4 Search Results for "Fici, Gabriele"


Document
Substring Complexity in Sublinear Space

Authors: Giulia Bernardini, Gabriele Fici, Paweł Gawrychowski, and Solon P. Pissis

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
Shannon’s entropy is a definitive lower bound for statistical compression. Unfortunately, no such clear measure exists for the compressibility of repetitive strings. Thus, ad hoc measures are employed to estimate the repetitiveness of strings, e.g., the size z of the Lempel–Ziv parse or the number r of equal-letter runs of the Burrows-Wheeler transform. A more recent one is the size γ of a smallest string attractor. Let T be a string of length n. A string attractor of T is a set of positions of T capturing the occurrences of all the substrings of T. Unfortunately, Kempa and Prezza [STOC 2018] showed that computing γ is NP-hard. Kociumaka et al. [LATIN 2020] considered a new measure of compressibility that is based on the function S_T(k) counting the number of distinct substrings of length k of T, also known as the substring complexity of T. This new measure is defined as δ = sup{S_T(k)/k, k ≥ 1} and lower bounds all the relevant ad hoc measures previously considered. In particular, δ ≤ γ always holds and δ can be computed in 𝒪(n) time using Θ(n) working space. Kociumaka et al. showed that one can construct an 𝒪(δ log n/(δ))-sized representation of T supporting efficient direct access and efficient pattern matching queries on T. Given that for highly compressible strings, δ is significantly smaller than n, it is natural to pose the following question: Can we compute δ efficiently using sublinear working space? It is straightforward to show that in the comparison model, any algorithm computing δ using 𝒪(b) space requires Ω(n^{2-o(1)}/b) time through a reduction from the element distinctness problem [Yao, SIAM J. Comput. 1994]. We thus wanted to investigate whether we can indeed match this lower bound. We address this algorithmic challenge by showing the following bounds to compute δ: - 𝒪((n³log b)/b²) time using 𝒪(b) space, for any b ∈ [1,n], in the comparison model. - 𝒪̃(n²/b) time using 𝒪̃(b) space, for any b ∈ [√n,n], in the word RAM model. This gives an 𝒪̃(n^{1+ε})-time and 𝒪̃(n^{1-ε})-space algorithm to compute δ, for any 0 < ε ≤ 1/2. Let us remark that our algorithms compute S_T(k), for all k, within the same complexities.

Cite as

Giulia Bernardini, Gabriele Fici, Paweł Gawrychowski, and Solon P. Pissis. Substring Complexity in Sublinear Space. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 12:1-12:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bernardini_et_al:LIPIcs.ISAAC.2023.12,
  author =	{Bernardini, Giulia and Fici, Gabriele and Gawrychowski, Pawe{\l} and Pissis, Solon P.},
  title =	{{Substring Complexity in Sublinear Space}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{12:1--12:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.12},
  URN =		{urn:nbn:de:0030-drops-193143},
  doi =		{10.4230/LIPIcs.ISAAC.2023.12},
  annote =	{Keywords: sublinear-space algorithm, string algorithm, substring complexity}
}
Document
On the Impact of Morphisms on BWT-Runs

Authors: Gabriele Fici, Giuseppe Romana, Marinella Sciortino, and Cristian Urbina

Published in: LIPIcs, Volume 259, 34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)


Abstract
Morphisms are widely studied combinatorial objects that can be used for generating infinite families of words. In the context of Information theory, injective morphisms are called (variable length) codes. In Data compression, the morphisms, combined with parsing techniques, have been recently used to define new mechanisms to generate repetitive words. Here, we show that the repetitiveness induced by applying a morphism to a word can be captured by a compression scheme based on the Burrows-Wheeler Transform (BWT). In fact, we prove that, differently from other compression-based repetitiveness measures, the measure r_bwt (which counts the number of equal-letter runs produced by applying BWT to a word) strongly depends on the applied morphism. More in detail, we characterize the binary morphisms that preserve the value of r_bwt(w), when applied to any binary word w containing both letters. They are precisely the Sturmian morphisms, which are well-known objects in Combinatorics on words. Moreover, we prove that it is always possible to find a binary morphism that, when applied to any binary word containing both letters, increases the number of BWT-equal letter runs by a given (even) number. In addition, we derive a method for constructing arbitrarily large families of binary words on which BWT produces a given (even) number of new equal-letter runs. Such results are obtained by using a new class of morphisms that we call Thue-Morse-like. Finally, we show that there exist binary morphisms μ for which it is possible to find words w such that the difference r_bwt(μ(w))-r_bwt(w) is arbitrarily large.

Cite as

Gabriele Fici, Giuseppe Romana, Marinella Sciortino, and Cristian Urbina. On the Impact of Morphisms on BWT-Runs. In 34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 259, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fici_et_al:LIPIcs.CPM.2023.10,
  author =	{Fici, Gabriele and Romana, Giuseppe and Sciortino, Marinella and Urbina, Cristian},
  title =	{{On the Impact of Morphisms on BWT-Runs}},
  booktitle =	{34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-276-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{259},
  editor =	{Bulteau, Laurent and Lipt\'{a}k, Zsuzsanna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2023.10},
  URN =		{urn:nbn:de:0030-drops-179641},
  doi =		{10.4230/LIPIcs.CPM.2023.10},
  annote =	{Keywords: Morphism, Burrows-Wheeler transform, Sturmian word, Sturmian morphism, Thue-Morse morphism, Repetitiveness measure}
}
Document
Constructing Strings Avoiding Forbidden Substrings

Authors: Giulia Bernardini, Alberto Marchetti-Spaccamela, Solon P. Pissis, Leen Stougie, and Michelle Sweering

Published in: LIPIcs, Volume 191, 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)


Abstract
We consider the problem of constructing strings over an alphabet Σ that start with a given prefix u, end with a given suffix v, and avoid occurrences of a given set of forbidden substrings. In the decision version of the problem, given a set S_k of forbidden substrings, each of length k, over Σ, we are asked to decide whether there exists a string x over Σ such that u is a prefix of x, v is a suffix of x, and no s ∈ S_k occurs in x. Our first result is an 𝒪(|u|+|v|+k|S_k|)-time algorithm to decide this problem. In the more general optimization version of the problem, given a set S of forbidden arbitrary-length substrings over Σ, we are asked to construct a shortest string x over Σ such that u is a prefix of x, v is a suffix of x, and no s ∈ S occurs in x. Our second result is an 𝒪(|u|+|v|+||S||⋅|Σ|)-time algorithm to solve this problem, where ||S|| denotes the total length of the elements of S. Interestingly, our results can be directly applied to solve the reachability and shortest path problems in complete de Bruijn graphs in the presence of forbidden edges or of forbidden paths. Our algorithms are motivated by data privacy, and in particular, by the data sanitization process. In the context of strings, sanitization consists in hiding forbidden substrings from a given string by introducing the least amount of spurious information. We consider the following problem. Given a string w of length n over Σ, an integer k, and a set S_k of forbidden substrings, each of length k, over Σ, construct a shortest string y over Σ such that no s ∈ S_k occurs in y and the sequence of all other length-k fragments occurring in w is a subsequence of the sequence of the length-k fragments occurring in y. Our third result is an 𝒪(nk|S_k|⋅|Σ|)-time algorithm to solve this problem.

Cite as

Giulia Bernardini, Alberto Marchetti-Spaccamela, Solon P. Pissis, Leen Stougie, and Michelle Sweering. Constructing Strings Avoiding Forbidden Substrings. In 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 191, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bernardini_et_al:LIPIcs.CPM.2021.9,
  author =	{Bernardini, Giulia and Marchetti-Spaccamela, Alberto and Pissis, Solon P. and Stougie, Leen and Sweering, Michelle},
  title =	{{Constructing Strings Avoiding Forbidden Substrings}},
  booktitle =	{32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-186-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{191},
  editor =	{Gawrychowski, Pawe{\l} and Starikovskaya, Tatiana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2021.9},
  URN =		{urn:nbn:de:0030-drops-139604},
  doi =		{10.4230/LIPIcs.CPM.2021.9},
  annote =	{Keywords: string algorithms, forbidden strings, de Bruijn graphs, data sanitization}
}
Document
Anti-Powers in Infinite Words

Authors: Gabriele Fici, Antonio Restivo, Manuel Silva, and Luca Q. Zamboni

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
In combinatorics of words, a concatenation of k consecutive equal blocks is called a power of order k. In this paper we take a different point of view and define an anti-power of order k as a concatenation of k consecutive pairwise distinct blocks of the same length. As a main result, we show that every infinite word contains powers of any order or anti-powers of any order. That is, the existence of powers or anti-powers is an unavoidable regularity. Indeed, we prove a stronger result, which relates the density of anti-powers to the existence of a factor that occurs with arbitrary exponent. From these results, we derive that at every position of an aperiodic uniformly recurrent word start anti-powers of any order. We further show that any infinite word avoiding anti-powers of order 3 is ultimately periodic, and that there exist aperiodic words avoiding anti-powers of order 4. We also show that there exist aperiodic recurrent words avoiding anti-powers of order 6, and leave open the question whether there exist aperiodic recurrent words avoiding anti-powers of order k for k=4,5.

Cite as

Gabriele Fici, Antonio Restivo, Manuel Silva, and Luca Q. Zamboni. Anti-Powers in Infinite Words. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 124:1-124:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{fici_et_al:LIPIcs.ICALP.2016.124,
  author =	{Fici, Gabriele and Restivo, Antonio and Silva, Manuel and Zamboni, Luca Q.},
  title =	{{Anti-Powers in Infinite Words}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{124:1--124:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.124},
  URN =		{urn:nbn:de:0030-drops-62599},
  doi =		{10.4230/LIPIcs.ICALP.2016.124},
  annote =	{Keywords: infinite word, anti-power, unavoidable regularity, avoidability}
}
  • Refine by Author
  • 3 Fici, Gabriele
  • 2 Bernardini, Giulia
  • 2 Pissis, Solon P.
  • 1 Gawrychowski, Paweł
  • 1 Marchetti-Spaccamela, Alberto
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Pattern matching
  • 1 Mathematics of computing → Combinatorics on words
  • 1 Theory of computation → Data compression

  • Refine by Keyword
  • 1 Burrows-Wheeler transform
  • 1 Morphism
  • 1 Repetitiveness measure
  • 1 Sturmian morphism
  • 1 Sturmian word
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2023
  • 1 2016
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail