16 Search Results for "Forbes, Michael A."


Document
On the Algebraic Proof Complexity of Tensor Isomorphism

Authors: Nicola Galesi, Joshua A. Grochow, Toniann Pitassi, and Adrian She

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
The Tensor Isomorphism problem (TI) has recently emerged as having connections to multiple areas of research within complexity and beyond, but the current best upper bound is essentially the brute force algorithm. Being an algebraic problem, TI (or rather, proving that two tensors are non-isomorphic) lends itself very naturally to algebraic and semi-algebraic proof systems, such as the Polynomial Calculus (PC) and Sum of Squares (SoS). For its combinatorial cousin Graph Isomorphism, essentially optimal lower bounds are known for approaches based on PC and SoS (Berkholz & Grohe, SODA '17). Our main results are an Ω(n) lower bound on PC degree or SoS degree for Tensor Isomorphism, and a nontrivial upper bound for testing isomorphism of tensors of bounded rank. We also show that PC cannot perform basic linear algebra in sub-linear degree, such as comparing the rank of two matrices (which is essentially the same as 2-TI), or deriving BA = I from AB = I. As linear algebra is a key tool for understanding tensors, we introduce a strictly stronger proof system, PC+Inv, which allows as derivation rules all substitution instances of the implication AB = I → BA = I. We conjecture that even PC+Inv cannot solve TI in polynomial time either, but leave open getting lower bounds on PC+Inv for any system of equations, let alone those for TI. We also highlight many other open questions about proof complexity approaches to TI.

Cite as

Nicola Galesi, Joshua A. Grochow, Toniann Pitassi, and Adrian She. On the Algebraic Proof Complexity of Tensor Isomorphism. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 4:1-4:40, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{galesi_et_al:LIPIcs.CCC.2023.4,
  author =	{Galesi, Nicola and Grochow, Joshua A. and Pitassi, Toniann and She, Adrian},
  title =	{{On the Algebraic Proof Complexity of Tensor Isomorphism}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{4:1--4:40},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.4},
  URN =		{urn:nbn:de:0030-drops-182748},
  doi =		{10.4230/LIPIcs.CCC.2023.4},
  annote =	{Keywords: Algebraic proof complexity, Tensor Isomorphism, Graph Isomorphism, Polynomial Calculus, Sum-of-Squares, reductions, lower bounds, proof complexity of linear algebra}
}
Document
RANDOM
Black-Box Identity Testing of Noncommutative Rational Formulas of Inversion Height Two in Deterministic Quasipolynomial Time

Authors: V. Arvind, Abhranil Chatterjee, and Partha Mukhopadhyay

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
Hrubeš and Wigderson [Hrubeš and Wigderson, 2015] initiated the complexity-theoretic study of noncommutative formulas with inverse gates. They introduced the Rational Identity Testing (RIT) problem which is to decide whether a noncommutative rational formula computes zero in the free skew field. In the white-box setting, there are deterministic polynomial-time algorithms due to Garg, Gurvits, Oliveira, and Wigderson [Ankit Garg et al., 2016] and Ivanyos, Qiao, and Subrahmanyam [Ivanyos et al., 2018]. A central open problem in this area is to design an efficient deterministic black-box identity testing algorithm for rational formulas. In this paper, we solve this for the first nested inverse case. More precisely, we obtain a deterministic quasipolynomial-time black-box RIT algorithm for noncommutative rational formulas of inversion height two via a hitting set construction. Several new technical ideas are involved in the hitting set construction, including concepts from matrix coefficient realization theory [Volčič, 2018] and properties of cyclic division algebras [T.Y. Lam, 2001]. En route to the proof, an important step is to embed the hitting set of Forbes and Shpilka for noncommutative formulas [Michael A. Forbes and Amir Shpilka, 2013] inside a cyclic division algebra of small index.

Cite as

V. Arvind, Abhranil Chatterjee, and Partha Mukhopadhyay. Black-Box Identity Testing of Noncommutative Rational Formulas of Inversion Height Two in Deterministic Quasipolynomial Time. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 23:1-23:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{arvind_et_al:LIPIcs.APPROX/RANDOM.2022.23,
  author =	{Arvind, V. and Chatterjee, Abhranil and Mukhopadhyay, Partha},
  title =	{{Black-Box Identity Testing of Noncommutative Rational Formulas of Inversion Height Two in Deterministic Quasipolynomial Time}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{23:1--23:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.23},
  URN =		{urn:nbn:de:0030-drops-171451},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.23},
  annote =	{Keywords: Rational Identity Testing, Black-box Derandomization, Cyclic Division Algebra, Matrix coefficient realization theory}
}
Document
Functional Lower Bounds for Restricted Arithmetic Circuits of Depth Four

Authors: Suryajith Chillara

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
Recently, Forbes, Kumar and Saptharishi [CCC, 2016] proved that there exists an explicit d^{O(1)}-variate and degree d polynomial P_{d} ∈ VNP such that if any depth four circuit C of bounded formal degree d which computes a polynomial of bounded individual degree O(1), that is functionally equivalent to P_d, then C must have size 2^Ω(√dlog{d}). The motivation for their work comes from Boolean Circuit Complexity. Based on a characterization for ACC⁰ circuits by Yao [FOCS, 1985] and Beigel and Tarui [CC, 1994], Forbes, Kumar and Saptharishi [CCC, 2016] observed that functions in ACC⁰ can also be computed by algebraic Σ∧ΣΠ circuits (i.e., circuits of the form - sums of powers of polynomials) of 2^(log^O(1) n) size. Thus they argued that a 2^{ω(polylog n)} "functional" lower bound for an explicit polynomial Q against Σ∧ΣΠ circuits would imply a lower bound for the "corresponding Boolean function" of Q against non-uniform ACC⁰. In their work, they ask if their lower bound be extended to Σ∧ΣΠ circuits. In this paper, for large integers n and d such that ω(log²n) ≤ d ≤ n^{0.01}, we show that any Σ∧ΣΠ circuit of bounded individual degree at most O(d/k²) that functionally computes Iterated Matrix Multiplication polynomial IMM_{n,d} (∈ VP) over {0,1}^{n²d} must have size n^Ω(k). Since Iterated Matrix Multiplication IMM_{n,d} over {0,1}^{n²d} is functionally in GapL, improvement of the afore mentioned lower bound to hold for quasipolynomially large values of individual degree would imply a fine-grained separation of ACC⁰ from GapL. For the sake of completeness, we also show a syntactic size lower bound against any Σ∧ΣΠ circuit computing IMM_{n,d} (for the same regime of d) which is tight over large fields. Like Forbes, Kumar and Saptharishi [CCC, 2016], we too prove lower bounds against circuits of bounded formal degree which functionally compute IMM_{n,d}, for a slightly larger range of individual degree.

Cite as

Suryajith Chillara. Functional Lower Bounds for Restricted Arithmetic Circuits of Depth Four. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 14:1-14:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chillara:LIPIcs.FSTTCS.2021.14,
  author =	{Chillara, Suryajith},
  title =	{{Functional Lower Bounds for Restricted Arithmetic Circuits of Depth Four}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{14:1--14:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.14},
  URN =		{urn:nbn:de:0030-drops-155251},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.14},
  annote =	{Keywords: Functional Lower Bounds, Boolean Circuit Lower Bounds, Depth Four, Connections to Boolean Complexity, Iterated Matrix Multiplication}
}
Document
RANDOM
Improved Hitting Set for Orbit of ROABPs

Authors: Vishwas Bhargava and Sumanta Ghosh

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
The orbit of an n-variate polynomial f(x) over a field 𝔽 is the set {f(Ax+b) ∣ A ∈ GL(n, 𝔽) and b ∈ 𝔽ⁿ}, and the orbit of a polynomial class is the union of orbits of all the polynomials in it. In this paper, we give improved constructions of hitting-sets for the orbit of read-once oblivious algebraic branching programs (ROABPs) and a related model. Over fields with characteristic zero or greater than d, we construct a hitting set of size (ndw)^{O(w²log n⋅ min{w², dlog w})} for the orbit of ROABPs in unknown variable order where d is the individual degree and w is the width of ROABPs. We also give a hitting set of size (ndw)^{O(min{w²,dlog w})} for the orbit of polynomials computed by w-width ROABPs in any variable order. Our hitting sets improve upon the results of Saha and Thankey [Chandan Saha and Bhargav Thankey, 2021] who gave an (ndw)^{O(dlog w)} size hitting set for the orbit of commutative ROABPs (a subclass of any-order ROABPs) and (nw)^{O(w⁶log n)} size hitting set for the orbit of multilinear ROABPs. Designing better hitting sets in large individual degree regime, for instance d > n, was asked as an open problem by [Chandan Saha and Bhargav Thankey, 2021] and this work solves it in small width setting. We prove some new rank concentration results by establishing low-cone concentration for the polynomials over vector spaces, and they strengthen some previously known low-support based rank concentrations shown in [Michael A. Forbes et al., 2013]. These new low-cone concentration results are crucial in our hitting set construction, and may be of independent interest. To the best of our knowledge, this is the first time when low-cone rank concentration has been used for designing hitting sets.

Cite as

Vishwas Bhargava and Sumanta Ghosh. Improved Hitting Set for Orbit of ROABPs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 30:1-30:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bhargava_et_al:LIPIcs.APPROX/RANDOM.2021.30,
  author =	{Bhargava, Vishwas and Ghosh, Sumanta},
  title =	{{Improved Hitting Set for Orbit of ROABPs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{30:1--30:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.30},
  URN =		{urn:nbn:de:0030-drops-147231},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.30},
  annote =	{Keywords: Hitting Set, Low Cone Concentration, Orbits, PIT, ROABP}
}
Document
RANDOM
Pseudorandom Generators for Read-Once Monotone Branching Programs

Authors: Dean Doron, Raghu Meka, Omer Reingold, Avishay Tal, and Salil Vadhan

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
Motivated by the derandomization of space-bounded computation, there has been a long line of work on constructing pseudorandom generators (PRGs) against various forms of read-once branching programs (ROBPs), with a goal of improving the O(log² n) seed length of Nisan’s classic construction [Noam Nisan, 1992] to the optimal O(log n). In this work, we construct an explicit PRG with seed length Õ(log n) for constant-width ROBPs that are monotone, meaning that the states at each time step can be ordered so that edges with the same labels never cross each other. Equivalently, for each fixed input, the transition functions are a monotone function of the state. This result is complementary to a line of work that gave PRGs with seed length O(log n) for (ordered) permutation ROBPs of constant width [Braverman et al., 2014; Koucký et al., 2011; De, 2011; Thomas Steinke, 2012], since the monotonicity constraint can be seen as the "opposite" of the permutation constraint. Our PRG also works for monotone ROBPs that can read the input bits in any order, which are strictly more powerful than read-once AC⁰. Our PRG achieves better parameters (in terms of the dependence on the depth of the circuit) than the best previous pseudorandom generator for read-once AC⁰, due to Doron, Hatami, and Hoza [Doron et al., 2019]. Our pseudorandom generator construction follows Ajtai and Wigderson’s approach of iterated pseudorandom restrictions [Ajtai and Wigderson, 1989; Gopalan et al., 2012]. We give a randomness-efficient width-reduction process which proves that the branching program simplifies to an O(log n)-junta after only O(log log n) independent applications of the Forbes-Kelley pseudorandom restrictions [Michael A. Forbes and Zander Kelley, 2018].

Cite as

Dean Doron, Raghu Meka, Omer Reingold, Avishay Tal, and Salil Vadhan. Pseudorandom Generators for Read-Once Monotone Branching Programs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 58:1-58:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{doron_et_al:LIPIcs.APPROX/RANDOM.2021.58,
  author =	{Doron, Dean and Meka, Raghu and Reingold, Omer and Tal, Avishay and Vadhan, Salil},
  title =	{{Pseudorandom Generators for Read-Once Monotone Branching Programs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{58:1--58:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.58},
  URN =		{urn:nbn:de:0030-drops-147513},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.58},
  annote =	{Keywords: Branching programs, pseudorandom generators, constant depth circuits}
}
Document
Shadows of Newton Polytopes

Authors: Pavel Hrubeš and Amir Yehudayoff

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
We define the shadow complexity of a polytope P as the maximum number of vertices in a linear projection of P to the plane. We describe connections to algebraic complexity and to parametrized optimization. We also provide several basic examples and constructions, and develop tools for bounding shadow complexity.

Cite as

Pavel Hrubeš and Amir Yehudayoff. Shadows of Newton Polytopes. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 9:1-9:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{hrubes_et_al:LIPIcs.CCC.2021.9,
  author =	{Hrube\v{s}, Pavel and Yehudayoff, Amir},
  title =	{{Shadows of Newton Polytopes}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{9:1--9:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.9},
  URN =		{urn:nbn:de:0030-drops-142833},
  doi =		{10.4230/LIPIcs.CCC.2021.9},
  annote =	{Keywords: Newton polytope, Monotone arithmetic circuit}
}
Document
A Special Case of Rational Identity Testing and the Brešar-Klep Theorem

Authors: V. Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
We explore a special case of rational identity testing and algorithmic versions of two theorems on noncommutative polynomials, namely, Amitsur's theorem [S.A Amitsur, 1966] and the Brešar-Klep theorem [Brešar and Klep, 2008] when the input polynomial is given by an algebraic branching program (ABP). Let f be a degree-d n-variate noncommutative polynomial in the free ring Q<x_1,x_2,...,x_n> over rationals. 1) We consider the following special case of rational identity testing: Given a noncommutative ABP as white-box, whose edge labels are linear forms or inverses of linear forms, we show a deterministic polynomial-time algorithm to decide if the rational function computed by it is equivalent to zero in the free skew field Q<(X)>. Given black-box access to the ABP, we give a deterministic quasi-polynomial time algorithm for this problem. 2) Amitsur's theorem implies that if a noncommutative polynomial f is nonzero on k x k matrices then, in fact, f(M_1,M_2,...,M_n) is invertible for some matrix tuple (M_1,M_2,...,M_n) in (M_k(ℚ))^n. While a randomized polynomial time algorithm to find such (M_1,M_2,...,M_n) given black-box access to f is simple, we obtain a deterministic s^{O(log d)} time algorithm for the problem with black-box access to f, where s is the minimum ABP size for f and d is the degree of f. 3) The Brešar-Klep Theorem states that the span of the range of any noncommutative polynomial f on k x k matrices over Q is one of the following: zero, scalar multiples of I_k, trace-zero matrices in M_k(Q), or all of M_k(Q). We obtain a deterministic polynomial-time algorithm to decide which case occurs, given white-box access to an ABP for f. We also give a deterministic s^{O(log d)} time algorithm given black-box access to an ABP of size s for f. Our algorithms work when k >= d. Our techniques are based on some automata theory combined with known techniques for noncommutative ABP identity testing [Ran Raz and Amir Shpilka, 2005; Michael A. Forbes and Amir Shpilka, 2013].

Cite as

V. Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay. A Special Case of Rational Identity Testing and the Brešar-Klep Theorem. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{arvind_et_al:LIPIcs.MFCS.2020.10,
  author =	{Arvind, V. and Chatterjee, Abhranil and Datta, Rajit and Mukhopadhyay, Partha},
  title =	{{A Special Case of Rational Identity Testing and the Bre\v{s}ar-Klep Theorem}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{10:1--10:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.10},
  URN =		{urn:nbn:de:0030-drops-126807},
  doi =		{10.4230/LIPIcs.MFCS.2020.10},
  annote =	{Keywords: Rational identity testing, ABP with inverses, Bre\v{s}ar-Klep Theorem, Invertible image, Amitsur’s theorem}
}
Document
Algebraic Branching Programs, Border Complexity, and Tangent Spaces

Authors: Markus Bläser, Christian Ikenmeyer, Meena Mahajan, Anurag Pandey, and Nitin Saurabh

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
Nisan showed in 1991 that the width of a smallest noncommutative single-(source,sink) algebraic branching program (ABP) to compute a noncommutative polynomial is given by the ranks of specific matrices. This means that the set of noncommutative polynomials with ABP width complexity at most k is Zariski-closed, an important property in geometric complexity theory. It follows that approximations cannot help to reduce the required ABP width. It was mentioned by Forbes that this result would probably break when going from single-(source,sink) ABPs to trace ABPs. We prove that this is correct. Moreover, we study the commutative monotone setting and prove a result similar to Nisan, but concerning the analytic closure. We observe the same behavior here: The set of polynomials with ABP width complexity at most k is closed for single-(source,sink) ABPs and not closed for trace ABPs. The proofs reveal an intriguing connection between tangent spaces and the vector space of flows on the ABP. We close with additional observations on VQP and the closure of VNP which allows us to establish a separation between the two classes.

Cite as

Markus Bläser, Christian Ikenmeyer, Meena Mahajan, Anurag Pandey, and Nitin Saurabh. Algebraic Branching Programs, Border Complexity, and Tangent Spaces. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 21:1-21:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{blaser_et_al:LIPIcs.CCC.2020.21,
  author =	{Bl\"{a}ser, Markus and Ikenmeyer, Christian and Mahajan, Meena and Pandey, Anurag and Saurabh, Nitin},
  title =	{{Algebraic Branching Programs, Border Complexity, and Tangent Spaces}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{21:1--21:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.21},
  URN =		{urn:nbn:de:0030-drops-125733},
  doi =		{10.4230/LIPIcs.CCC.2020.21},
  annote =	{Keywords: Algebraic Branching Programs, Border Complexity, Tangent Spaces, Lower Bounds, Geometric Complexity Theory, Flows, VQP, VNP}
}
Document
Algebraic Hardness Versus Randomness in Low Characteristic

Authors: Robert Andrews

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
We show that lower bounds for explicit constant-variate polynomials over fields of characteristic p > 0 are sufficient to derandomize polynomial identity testing over fields of characteristic p. In this setting, existing work on hardness-randomness tradeoffs for polynomial identity testing requires either the characteristic to be sufficiently large or the notion of hardness to be stronger than the standard syntactic notion of hardness used in algebraic complexity. Our results make no restriction on the characteristic of the field and use standard notions of hardness. We do this by combining the Kabanets-Impagliazzo generator with a white-box procedure to take p-th roots of circuits computing a p-th power over fields of characteristic p. When the number of variables appearing in the circuit is bounded by some constant, this procedure turns out to be efficient, which allows us to bypass difficulties related to factoring circuits in characteristic p. We also combine the Kabanets-Impagliazzo generator with recent "bootstrapping" results in polynomial identity testing to show that a sufficiently-hard family of explicit constant-variate polynomials yields a near-complete derandomization of polynomial identity testing. This result holds over fields of both zero and positive characteristic and complements a recent work of Guo, Kumar, Saptharishi, and Solomon, who obtained a slightly stronger statement over fields of characteristic zero.

Cite as

Robert Andrews. Algebraic Hardness Versus Randomness in Low Characteristic. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 37:1-37:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{andrews:LIPIcs.CCC.2020.37,
  author =	{Andrews, Robert},
  title =	{{Algebraic Hardness Versus Randomness in Low Characteristic}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{37:1--37:32},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.37},
  URN =		{urn:nbn:de:0030-drops-125895},
  doi =		{10.4230/LIPIcs.CCC.2020.37},
  annote =	{Keywords: Polynomial identity testing, hardness versus randomness, low characteristic}
}
Document
Typically-Correct Derandomization for Small Time and Space

Authors: William M. Hoza

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
Suppose a language L can be decided by a bounded-error randomized algorithm that runs in space S and time n * poly(S). We give a randomized algorithm for L that still runs in space O(S) and time n * poly(S) that uses only O(S) random bits; our algorithm has a low failure probability on all but a negligible fraction of inputs of each length. As an immediate corollary, there is a deterministic algorithm for L that runs in space O(S) and succeeds on all but a negligible fraction of inputs of each length. We also give several other complexity-theoretic applications of our technique.

Cite as

William M. Hoza. Typically-Correct Derandomization for Small Time and Space. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 9:1-9:39, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{hoza:LIPIcs.CCC.2019.9,
  author =	{Hoza, William M.},
  title =	{{Typically-Correct Derandomization for Small Time and Space}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{9:1--9:39},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.9},
  URN =		{urn:nbn:de:0030-drops-108317},
  doi =		{10.4230/LIPIcs.CCC.2019.9},
  annote =	{Keywords: Derandomization, pseudorandomness, space complexity}
}
Document
Near-Optimal Pseudorandom Generators for Constant-Depth Read-Once Formulas

Authors: Dean Doron, Pooya Hatami, and William M. Hoza

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
We give an explicit pseudorandom generator (PRG) for read-once AC^0, i.e., constant-depth read-once formulas over the basis {wedge, vee, neg} with unbounded fan-in. The seed length of our PRG is O~(log(n/epsilon)). Previously, PRGs with near-optimal seed length were known only for the depth-2 case [Gopalan et al., 2012]. For a constant depth d > 2, the best prior PRG is a recent construction by Forbes and Kelley with seed length O~(log^2 n + log n log(1/epsilon)) for the more general model of constant-width read-once branching programs with arbitrary variable order [Michael A. Forbes and Zander Kelley, 2018]. Looking beyond read-once AC^0, we also show that our PRG fools read-once AC^0[oplus] with seed length O~(t + log(n/epsilon)), where t is the number of parity gates in the formula. Our construction follows Ajtai and Wigderson’s approach of iterated pseudorandom restrictions [Ajtai and Wigderson, 1989]. We assume by recursion that we already have a PRG for depth-d AC^0 formulas. To fool depth-(d + 1) AC^0 formulas, we use the given PRG, combined with a small-bias distribution and almost k-wise independence, to sample a pseudorandom restriction. The analysis of Forbes and Kelley [Michael A. Forbes and Zander Kelley, 2018] shows that our restriction approximately preserves the expectation of the formula. The crux of our work is showing that after poly(log log n) independent applications of our pseudorandom restriction, the formula simplifies in the sense that every gate other than the output has only polylog n remaining children. Finally, as the last step, we use a recent PRG by Meka, Reingold, and Tal [Meka et al., 2019] to fool this simpler formula.

Cite as

Dean Doron, Pooya Hatami, and William M. Hoza. Near-Optimal Pseudorandom Generators for Constant-Depth Read-Once Formulas. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 16:1-16:34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{doron_et_al:LIPIcs.CCC.2019.16,
  author =	{Doron, Dean and Hatami, Pooya and Hoza, William M.},
  title =	{{Near-Optimal Pseudorandom Generators for Constant-Depth Read-Once Formulas}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{16:1--16:34},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.16},
  URN =		{urn:nbn:de:0030-drops-108382},
  doi =		{10.4230/LIPIcs.CCC.2019.16},
  annote =	{Keywords: Pseudorandom generators, Constant-depth formulas, Explicit constructions}
}
Document
Towards Blackbox Identity Testing of Log-Variate Circuits

Authors: Michael A. Forbes, Sumanta Ghosh, and Nitin Saxena

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
Derandomization of blackbox identity testing reduces to extremely special circuit models. After a line of work, it is known that focusing on circuits with constant-depth and constantly many variables is enough (Agrawal,Ghosh,Saxena, STOC'18) to get to general hitting-sets and circuit lower bounds. This inspires us to study circuits with few variables, eg. logarithmic in the size s. We give the first poly(s)-time blackbox identity test for n=O(log s) variate size-s circuits that have poly(s)-dimensional partial derivative space; eg. depth-3 diagonal circuits (or Sigma wedge Sigma^n). The former model is well-studied (Nisan,Wigderson, FOCS'95) but no poly(s2^n)-time identity test was known before us. We introduce the concept of cone-closed basis isolation and prove its usefulness in studying log-variate circuits. It subsumes the previous notions of rank-concentration studied extensively in the context of ROABP models.

Cite as

Michael A. Forbes, Sumanta Ghosh, and Nitin Saxena. Towards Blackbox Identity Testing of Log-Variate Circuits. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 54:1-54:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{forbes_et_al:LIPIcs.ICALP.2018.54,
  author =	{Forbes, Michael A. and Ghosh, Sumanta and Saxena, Nitin},
  title =	{{Towards Blackbox Identity Testing of Log-Variate Circuits}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{54:1--54:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.54},
  URN =		{urn:nbn:de:0030-drops-90582},
  doi =		{10.4230/LIPIcs.ICALP.2018.54},
  annote =	{Keywords: hitting-set, depth-3, diagonal, derandomization, polynomial identity testing, log-variate, concentration, cone closed, basis isolation}
}
Document
Identity Testing and Lower Bounds for Read-k Oblivious Algebraic Branching Programs

Authors: Matthew Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka, and Ben Lee Volk

Published in: LIPIcs, Volume 50, 31st Conference on Computational Complexity (CCC 2016)


Abstract
Read-k oblivious algebraic branching programs are a natural generalization of the well-studied model of read-once oblivious algebraic branching program (ROABPs). In this work, we give an exponential lower bound of exp(n/k^{O(k)}) on the width of any read-k oblivious ABP computing some explicit multilinear polynomial f that is computed by a polynomial size depth-3 circuit. We also study the polynomial identity testing (PIT) problem for this model and obtain a white-box subexponential-time PIT algorithm. The algorithm runs in time 2^{~O(n^{1-1/2^{k-1}})} and needs white box access only to know the order in which the variables appear in the ABP.

Cite as

Matthew Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka, and Ben Lee Volk. Identity Testing and Lower Bounds for Read-k Oblivious Algebraic Branching Programs. In 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 50, pp. 30:1-30:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{anderson_et_al:LIPIcs.CCC.2016.30,
  author =	{Anderson, Matthew and Forbes, Michael A. and Saptharishi, Ramprasad and Shpilka, Amir and Volk, Ben Lee},
  title =	{{Identity Testing and Lower Bounds for Read-k Oblivious Algebraic Branching Programs}},
  booktitle =	{31st Conference on Computational Complexity (CCC 2016)},
  pages =	{30:1--30:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-008-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{50},
  editor =	{Raz, Ran},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2016.30},
  URN =		{urn:nbn:de:0030-drops-58255},
  doi =		{10.4230/LIPIcs.CCC.2016.30},
  annote =	{Keywords: Algebraic Complexity, Lower Bounds, Derandomization, Polynomial Identity Testing}
}
Document
Proof Complexity Lower Bounds from Algebraic Circuit Complexity

Authors: Michael A. Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson

Published in: LIPIcs, Volume 50, 31st Conference on Computational Complexity (CCC 2016)


Abstract
We give upper and lower bounds on the power of subsystems of the Ideal Proof System (IPS), the algebraic proof system recently proposed by Grochow and Pitassi, where the circuits comprising the proof come from various restricted algebraic circuit classes. This mimics an established research direction in the boolean setting for subsystems of Extended Frege proofs whose lines are circuits from restricted boolean circuit classes. Essentially all of the subsystems considered in this paper can simulate the well-studied Nullstellensatz proof system, and prior to this work there were no known lower bounds when measuring proof size by the algebraic complexity of the polynomials (except with respect to degree, or to sparsity). Our main contributions are two general methods of converting certain algebraic lower bounds into proof complexity ones. Both require stronger arithmetic lower bounds than common, which should hold not for a specific polynomial but for a whole family defined by it. These may be likened to some of the methods by which Boolean circuit lower bounds are turned into related proof-complexity ones, especially the "feasible interpolation" technique. We establish algebraic lower bounds of these forms for several explicit polynomials, against a variety of classes, and infer the relevant proof complexity bounds. These yield separations between IPS subsystems, which we complement by simulations to create a partial structure theory for IPS systems. Our first method is a functional lower bound, a notion of Grigoriev and Razborov, which is a function f' from n-bit strings to a field, such that any polynomial f agreeing with f' on the boolean cube requires large algebraic circuit complexity. We develop functional lower bounds for a variety of circuit classes (sparse polynomials, depth-3 powering formulas, read-once algebraic branching programs and multilinear formulas) where f'(x) equals 1/p(x) for a constant-degree polynomial p depending on the relevant circuit class. We believe these lower bounds are of independent interest in algebraic complexity, and show that they also imply lower bounds for the size of the corresponding IPS refutations for proving that the relevant polynomial p is non-zero over the boolean cube. In particular, we show super-polynomial lower bounds for refuting variants of the subset-sum axioms in these IPS subsystems. Our second method is to give lower bounds for multiples, that is, to give explicit polynomials whose all (non-zero) multiples require large algebraic circuit complexity. By extending known techniques, we give lower bounds for multiples for various restricted circuit classes such sparse polynomials, sums of powers of low-degree polynomials, and roABPs. These results are of independent interest, as we argue that lower bounds for multiples is the correct notion for instantiating the algebraic hardness versus randomness paradigm of Kabanets and Impagliazzo. Further, we show how such lower bounds for multiples extend to lower bounds for refutations in the corresponding IPS subsystem.

Cite as

Michael A. Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson. Proof Complexity Lower Bounds from Algebraic Circuit Complexity. In 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 50, pp. 32:1-32:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{forbes_et_al:LIPIcs.CCC.2016.32,
  author =	{Forbes, Michael A. and Shpilka, Amir and Tzameret, Iddo and Wigderson, Avi},
  title =	{{Proof Complexity Lower Bounds from Algebraic Circuit Complexity}},
  booktitle =	{31st Conference on Computational Complexity (CCC 2016)},
  pages =	{32:1--32:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-008-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{50},
  editor =	{Raz, Ran},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2016.32},
  URN =		{urn:nbn:de:0030-drops-58321},
  doi =		{10.4230/LIPIcs.CCC.2016.32},
  annote =	{Keywords: Proof Complexity, Algebraic Complexity, Nullstellensatz, Subset-Sum}
}
Document
Functional Lower Bounds for Arithmetic Circuits and Connections to Boolean Circuit Complexity

Authors: Michael A. Forbes, Mrinal Kumar, and Ramprasad Saptharishi

Published in: LIPIcs, Volume 50, 31st Conference on Computational Complexity (CCC 2016)


Abstract
We say that a circuit C over a field F {functionally} computes a polynomial P in F[x_1, x_2, ..., x_n] if for every x in {0,1}^n we have that C(x) = P(x). This is in contrast to syntactically computing P, when C = P as formal polynomials. In this paper, we study the question of proving lower bounds for homogeneous depth-3 and depth-4 arithmetic circuits for functional computation. We prove the following results: 1. Exponential lower bounds for homogeneous depth-3 arithmetic circuits for a polynomial in VNP. 2. Exponential lower bounds for homogeneous depth-4 arithmetic circuits with bounded individual degree for a polynomial in VNP. Our main motivation for this line of research comes from our observation that strong enough functional lower bounds for even very special depth-4 arithmetic circuits for the Permanent imply a separation between #P and ACC0. Thus, improving the second result to get rid of the bounded individual degree condition could lead to substantial progress in boolean circuit complexity. Besides, it is known from a recent result of Kumar and Saptharishi [Kumar/Saptharishi, ECCC 2015] that over constant sized finite fields, strong enough {average case} functional lower bounds for homogeneous depth-4 circuits imply superpolynomial lower bounds for homogeneous depth-5 circuits. Our proofs are based on a family of new complexity measures called shifted evaluation dimension, and might be of independent interest.

Cite as

Michael A. Forbes, Mrinal Kumar, and Ramprasad Saptharishi. Functional Lower Bounds for Arithmetic Circuits and Connections to Boolean Circuit Complexity. In 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 50, pp. 33:1-33:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{forbes_et_al:LIPIcs.CCC.2016.33,
  author =	{Forbes, Michael A. and Kumar, Mrinal and Saptharishi, Ramprasad},
  title =	{{Functional Lower Bounds for Arithmetic Circuits and Connections to Boolean Circuit Complexity}},
  booktitle =	{31st Conference on Computational Complexity (CCC 2016)},
  pages =	{33:1--33:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-008-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{50},
  editor =	{Raz, Ran},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2016.33},
  URN =		{urn:nbn:de:0030-drops-58266},
  doi =		{10.4230/LIPIcs.CCC.2016.33},
  annote =	{Keywords: boolean circuits, arithmetic circuits, lower bounds, functional computation}
}
  • Refine by Author
  • 5 Forbes, Michael A.
  • 2 Arvind, V.
  • 2 Chatterjee, Abhranil
  • 2 Doron, Dean
  • 2 Ghosh, Sumanta
  • Show More...

  • Refine by Classification
  • 8 Theory of computation → Algebraic complexity theory
  • 5 Theory of computation → Pseudorandomness and derandomization
  • 2 Computing methodologies → Algebraic algorithms
  • 2 Theory of computation
  • 2 Theory of computation → Circuit complexity
  • Show More...

  • Refine by Keyword
  • 2 Algebraic Complexity
  • 2 Derandomization
  • 2 Lower Bounds
  • 2 lower bounds
  • 1 ABP with inverses
  • Show More...

  • Refine by Type
  • 16 document

  • Refine by Publication Year
  • 4 2021
  • 3 2016
  • 3 2020
  • 2 2019
  • 1 2015
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail