28 Search Results for "Andoni, Alexandr"


Document
The Planted Orthogonal Vectors Problem

Authors: David Kühnemann, Adam Polak, and Alon Rosen

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
In the k-Orthogonal Vectors (k-OV) problem we are given k sets, each containing n binary vectors of dimension d = n^o(1), and our goal is to pick one vector from each set so that at each coordinate at least one vector has a zero. It is a central problem in fine-grained complexity, conjectured to require n^{k-o(1)} time in the worst case. We propose a way to plant a solution among vectors with i.i.d. p-biased entries, for appropriately chosen p, so that the planted solution is the unique one. Our conjecture is that the resulting k-OV instances still require time n^{k-o(1)} to solve, on average. Our planted distribution has the property that any subset of strictly less than k vectors has the same marginal distribution as in the model distribution, consisting of i.i.d. p-biased random vectors. We use this property to give average-case search-to-decision reductions for k-OV.

Cite as

David Kühnemann, Adam Polak, and Alon Rosen. The Planted Orthogonal Vectors Problem. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 95:1-95:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kuhnemann_et_al:LIPIcs.ESA.2025.95,
  author =	{K\"{u}hnemann, David and Polak, Adam and Rosen, Alon},
  title =	{{The Planted Orthogonal Vectors Problem}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{95:1--95:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.95},
  URN =		{urn:nbn:de:0030-drops-245640},
  doi =		{10.4230/LIPIcs.ESA.2025.95},
  annote =	{Keywords: Average-case complexity, fine-grained complexity, orthogonal vectors}
}
Document
On the Satisfiability of Random 3-SAT Formulas with k-Wise Independent Clauses

Authors: Ioannis Caragiannis, Nick Gravin, and Zhile Jiang

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The problem of identifying the satisfiability threshold of random 3-SAT formulas has received a lot of attention during the last decades and has inspired the study of other threshold phenomena in random combinatorial structures. The classical assumption in this line of research is that, for a given set of n Boolean variables, each clause is drawn uniformly at random among all sets of three literals from these variables, independently from other clauses. Here, we keep the uniform distribution of each clause, but deviate significantly from the independence assumption and consider richer families of probability distributions. For integer parameters n, m, and k, we denote by ℱ_k(n,m) the family of probability distributions that produce formulas with m clauses, each selected uniformly at random from all sets of three literals from the n variables, so that the clauses are k-wise independent. Our aim is to make general statements about the satisfiability or unsatisfiability of formulas produced by distributions in ℱ_k(n,m) for different values of the parameters n, m, and k. Our technical results are as follows: First, all probability distributions in ℱ₂(n,m) with m ∈ Ω(n³) return unsatisfiable formulas with high probability. This result is tight. We show that there exists a probability distribution 𝒟 ∈ ℱ₃(n,m) with m ∈ O(n³) so that a random formula drawn from 𝒟 is almost always satisfiable. In contrast, for m ∈ Ω(n²), any probability distribution 𝒟 ∈ ℱ₄(n,m) returns an unsatisfiable formula with high probability. This is our most surprising and technically involved result. Finally, for any integer k ≥ 2, any probability distribution 𝒟 ∈ ℱ_k(n,m) with m ∈ O(n^{1-1/k}) returns a satisfiable formula with high probability.

Cite as

Ioannis Caragiannis, Nick Gravin, and Zhile Jiang. On the Satisfiability of Random 3-SAT Formulas with k-Wise Independent Clauses. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 103:1-103:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{caragiannis_et_al:LIPIcs.ESA.2025.103,
  author =	{Caragiannis, Ioannis and Gravin, Nick and Jiang, Zhile},
  title =	{{On the Satisfiability of Random 3-SAT Formulas with k-Wise Independent Clauses}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{103:1--103:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.103},
  URN =		{urn:nbn:de:0030-drops-245721},
  doi =		{10.4230/LIPIcs.ESA.2025.103},
  annote =	{Keywords: Random 3-SAT, k-wise independence, Random bipartite graph}
}
Document
Color Distance Oracles and Snippets: Separation Between Exact and Approximate Solutions

Authors: Noam Horowicz and Tsvi Kopelowitz

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
In the snippets problem, the goal is to preprocess a text T so that given two pattern queries, P₁ and P₂, one can quickly locate the occurrences of the two patterns in T that are closest to each other, or report the distance between these occurrences. Kopelowitz and Krauthgamer [CPM2016] showed upper bound tradeoffs and conditional lower bounds tradeoffs for the snippets problem, by utilizing connections between the snippets problem and the problem of constructing a color distance oracle (CDO), which is a data structure that preprocess a set of points with associated colors so that given two colors c and c' one can quickly find the (distance between the) closest pair of points where one has color c and the other has color c'. However, the existing upper bound and lower bound curves are not tight. Inspired by recent advances by Kopelowitz and Vassilevska-Williams [ICALP2020] regarding tradeoff curves for Set-disjointness data structures, in this paper we introduce new conditionally optimal algorithms for a (1+ε) approximation version of the snippets problem and a (1+ε) approximation version of the CDO problem, by applying fast matrix multiplication. For example, for CDO on n points in an array, if the preprocessing time is Õ(n^a) and the query time is Õ(n^b) then, assuming that ω = 2 (where ω is the exponent of n in the runtime of the fastest matrix multiplication algorithm on two squared matrices of size n× n), we show that approximate CDO can be solved with the following tradeoff a + 2b = 2 (if 0 ≤ b ≤ 1/3) 2a + b = 3 (if 1/3 ≤ b ≤ 1). Moreover, we prove that for exact CDO on points in an array, the algorithm of Kopelowitz and Krauthgamer [CPM2016], which obtains a tradeoff of a+b = 2, is essentially optimal assuming that the strong all-pairs shortest paths hypothesis holds for randomized algorithms. Thus, we demonstrate that the exact version of CDO is strictly harder than the approximate version. Moreover, this separation carries over to the snippets problem.

Cite as

Noam Horowicz and Tsvi Kopelowitz. Color Distance Oracles and Snippets: Separation Between Exact and Approximate Solutions. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 72:1-72:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{horowicz_et_al:LIPIcs.ESA.2025.72,
  author =	{Horowicz, Noam and Kopelowitz, Tsvi},
  title =	{{Color Distance Oracles and Snippets: Separation Between Exact and Approximate Solutions}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{72:1--72:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.72},
  URN =		{urn:nbn:de:0030-drops-245403},
  doi =		{10.4230/LIPIcs.ESA.2025.72},
  annote =	{Keywords: data structures, fast matrix multiplication, fine-grained complexity, pattern matching, distance oracles}
}
Document
RANDOM
Fooling Near-Maximal Decision Trees

Authors: William M. Hoza and Zelin Lv

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
For any constant α > 0, we construct an explicit pseudorandom generator (PRG) that fools n-variate decision trees of size m with error ε and seed length (1 + α) ⋅ log₂ m + O(log(1/ε) + log log n). For context, one can achieve seed length (2 + o(1)) ⋅ log₂ m + O(log(1/ε) + log log n) using well-known constructions and analyses of small-bias distributions, but such a seed length is trivial when m ≥ 2^{n/2}. Our approach is to develop a new variant of the classic concept of almost k-wise independence, which might be of independent interest. We say that a distribution X over {0, 1}ⁿ is k-wise ε-probably uniform if every Boolean function f that depends on only k variables satisfies 𝔼[f(X)] ≥ (1 - ε) ⋅ 𝔼[f]. We show how to sample a k-wise ε-probably uniform distribution using a seed of length (1 + α) ⋅ k + O(log(1/ε) + log log n). Meanwhile, we also show how to construct a set H ⊆ 𝔽₂ⁿ such that every feasible system of k linear equations in n variables over 𝔽₂ has a solution in H. The cardinality of H and the time complexity of enumerating H are at most 2^{k + o(k) + polylog n}, whereas small-bias distributions would give a bound of 2^{2k + O(log(n/k))}. By combining our new constructions with work by Chen and Kabanets (TCS 2016), we obtain nontrivial PRGs and hitting sets for linear-size Boolean circuits. Specifically, we get an explicit PRG with seed length (1 - Ω(1)) ⋅ n that fools circuits of size 2.99 ⋅ n over the U₂ basis, and we get a hitting set with time complexity 2^{(1 - Ω(1)) ⋅ n} for circuits of size 2.49 ⋅ n over the B₂ basis.

Cite as

William M. Hoza and Zelin Lv. Fooling Near-Maximal Decision Trees. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 35:1-35:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hoza_et_al:LIPIcs.APPROX/RANDOM.2025.35,
  author =	{Hoza, William M. and Lv, Zelin},
  title =	{{Fooling Near-Maximal Decision Trees}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{35:1--35:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.35},
  URN =		{urn:nbn:de:0030-drops-244019},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.35},
  annote =	{Keywords: almost k-wise independence, decision trees, pseudorandom generators}
}
Document
Dynamic Streaming Algorithms for Geometric Independent Set

Authors: Timothy M. Chan and Yuancheng Yu

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We present the first space-efficient, fully dynamic streaming algorithm for computing a constant-factor approximation of the maximum independent set size of n axis-aligned rectangles in two dimensions. For an arbitrarily small constant δ > 0, our algorithm obtains an O((1/δ)²) approximation and requires O(U^δ polylog n) space and update time with high probability, assuming that coordinates are integers bounded by U. We also obtain a similar result for fat objects in any constant dimension. This extends recent non-streaming algorithms by Bhore and Chan from SODA'25, and also greatly extends previous streaming results, which were limited to special types of geometric objects such as one-dimensional intervals and unit disks.

Cite as

Timothy M. Chan and Yuancheng Yu. Dynamic Streaming Algorithms for Geometric Independent Set. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 17:1-17:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.WADS.2025.17,
  author =	{Chan, Timothy M. and Yu, Yuancheng},
  title =	{{Dynamic Streaming Algorithms for Geometric Independent Set}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{17:1--17:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.17},
  URN =		{urn:nbn:de:0030-drops-242481},
  doi =		{10.4230/LIPIcs.WADS.2025.17},
  annote =	{Keywords: Geometric Independent Set, Dynamic Streaming Algorithms}
}
Document
A Min-Entropy Approach to Multi-Party Communication Lower Bounds

Authors: Mi-Ying (Miryam) Huang, Xinyu Mao, Shuo Wang, Guangxu Yang, and Jiapeng Zhang

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
Information complexity is one of the most powerful techniques to prove information-theoretical lower bounds, in which Shannon entropy plays a central role. Though Shannon entropy has some convenient properties, such as the chain rule, it still has inherent limitations. One of the most notable barriers is the square-root loss, which appears in the square-root gap between entropy gaps and statistical distances, e.g., Pinsker’s inequality. To bypass this barrier, we introduce a new method based on min-entropy analysis. Building on this new method, we prove the following results. - An Ω(N^{∑_i α_i - max_i {α_i}}/k) randomized communication lower bound of the k-party set-intersection problem where the i-th party holds a random set of size ≈ N^{1-α_i}. - A tight Ω(n/k) randomized lower bound of the k-party Tree Pointer Jumping problems, improving an Ω(n/k²) lower bound by Chakrabarti, Cormode, and McGregor (STOC 08). - An Ω(n/k+√n) lower bound of the Chained Index problem, improving an Ω(n/k²) lower bound by Cormode, Dark, and Konrad (ICALP 19). Since these problems served as hard problems for numerous applications in streaming lower bounds and cryptography, our new lower bounds directly improve these streaming lower bounds and cryptography lower bounds. On the technical side, min-entropy does not have nice properties such as the chain rule. To address this issue, we enhance the structure-vs-pseudorandomness decomposition used by Göös, Pitassi, and Watson (FOCS 17) and Yang and Zhang (STOC 24); both papers used this decomposition to prove communication lower bounds. In this paper, we give a new breath to this method in the multi-party setting, presenting a new toolkit for proving multi-party communication lower bounds.

Cite as

Mi-Ying (Miryam) Huang, Xinyu Mao, Shuo Wang, Guangxu Yang, and Jiapeng Zhang. A Min-Entropy Approach to Multi-Party Communication Lower Bounds. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 33:1-33:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{huang_et_al:LIPIcs.CCC.2025.33,
  author =	{Huang, Mi-Ying (Miryam) and Mao, Xinyu and Wang, Shuo and Yang, Guangxu and Zhang, Jiapeng},
  title =	{{A Min-Entropy Approach to Multi-Party Communication Lower Bounds}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{33:1--33:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.33},
  URN =		{urn:nbn:de:0030-drops-237273},
  doi =		{10.4230/LIPIcs.CCC.2025.33},
  annote =	{Keywords: communication complexity, lifting theorems, set intersection, chained index}
}
Document
Track A: Algorithms, Complexity and Games
Cut-Preserving Vertex Sparsifiers for Planar and Quasi-Bipartite Graphs

Authors: Yu Chen and Zihan Tan

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We study vertex sparsification for preserving cuts. Given a graph G with a subset |T| = k of its vertices called terminals, a quality-q cut sparsifier is a graph G' that contains T, such that, for any partition (T₁,T₂) of T into non-empty subsets, the value of the min-cut in G' separating T₁ from T₂ is within factor q from the value of the min-cut in G separating T₁ from T₂. The construction of cut sparsifiers with good (small) quality and size has been a central problem in graph compression for years. Planar graphs and quasi-bipartite graphs are two important special families studied in this research direction. The main results in this paper are new cut sparsifier constructions for them in the high-quality regime (where q = 1 or 1+{ε} for small {ε} > 0). We first show that every planar graph admits a planar quality-(1+{ε}) cut sparsifier of size Õ(k/poly({ε})), which is in sharp contrast with the lower bound of 2^{Ω(k)} for the quality-1 case. We then show that every quasi-bipartite graph admits a quality-1 cut sparsifier of size 2^{Õ(k²)}. This is the second to improve over the doubly-exponential bound for general graphs (previously only planar graphs have been shown to have single-exponential size quality-1 cut sparsifiers). Lastly, we show that contraction, a common approach for constructing cut sparsifiers adopted in most previous works, does not always give optimal bounds for cut sparsifiers. We demonstrate this by showing that the optimal size bound for quality-(1+{ε}) contraction-based cut sparsifiers for quasi-bipartite graphs lies in the range [k^{̃Ω(1/{ε})},k^{O(1/{ε}²)}], while in previous work an upper bound of Õ(k/{ε}²) was achieved via a non-contraction approach.

Cite as

Yu Chen and Zihan Tan. Cut-Preserving Vertex Sparsifiers for Planar and Quasi-Bipartite Graphs. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 53:1-53:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2025.53,
  author =	{Chen, Yu and Tan, Zihan},
  title =	{{Cut-Preserving Vertex Sparsifiers for Planar and Quasi-Bipartite Graphs}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{53:1--53:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.53},
  URN =		{urn:nbn:de:0030-drops-234304},
  doi =		{10.4230/LIPIcs.ICALP.2025.53},
  annote =	{Keywords: Termianl Cut, Graph Sparsification}
}
Document
Track A: Algorithms, Complexity and Games
Even Faster Algorithm for the Chamfer Distance

Authors: Ying Feng and Piotr Indyk

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
For two d-dimensional point sets A,B of size up to n, the Chamfer distance from A to B is defined as CH(A,B) = ∑_{a ∈ A} min_{b ∈ B} ‖a-b‖. The Chamfer distance is a widely used measure for quantifying dissimilarity between sets of points, used in many machine learning and computer vision applications. A recent work of Bakshi et al, NeuriPS'23, gave the first near-linear time (1+ε)-approximate algorithm, with a running time of 𝒪(nd log (n)/ε²). In this paper we improve the running time further, to 𝒪(nd(log log n+log1/(ε))/ε²)). When ε is a constant, this reduces the gap between the upper bound and the trivial Ω(dn) lower bound significantly, from 𝒪(log n) to 𝒪(log log n).

Cite as

Ying Feng and Piotr Indyk. Even Faster Algorithm for the Chamfer Distance. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 76:1-76:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{feng_et_al:LIPIcs.ICALP.2025.76,
  author =	{Feng, Ying and Indyk, Piotr},
  title =	{{Even Faster Algorithm for the Chamfer Distance}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{76:1--76:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.76},
  URN =		{urn:nbn:de:0030-drops-234531},
  doi =		{10.4230/LIPIcs.ICALP.2025.76},
  annote =	{Keywords: Chamfer distance}
}
Document
Track A: Algorithms, Complexity and Games
Deterministic Complexity Analysis of Hermitian Eigenproblems

Authors: Aleksandros Sobczyk

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
In this work we revisit the arithmetic and bit complexity of Hermitian eigenproblems. Recently, [BGVKS, FOCS 2020] proved that a (non-Hermitian) matrix A can be diagonalized with a randomized algorithm in O(n^{ω}log²(n/ε)) arithmetic operations, where ω≲ 2.371 is the square matrix multiplication exponent, and [Shah, SODA 2025] significantly improved the bit complexity for the Hermitian case. Our main goal is to obtain similar deterministic complexity bounds for various Hermitian eigenproblems. In the Real RAM model, we show that a Hermitian matrix can be diagonalized deterministically in O(n^{ω}log(n)+n²polylog(n/ε)) arithmetic operations, improving the classic deterministic Õ(n³) algorithms, and derandomizing the aforementioned state-of-the-art. The main technical step is a complete, detailed analysis of a well-known divide-and-conquer tridiagonal eigensolver of Gu and Eisenstat [GE95], when accelerated with the Fast Multipole Method, asserting that it can accurately diagonalize a symmetric tridiagonal matrix in nearly-O(n²) operations. In finite precision, we show that an algorithm by Schönhage [Sch72] to reduce a Hermitian matrix to tridiagonal form is stable in the floating point model, using O(log(n/ε)) bits of precision. This leads to a deterministic algorithm to compute all the eigenvalues of a Hermitian matrix in O(n^{ω}ℱ(log(n/ε)) + n²polylog(n/ε)) bit operations, where ℱ(b) ∈ Õ(b) is the bit complexity of a single floating point operation on b bits. This improves the best known Õ(n³) deterministic and O(n^{ω}log²(n/ε)ℱ(log(n/ε))) randomized complexities. We conclude with some other useful subroutines such as computing spectral gaps, condition numbers, and spectral projectors, and with some open problems.

Cite as

Aleksandros Sobczyk. Deterministic Complexity Analysis of Hermitian Eigenproblems. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 131:1-131:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{sobczyk:LIPIcs.ICALP.2025.131,
  author =	{Sobczyk, Aleksandros},
  title =	{{Deterministic Complexity Analysis of Hermitian Eigenproblems}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{131:1--131:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.131},
  URN =		{urn:nbn:de:0030-drops-235081},
  doi =		{10.4230/LIPIcs.ICALP.2025.131},
  annote =	{Keywords: Hermitian eigenproblem, eigenvalues, SVD, tridiagonal reduction, matrix multiplication time, diagonalization, bit complexity}
}
Document
Track A: Algorithms, Complexity and Games
Fully Scalable MPC Algorithms for Euclidean k-Center

Authors: Artur Czumaj, Guichen Gao, Mohsen Ghaffari, and Shaofeng H.-C. Jiang

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
The k-center problem is a fundamental optimization problem with numerous applications in machine learning, data analysis, data mining, and communication networks. The k-center problem has been extensively studied in the classical sequential setting for several decades, and more recently there have been some efforts in understanding the problem in parallel computing, on the Massively Parallel Computation (MPC) model. For now, we have a good understanding of k-center in the case where each local MPC machine has sufficient local memory to store some representatives from each cluster, that is, when one has Ω(k) local memory per machine. While this setting covers the case of small values of k, for a large number of clusters these algorithms require undesirably large local memory, making them poorly scalable. The case of large k has been considered only recently for the fully scalable low-local-memory MPC model for the Euclidean instances of the k-center problem. However, the earlier works have been considering only the constant dimensional Euclidean space, required a super-constant number of rounds, and produced only k(1+o(1)) centers whose cost is a super-constant approximation of k-center. In this work, we significantly improve upon the earlier results for the k-center problem for the fully scalable low-local-memory MPC model. In the low dimensional Euclidean case in ℝ^d, we present the first constant-round fully scalable MPC algorithm for (2+ε)-approximation. We push the ratio further to (1 + ε)-approximation albeit using slightly more (1 + ε)k centers. All these results naturally extends to slightly super-constant values of d. In the high-dimensional regime, we provide the first fully scalable MPC algorithm that in a constant number of rounds achieves an O(log n/ log log n)-approximation for k-center.

Cite as

Artur Czumaj, Guichen Gao, Mohsen Ghaffari, and Shaofeng H.-C. Jiang. Fully Scalable MPC Algorithms for Euclidean k-Center. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 64:1-64:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{czumaj_et_al:LIPIcs.ICALP.2025.64,
  author =	{Czumaj, Artur and Gao, Guichen and Ghaffari, Mohsen and Jiang, Shaofeng H.-C.},
  title =	{{Fully Scalable MPC Algorithms for Euclidean k-Center}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{64:1--64:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.64},
  URN =		{urn:nbn:de:0030-drops-234416},
  doi =		{10.4230/LIPIcs.ICALP.2025.64},
  annote =	{Keywords: Massively Parallel Computing, Euclidean Spaces, k-Center Clustering}
}
Document
Lipschitz Decompositions of Finite 𝓁_{p} Metrics

Authors: Robert Krauthgamer and Nir Petruschka

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
Lipschitz decomposition is a useful tool in the design of efficient algorithms involving metric spaces. While many bounds are known for different families of finite metrics, the optimal parameters for n-point subsets of 𝓁_p, for p > 2, remained open, see e.g. [Naor, SODA 2017]. We make significant progress on this question and establish the bound β = O(log^{1-1/p} n). Building on prior work, we demonstrate applications of this result to two problems, high-dimensional geometric spanners and distance labeling schemes. In addition, we sharpen a related decomposition bound for 1 < p < 2, due to Filtser and Neiman [Algorithmica 2022].

Cite as

Robert Krauthgamer and Nir Petruschka. Lipschitz Decompositions of Finite 𝓁_{p} Metrics. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 66:1-66:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{krauthgamer_et_al:LIPIcs.SoCG.2025.66,
  author =	{Krauthgamer, Robert and Petruschka, Nir},
  title =	{{Lipschitz Decompositions of Finite 𝓁\underline\{p\} Metrics}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{66:1--66:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.66},
  URN =		{urn:nbn:de:0030-drops-232182},
  doi =		{10.4230/LIPIcs.SoCG.2025.66},
  annote =	{Keywords: Lipschitz decompositions, metric embeddings, geometric spanners}
}
Document
Range Counting Oracles for Geometric Problems

Authors: Anne Driemel, Morteza Monemizadeh, Eunjin Oh, Frank Staals, and David P. Woodruff

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
In this paper, we study estimators for geometric optimization problems in the sublinear geometric model. In this model, we have oracle access to a point set with size n in a discrete space [Δ]^d, where queries can be made to an oracle that responds to orthogonal range counting requests. The query complexity of an optimization problem is measured by the number of oracle queries required to compute an estimator for the problem. We investigate two problems in this framework, the Euclidean Minimum Spanning Tree (MST) and Earth Mover Distance (EMD). For EMD, we show the existence of an estimator that approximates the cost of EMD with O(log Δ)-relative error and O(nΔ/(s^{1+1/d}))-additive error using O(s polylog Δ) range counting queries for any parameter s with 1 ≤ s ≤ n. Moreover, we prove that this bound is tight. For MST, we demonstrate that the weight of MST can be estimated within a factor of (1 ± ε) using Õ(√n) range counting queries.

Cite as

Anne Driemel, Morteza Monemizadeh, Eunjin Oh, Frank Staals, and David P. Woodruff. Range Counting Oracles for Geometric Problems. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 42:1-42:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{driemel_et_al:LIPIcs.SoCG.2025.42,
  author =	{Driemel, Anne and Monemizadeh, Morteza and Oh, Eunjin and Staals, Frank and Woodruff, David P.},
  title =	{{Range Counting Oracles for Geometric Problems}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{42:1--42:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.42},
  URN =		{urn:nbn:de:0030-drops-231941},
  doi =		{10.4230/LIPIcs.SoCG.2025.42},
  annote =	{Keywords: Range counting oracles, minimum spanning trees, Earth Mover’s Distance}
}
Document
String Problems in the Congested Clique Model

Authors: Shay Golan and Matan Kraus

Published in: LIPIcs, Volume 331, 36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025)


Abstract
In this paper we present algorithms for several string problems in the Congested Clique model. In the Congested Clique model, n nodes (computers) are used to solve some problem. The input to the problem is distributed among the nodes, and the communication between the nodes is conducted in rounds. In each round, every node is allowed to send an O(log n)-bit message to every other node in the network. We consider three fundamental string problems in the Congested Clique model. First, we present an O(1) rounds algorithm for string sorting that supports strings of arbitrary length. Second, we present an O(1) rounds combinatorial pattern matching algorithm. Finally, we present an O(log log n) rounds algorithm for the computation of the suffix array and the corresponding Longest Common Prefix array of a given string.

Cite as

Shay Golan and Matan Kraus. String Problems in the Congested Clique Model. In 36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 331, pp. 6:1-6:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{golan_et_al:LIPIcs.CPM.2025.6,
  author =	{Golan, Shay and Kraus, Matan},
  title =	{{String Problems in the Congested Clique Model}},
  booktitle =	{36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025)},
  pages =	{6:1--6:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-369-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{331},
  editor =	{Bonizzoni, Paola and M\"{a}kinen, Veli},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2025.6},
  URN =		{urn:nbn:de:0030-drops-231003},
  doi =		{10.4230/LIPIcs.CPM.2025.6},
  annote =	{Keywords: String Sorting, Pattern Matching, Suffix Array, Congested Clique, Sorting}
}
Document
Differentially Private High-Dimensional Approximate Range Counting, Revisited

Authors: Martin Aumüller, Fabrizio Boninsegna, and Francesco Silvestri

Published in: LIPIcs, Volume 329, 6th Symposium on Foundations of Responsible Computing (FORC 2025)


Abstract
Locality Sensitive Filters are known for offering a quasi-linear space data structure with rigorous guarantees for the Approximate Near Neighbor search (ANN) problem. Building on Locality Sensitive Filters, we derive a simple data structure for the Approximate Near Neighbor Counting (ANNC) problem under differential privacy (DP). Moreover, we provide a simple analysis leveraging a connection with concomitant statistics and extreme value theory. Our approach produces a simple data structure with a tunable parameter that regulates a trade-off between space-time and utility. Through this trade-off, our data structure achieves the same performance as the recent findings of Andoni et al. (NeurIPS 2023) while offering better utility at the cost of higher space and query time. In addition, we provide a more efficient algorithm under pure ε-DP and elucidate the connection between ANN and differentially private ANNC. As a side result, the paper provides a more compact description and analysis of Locality Sensitive Filters for Fair Near Neighbor Search, improving a previous result in Aumüller et al. (TODS 2022).

Cite as

Martin Aumüller, Fabrizio Boninsegna, and Francesco Silvestri. Differentially Private High-Dimensional Approximate Range Counting, Revisited. In 6th Symposium on Foundations of Responsible Computing (FORC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 329, pp. 15:1-15:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{aumuller_et_al:LIPIcs.FORC.2025.15,
  author =	{Aum\"{u}ller, Martin and Boninsegna, Fabrizio and Silvestri, Francesco},
  title =	{{Differentially Private High-Dimensional Approximate Range Counting, Revisited}},
  booktitle =	{6th Symposium on Foundations of Responsible Computing (FORC 2025)},
  pages =	{15:1--15:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-367-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{329},
  editor =	{Bun, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2025.15},
  URN =		{urn:nbn:de:0030-drops-231426},
  doi =		{10.4230/LIPIcs.FORC.2025.15},
  annote =	{Keywords: Differential Privacy, Locality Sensitive Filters, Approximate Range Counting, Concominant Statistics}
}
Document
O(1)-Round MPC Algorithms for Multi-Dimensional Grid Graph Connectivity, Euclidean MST and DBSCAN

Authors: Junhao Gan, Anthony Wirth, and Zhuo Zhang

Published in: LIPIcs, Volume 328, 28th International Conference on Database Theory (ICDT 2025)


Abstract
In this paper, we investigate three fundamental problems in the Massively Parallel Computation (MPC) model: (i) grid graph connectivity, (ii) approximate Euclidean Minimum Spanning Tree (EMST), and (iii) approximate DBSCAN. Our first result is a O(1)-round Las Vegas (i.e., succeeding with high probability) MPC algorithm for computing the connected components on a d-dimensional c-penetration grid graph ((d,c)-grid graph), where both d and c are positive integer constants. In such a grid graph, each vertex is a point with integer coordinates in ℕ^d, and an edge can only exist between two distinct vertices with 𝓁_∞-norm at most c. To our knowledge, the current best existing result for computing the connected components (CC’s) on (d,c)-grid graphs in the MPC model is to run the state-of-the-art MPC CC algorithms that are designed for general graphs: they achieve O(log log n + log D) [Behnezhad et al., 2019] and O(log log n + log 1/(λ)) [Sepehr Assadi et al., 2019] rounds, respectively, where D is the diameter and λ is the spectral gap of the graph. With our grid graph connectivity technique, our second main result is a O(1)-round Las Vegas MPC algorithm for computing approximate Euclidean MST. The existing state-of-the-art result on this problem is the O(1)-round MPC algorithm proposed by Andoni et al. [Alexandr Andoni et al., 2014], which only guarantees an approximation on the overall weight in expectation. In contrast, our algorithm not only guarantees a deterministic overall weight approximation, but also achieves a deterministic edge-wise weight approximation. The latter property is crucial to many applications, such as finding the Bichromatic Closest Pair and Single-Linkage Clustering. Last, but not least, our third main result is a O(1)-round Las Vegas MPC algorithm for computing an approximate DBSCAN clustering in O(1)-dimensional Euclidean space.

Cite as

Junhao Gan, Anthony Wirth, and Zhuo Zhang. O(1)-Round MPC Algorithms for Multi-Dimensional Grid Graph Connectivity, Euclidean MST and DBSCAN. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gan_et_al:LIPIcs.ICDT.2025.7,
  author =	{Gan, Junhao and Wirth, Anthony and Zhang, Zhuo},
  title =	{{O(1)-Round MPC Algorithms for Multi-Dimensional Grid Graph Connectivity, Euclidean MST and DBSCAN}},
  booktitle =	{28th International Conference on Database Theory (ICDT 2025)},
  pages =	{7:1--7:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-364-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{328},
  editor =	{Roy, Sudeepa and Kara, Ahmet},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.7},
  URN =		{urn:nbn:de:0030-drops-229483},
  doi =		{10.4230/LIPIcs.ICDT.2025.7},
  annote =	{Keywords: Massively Parallel Computation, Graph Connectivity, Grid Graphs, Euclidean Minimum Spanning Tree, DBSCAN}
}
  • Refine by Type
  • 28 Document/PDF
  • 19 Document/HTML

  • Refine by Publication Year
  • 19 2025
  • 1 2023
  • 1 2022
  • 2 2020
  • 3 2019
  • Show More...

  • Refine by Author
  • 7 Andoni, Alexandr
  • 3 Woodruff, David P.
  • 2 Filtser, Arnold
  • 2 Krauthgamer, Robert
  • 1 Aradhya, Vijeth
  • Show More...

  • Refine by Series/Journal
  • 28 LIPIcs

  • Refine by Classification
  • 3 Theory of computation → Computational geometry
  • 3 Theory of computation → Distributed algorithms
  • 3 Theory of computation → Randomness, geometry and discrete structures
  • 3 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 2 Theory of computation
  • Show More...

  • Refine by Keyword
  • 4 communication complexity
  • 2 data structures
  • 2 fine-grained complexity
  • 1 2-edge connectivity
  • 1 Approximate Range Counting
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail