work, the only known lower bounds on these problems under oblivious adversaries were the trivial Omega(d) lower bounds. Our novel lower bounds are hence the first non-trivial lower bounds and also the first lower bounds with a poly(m) term. Our proof relies on a novel reduction from a certain two-party communication complexity problem. Our central proof technique is unique in the sense that we consider the communication complexity with a special leaker. The leaker helps Alice and Bob in the two-party problem, by disclosing to Alice and Bob certain "non-critical" information about the problem instance that they are solving.

Cite as

Irvan Jahja, Haifeng Yu, and Yuda Zhao. Some Lower Bounds in Dynamic Networks with Oblivious Adversaries. In 31st International Symposium on Distributed Computing (DISC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 91, pp. 29:1-29:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{jahja_et_al:LIPIcs.DISC.2017.29,
  author =	{Jahja, Irvan and Yu, Haifeng and Zhao, Yuda},
  title =	{{Some Lower Bounds in Dynamic Networks with Oblivious Adversaries}},
  booktitle =	{31st International Symposium on Distributed Computing (DISC 2017)},
  pages =	{29:1--29:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-053-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{91},
  editor =	{Richa, Andr\'{e}a},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2017.29},
  URN =		{urn:nbn:de:0030-drops-79690},
  doi =		{10.4230/LIPIcs.DISC.2017.29},
  annote =	{Keywords: dynamic networks, oblivious adversary, adaptive adversary, lower bounds, communication complexity}
}
Document
A Survey on Static Cache Analysis for Real-Time Systems

Authors: Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and Wang Yi

Published in: LITES, Volume 3, Issue 1 (2016). Leibniz Transactions on Embedded Systems, Volume 3, Issue 1


Abstract
Real-time systems are reactive computer systems that must produce their reaction to a stimulus within given time bounds. A vital verification requirement is to estimate the Worst-Case Execution Time (WCET) of programs. These estimates are then used to predict the timing behavior of the overall system. The execution time of a program heavily depends on the underlying hardware, among which cache has the biggest influence. Analyzing cache behavior is very challenging due to the versatile cache features and complex execution environment. This article provides a survey on static cache analysis for real-time systems. We first present the challenges and static analysis techniques for independent programs with respect to different cache features. Then, the discussion is extended to cache analysis in complex execution environment, followed by a survey of existing tools based on static techniques for cache analysis. An outlook for future research is provided at last.

Cite as

Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and Wang Yi. A Survey on Static Cache Analysis for Real-Time Systems. In LITES, Volume 3, Issue 1 (2016). Leibniz Transactions on Embedded Systems, Volume 3, Issue 1, pp. 05:1-05:48, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@Article{lv_et_al:LITES-v003-i001-a005,
  author =	{Lv, Mingsong and Guan, Nan and Reineke, Jan and Wilhelm, Reinhard and Yi, Wang},
  title =	{{A Survey on Static Cache Analysis for Real-Time Systems}},
  booktitle =	{LITES, Volume 3, Issue 1 (2016)},
  pages =	{05:1--05:48},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2016},
  volume =	{3},
  number =	{1},
  editor =	{Lv, Mingsong and Guan, Nan and Reineke, Jan and Wilhelm, Reinhard and Yi, Wang},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES-v003-i001-a005},
  doi =		{10.4230/LITES-v003-i001-a005},
  annote =	{Keywords: Hard real-time, Cache analysis, Worst-case execution time}
}
Document
Polynomial Bounds for Decoupling, with Applications

Authors: Ryan O'Donnell and Yu Zhao

Published in: LIPIcs, Volume 50, 31st Conference on Computational Complexity (CCC 2016)


Abstract
Let f(x) = f(x_1, ..., x_n) = sum_{|S|<=k} a_S prod_{i in S} x_i be an n-variate real multilinear polynomial of degree at most k, where S subseteq [n] = {1, 2, ..., n}. For its one-block decoupled version, vf(y,z) = sum_{abs(S)<=k} a_S sum_{i in S}} y_i prod_{j in S\{i}} z_j, we show tail-bound comparisons of the form Pr(abs(vf)(y,z)) > C_k t} <= D_k Pr(abs(f(x)) > t). Our constants C_k, D_k are significantly better than those known for "full decoupling". For example, when x, y, z are independent Gaussians we obtain C_k = D_k = O(k); when x, by, z are +/-1 random variables we obtain C_k = O(k^2), D_k = k^{O(k)}. By contrast, for full decoupling only C_k = D_k = k^{O(k)} is known in these settings. We describe consequences of these results for query complexity (related to conjectures of Aaronson and Ambainis) and for analysis of Boolean functions (including an optimal sharpening of the DFKO Inequality).

Cite as

Ryan O'Donnell and Yu Zhao. Polynomial Bounds for Decoupling, with Applications. In 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 50, pp. 24:1-24:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{odonnell_et_al:LIPIcs.CCC.2016.24,
  author =	{O'Donnell, Ryan and Zhao, Yu},
  title =	{{Polynomial Bounds for Decoupling, with Applications}},
  booktitle =	{31st Conference on Computational Complexity (CCC 2016)},
  pages =	{24:1--24:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-008-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{50},
  editor =	{Raz, Ran},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2016.24},
  URN =		{urn:nbn:de:0030-drops-58520},
  doi =		{10.4230/LIPIcs.CCC.2016.24},
  annote =	{Keywords: Decoupling, Query Complexity, Fourier Analysis, Boolean Functions}
}
  • Refine by Author
  • 2 O'Donnell, Ryan
  • 2 Zhao, Yu
  • 1 Camalleri, Manfredi
  • 1 Chen, Lijie
  • 1 Ding, Linfang
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Design and analysis of algorithms
  • 1 Applied computing → Cartography
  • 1 Applied computing → Environmental sciences
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Distributed programming languages
  • Show More...

  • Refine by Keyword
  • 1 Active Objects
  • 1 Boolean Functions
  • 1 Boolean function
  • 1 Cache analysis
  • 1 Convolutional Neural Networks
  • Show More...

  • Refine by Type
  • 12 document

  • Refine by Publication Year
  • 4 2023
  • 3 2022
  • 2 2016
  • 1 2017
  • 1 2018
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail