99 Search Results for "Goaoc, Xavier"


Volume

LIPIcs, Volume 224

38th International Symposium on Computational Geometry (SoCG 2022)

SoCG 2022, June 7-10, 2022, Berlin, Germany

Editors: Xavier Goaoc and Michael Kerber

Document
A Unified FPT Framework for Crossing Number Problems

Authors: Éric Colin de Verdière and Petr Hliněný

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The basic (and traditional) crossing number problem is to determine the minimum number of crossings in a topological drawing of an input graph in the plane. We develop a unified framework that smoothly captures many generalized crossing number problems, and that yields fixed-parameter tractable (FPT) algorithms for them not only in the plane but also on surfaces. Our framework takes the following form. We fix a surface S, an integer r, and a map κ from the set of topological drawings of graphs in S to ℤ_+ ∪ {∞}, satisfying some natural monotonicity conditions, but essentially describing the allowed drawings and how we want to count the crossings in them. Then deciding whether an input graph G has an allowed drawing D on S with κ(D) ≤ r can be done in time quadratic in the size of G (and exponential in other parameters). More generally, we may take as input an edge-colored graph, and distinguish crossings by the colors of the involved edges; and we may allow to perform a bounded number of edge removals and vertex splits to G before drawing it. The proof is a reduction to the embeddability of a graph on a two-dimensional simplicial complex. This framework implies, in a unified way, quadratic FPT algorithms for many topological crossing number variants established in the graph drawing community. Some of these variants already had previously published FPT algorithms, mostly relying on Courcelle’s metatheorem, but for many of those, we obtain an algorithm with a better runtime. Moreover, our framework extends, at no cost, to these crossing number variants in any fixed surface.

Cite as

Éric Colin de Verdière and Petr Hliněný. A Unified FPT Framework for Crossing Number Problems. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{colindeverdiere_et_al:LIPIcs.ESA.2025.21,
  author =	{Colin de Verdi\`{e}re, \'{E}ric and Hlin\v{e}n\'{y}, Petr},
  title =	{{A Unified FPT Framework for Crossing Number Problems}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{21:1--21:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.21},
  URN =		{urn:nbn:de:0030-drops-244897},
  doi =		{10.4230/LIPIcs.ESA.2025.21},
  annote =	{Keywords: computational geometry, fixed-parameter tractability, graph drawing, graph embedding, crossing number, two-dimensional simplicial complex, surface}
}
Document
Compact Representation of Semilinear and Terrain-Like Graphs

Authors: Jean Cardinal and Yelena Yuditsky

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We consider the existence and construction of biclique covers of graphs, consisting of coverings of their edge sets by complete bipartite graphs. The size of such a cover is the sum of the sizes of the bicliques. Small-size biclique covers of graphs are ubiquitous in computational geometry, and have been shown to be useful compact representations of graphs. We give a brief survey of classical and recent results on biclique covers and their applications, and give new families of graphs having biclique covers of near-linear size. In particular, we show that semilinear graphs, whose edges are defined by linear relations in bounded dimensional space, always have biclique covers of size O(npolylog n). This generalizes many previously known results on special classes of graphs including interval graphs, permutation graphs, and graphs of bounded boxicity, but also new classes such as intersection graphs of L-shapes in the plane. It also directly implies the bounds for Zarankiewicz’s problem derived by Basit, Chernikov, Starchenko, Tao, and Tran (Forum Math. Sigma, 2021). We also consider capped graphs, also known as terrain-like graphs, defined as ordered graphs forbidding a certain ordered pattern on four vertices. Terrain-like graphs contain the induced subgraphs of terrain visibility graphs. We give an elementary proof that these graphs admit biclique partitions of size O(nlog³ n). This provides a simple combinatorial analogue of a classical result from Agarwal, Alon, Aronov, and Suri on polygon visibility graphs (Discrete Comput. Geom. 1994). Finally, we prove that there exists families of unit disk graphs on n vertices that do not admit biclique coverings of size o(n^{4/3}), showing that we are unlikely to improve on Szemerédi-Trotter type incidence bounds for higher-degree semialgebraic graphs.

Cite as

Jean Cardinal and Yelena Yuditsky. Compact Representation of Semilinear and Terrain-Like Graphs. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 67:1-67:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cardinal_et_al:LIPIcs.ESA.2025.67,
  author =	{Cardinal, Jean and Yuditsky, Yelena},
  title =	{{Compact Representation of Semilinear and Terrain-Like Graphs}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{67:1--67:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.67},
  URN =		{urn:nbn:de:0030-drops-245359},
  doi =		{10.4230/LIPIcs.ESA.2025.67},
  annote =	{Keywords: Biclique covers, intersection graphs, visibility graphs, Zarankiewicz’s problem}
}
Document
Hitting and Covering Affine Families of Convex Polyhedra, with Applications to Robust Optimization

Authors: Jean Cardinal, Xavier Goaoc, and Sarah Wajsbrot

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
Geometric hitting set problems, in which we seek a smallest set of points that collectively hit a given set of ranges, are ubiquitous in computational geometry. Most often, the set is discrete and is given explicitly. We propose new variants of these problems, dealing with continuous families of convex polyhedra, and show that they capture decision versions of the two-level finite adaptability problem in robust optimization. We show that these problems can be solved in strongly polynomial time when the size of the hitting/covering set and the dimension of the polyhedra and the parameter space are constant. We also show that the hitting set problem can be solved in strongly quadratic time for one-parameter families of convex polyhedra in constant dimension. This leads to new tractability results for finite adaptability that are the first ones with so-called left-hand-side uncertainty, where the underlying problem is non-linear.

Cite as

Jean Cardinal, Xavier Goaoc, and Sarah Wajsbrot. Hitting and Covering Affine Families of Convex Polyhedra, with Applications to Robust Optimization. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 33:1-33:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cardinal_et_al:LIPIcs.MFCS.2025.33,
  author =	{Cardinal, Jean and Goaoc, Xavier and Wajsbrot, Sarah},
  title =	{{Hitting and Covering Affine Families of Convex Polyhedra, with Applications to Robust Optimization}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{33:1--33:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.33},
  URN =		{urn:nbn:de:0030-drops-241401},
  doi =		{10.4230/LIPIcs.MFCS.2025.33},
  annote =	{Keywords: Geometric hitting set problem, Continuous families of polyhedra, Robust optimization}
}
Document
Reconstruction of Depth 3 Arithmetic Circuits with Top Fan-In 3

Authors: Shubhangi Saraf and Devansh Shringi

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
In this paper, we give the first subexponential (and in fact quasi-polynomial time) reconstruction algorithm for depth 3 circuits of top fan-in 3 (ΣΠΣ(3) circuits) over the fields ℝ and C. Concretely, we show that given blackbox access to an n-variate polynomial f computed by a ΣΠΣ(3) circuit of size s, there is a randomized algorithm that runs in time quasi-poly(n,s) and outputs a generalized ΣΠΣ(3) circuit computing f. The size s includes the bit complexity of coefficients appearing in the circuit. Depth 3 circuits of constant fan-in (ΣΠΣ(k) circuits) and closely related models have been extensively studied in the context of polynomial identity testing (PIT). The study of PIT for these models led to an understanding of the structure of identically zero ΣΠΣ(3) circuits and ΣΠΣ(k) circuits using some very elegant connections to discrete geometry, specifically the Sylvester-Gallai Theorem, and colorful and high dimensional variants of them. Despite a lot of progress on PIT for ΣΠΣ(k) circuits and more recently on PIT for depth 4 circuits of bounded top and bottom fan-in, reconstruction algorithms for ΣΠΣ(k) circuits has proven to be extremely challenging. In this paper, we build upon the structural results for identically zero ΣΠΣ(3) circuits that bound their rank, and prove stronger structural properties of ΣΠΣ(3) circuits (again using connections to discrete geometry). One such result is a bound on the number of codimension 3 subspaces on which a polynomial computed by an ΣΠΣ(3) circuit can vanish on. Armed with the new structural results, we provide the first reconstruction algorithms for ΣΠΣ(3) circuits over ℝ and C. Our work extends the work of [Sinha, CCC 2016] who provided a reconstruction algorithm for ΣΠΣ(2) circuits over ℝ and C as well as the works of [Shpilka, STOC 2007] who provided a reconstruction algorithms for ΣΠΣ(2) circuits in the setting of small finite fields, and [Karnin-Shpilka, CCC 2009] who provided reconstruction algorithms for ΣΠΣ(k) circuits in the setting of small finite fields.

Cite as

Shubhangi Saraf and Devansh Shringi. Reconstruction of Depth 3 Arithmetic Circuits with Top Fan-In 3. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 21:1-21:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{saraf_et_al:LIPIcs.CCC.2025.21,
  author =	{Saraf, Shubhangi and Shringi, Devansh},
  title =	{{Reconstruction of Depth 3 Arithmetic Circuits with Top Fan-In 3}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{21:1--21:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.21},
  URN =		{urn:nbn:de:0030-drops-237151},
  doi =		{10.4230/LIPIcs.CCC.2025.21},
  annote =	{Keywords: arithmetic circuits, learning, reconstruction}
}
Document
A Practical Algorithm for Knot Factorisation

Authors: Alexander He, Eric Sedgwick, and Jonathan Spreer

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
We present an algorithm for computing the prime factorisation of a knot, which is practical in the following sense: using Regina, we give an implementation that works well for inputs of reasonable size, including prime knots from the 19-crossing census. The main new ingredient in this work is an object that we call an "edge-ideal triangulation", which is what our algorithm uses to represent knots. As other applications, we give an alternative proof that prime knot recognition is in coNP, and present some new complexity results for triangulations. Beyond knots, our work showcases edge-ideal triangulations as a tool for potential applications in 3-manifold topology.

Cite as

Alexander He, Eric Sedgwick, and Jonathan Spreer. A Practical Algorithm for Knot Factorisation. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 55:1-55:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{he_et_al:LIPIcs.SoCG.2025.55,
  author =	{He, Alexander and Sedgwick, Eric and Spreer, Jonathan},
  title =	{{A Practical Algorithm for Knot Factorisation}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{55:1--55:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.55},
  URN =		{urn:nbn:de:0030-drops-232075},
  doi =		{10.4230/LIPIcs.SoCG.2025.55},
  annote =	{Keywords: Prime and composite knots, (crushing) normal surfaces, edge-ideal triangulations, co-NP certificate, triangulation complexity}
}
Document
Recognizing 2-Layer and Outer k-Planar Graphs

Authors: Yasuaki Kobayashi, Yuto Okada, and Alexander Wolff

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
The crossing number of a graph is the least number of crossings over all drawings of the graph in the plane. Computing the crossing number of a given graph is NP-hard, but fixed-parameter tractable (FPT) with respect to the natural parameter. Two well-known variants of the problem are 2-layer crossing minimization and circular crossing minimization, where every vertex must lie on one of two layers, namely two parallel lines, or a circle, respectively. In both cases, edges are drawn as straight-line segments. Both variants are NP-hard, but admit FPT-algorithms with respect to the natural parameter. In recent years, in the context of beyond-planar graphs, a local version of the crossing number has also received considerable attention. A graph is k-planar if it admits a drawing with at most k crossings per edge. In contrast to the crossing number, recognizing k-planar graphs is NP-hard even if k = 1 and hence not likely to be FPT with respect to the natural parameter k. In this paper, we consider the two above variants in the local setting. The k-planar graphs that admit a straight-line drawing with vertices on two layers or on a circle are called 2-layer k-planar and outer k-planar graphs, respectively. We study the parameterized complexity of the two recognition problems with respect to the natural parameter k. For k = 0, the two classes of graphs are exactly the caterpillars and outerplanar graphs, respectively, which can be recognized in linear time. Two groups of researchers independently showed that outer 1-planar graphs can also be recognized in linear time [Hong et al., Algorithmica 2015; Auer et al., Algorithmica 2016]. One group asked explicitly whether outer 2-planar graphs can be recognized in polynomial time. Our main contribution consists of XP-algorithms for recognizing 2-layer k-planar graphs and outer k-planar graphs, which implies that both recognition problems can be solved in polynomial time for every fixed k. We complement these results by showing that recognizing 2-layer k-planar graphs is XNLP-complete and that recognizing outer k-planar graphs is XNLP-hard. This implies that both problems are W[t]-hard for every t and that it is unlikely that they admit FPT-algorithms. On the other hand, we present an FPT-algorithm for recognizing 2-layer k-planar graphs where the order of the vertices on one layer is specified.

Cite as

Yasuaki Kobayashi, Yuto Okada, and Alexander Wolff. Recognizing 2-Layer and Outer k-Planar Graphs. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 65:1-65:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kobayashi_et_al:LIPIcs.SoCG.2025.65,
  author =	{Kobayashi, Yasuaki and Okada, Yuto and Wolff, Alexander},
  title =	{{Recognizing 2-Layer and Outer k-Planar Graphs}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{65:1--65:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.65},
  URN =		{urn:nbn:de:0030-drops-232170},
  doi =		{10.4230/LIPIcs.SoCG.2025.65},
  annote =	{Keywords: 2-layer k-planar graphs, outer k-planar graphs, recognition algorithms, local crossing number, bandwidth, FPT, XNLP, XP, W\lbrackt\rbrack}
}
Document
When Alpha-Complexes Collapse onto Codimension-1 Submanifolds

Authors: Dominique Attali, Mattéo Clémot, Bianca B. Dornelas, and André Lieutier

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
Given a finite set of points P sampling an unknown smooth surface ℳ ⊆ ℝ³, our goal is to triangulate ℳ based solely on P. Assuming ℳ is a smooth orientable submanifold of codimension 1 in ℝ^d, we introduce a simple algorithm, Naive Squash, which simplifies the α-complex of P by repeatedly applying a new type of collapse called vertical relative to ℳ. Naive Squash also has a practical version that does not require knowledge of ℳ. We establish conditions under which both the naive and practical Squash algorithms output a triangulation of ℳ. We provide a bound on the angle formed by triangles in the α-complex with ℳ, yielding sampling conditions on P that are competitive with existing literature for smooth surfaces embedded in ℝ³, while offering a more compartmentalized proof. As a by-product, we obtain that the restricted Delaunay complex of P triangulates ℳ when ℳ is a smooth surface in ℝ³ under weaker conditions than existing ones.

Cite as

Dominique Attali, Mattéo Clémot, Bianca B. Dornelas, and André Lieutier. When Alpha-Complexes Collapse onto Codimension-1 Submanifolds. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 11:1-11:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{attali_et_al:LIPIcs.SoCG.2025.11,
  author =	{Attali, Dominique and Cl\'{e}mot, Matt\'{e}o and Dornelas, Bianca B. and Lieutier, Andr\'{e}},
  title =	{{When Alpha-Complexes Collapse onto Codimension-1 Submanifolds}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.11},
  URN =		{urn:nbn:de:0030-drops-231630},
  doi =		{10.4230/LIPIcs.SoCG.2025.11},
  annote =	{Keywords: Submanifold reconstruction, triangulation, abstract simplicial complexes, collapses, convexity}
}
Document
Transforming Dogs on the Line: On the Fréchet Distance Under Translation or Scaling in 1D

Authors: Lotte Blank, Jacobus Conradi, Anne Driemel, Benedikt Kolbe, André Nusser, and Marena Richter

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
The Fréchet distance is a computational mainstay for comparing polygonal curves. The Fréchet distance under translation, which is a translation invariant version, considers the similarity of two curves independent of their location in space. It is defined as the minimum Fréchet distance that arises from allowing arbitrary translations of the input curves. This problem and numerous variants of the Fréchet distance under some transformations have been studied, with more work concentrating on the discrete Fréchet distance, leaving a significant gap between the discrete and continuous versions of the Fréchet distance under transformations. Our contribution is twofold: First, we present an algorithm for the Fréchet distance under translation on 1-dimensional curves of complexity n with a running time of 𝒪(n^{8/3} log³ n). To achieve this, we develop a novel framework for the problem for 1-dimensional curves, which also applies to other scenarios and leads to our second contribution. We present an algorithm with the same running time of 𝒪(n^{8/3} log³ n) for the Fréchet distance under scaling for 1-dimensional curves. For both algorithms we match the running times of the discrete case and improve the previously best known bounds of 𝒪̃(n⁴). Our algorithms rely on technical insights but are conceptually simple, essentially reducing the continuous problem to the discrete case across different length scales.

Cite as

Lotte Blank, Jacobus Conradi, Anne Driemel, Benedikt Kolbe, André Nusser, and Marena Richter. Transforming Dogs on the Line: On the Fréchet Distance Under Translation or Scaling in 1D. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 22:1-22:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{blank_et_al:LIPIcs.SoCG.2025.22,
  author =	{Blank, Lotte and Conradi, Jacobus and Driemel, Anne and Kolbe, Benedikt and Nusser, Andr\'{e} and Richter, Marena},
  title =	{{Transforming Dogs on the Line: On the Fr\'{e}chet Distance Under Translation or Scaling in 1D}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{22:1--22:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.22},
  URN =		{urn:nbn:de:0030-drops-231746},
  doi =		{10.4230/LIPIcs.SoCG.2025.22},
  annote =	{Keywords: Fr\'{e}chet distance under translation, Fr\'{e}chet distance under scaling, time series, shape matching}
}
Document
Unfairly Splitting Separable Necklaces

Authors: Patrick Schnider, Linus Stalder, and Simon Weber

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
The Necklace Splitting problem is a classical problem in combinatorics that has been intensively studied both from a combinatorial and a computational point of view. It is well-known that the Necklace Splitting problem reduces to the discrete Ham Sandwich problem. This reduction was crucial in the proof of PPA-completeness of the Ham Sandwich problem. Recently, Borzechowski, Schnider and Weber [ISAAC'23] introduced a variant of Necklace Splitting that similarly reduces to the α-Ham Sandwich problem, which lies in the complexity class UEOPL but is not known to be complete. To make this reduction work, the input necklace is guaranteed to be n-separable. They showed that these necklaces can be fairly split in polynomial time and thus this subproblem cannot be used to prove UEOPL-hardness for α-Ham Sandwich. We consider the more general unfair necklace splitting problem on n-separable necklaces, i.e., the problem of splitting these necklaces such that each thief gets a desired fraction of each type of jewels. This more general problem is the natural necklace-splitting-type version of α-Ham Sandwich, and its complexity status is one of the main open questions posed by Borzechowski, Schnider and Weber. We show that the unfair splitting problem is also polynomial-time solvable, and can thus also not be used to show UEOPL-hardness for α-Ham Sandwich.

Cite as

Patrick Schnider, Linus Stalder, and Simon Weber. Unfairly Splitting Separable Necklaces. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 71:1-71:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{schnider_et_al:LIPIcs.STACS.2025.71,
  author =	{Schnider, Patrick and Stalder, Linus and Weber, Simon},
  title =	{{Unfairly Splitting Separable Necklaces}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{71:1--71:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.71},
  URN =		{urn:nbn:de:0030-drops-228963},
  doi =		{10.4230/LIPIcs.STACS.2025.71},
  annote =	{Keywords: Necklace splitting, n-separability, well-separation, Ham Sandwich, alpha-Ham Sandwich, unfair splitting, fair division}
}
Document
A Canonical Tree Decomposition for Chirotopes

Authors: Mathilde Bouvel, Valentin Feray, Xavier Goaoc, and Florent Koechlin

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
We introduce and study a notion of decomposition of planar point sets (or rather of their chirotopes) as trees decorated by smaller chirotopes. This decomposition is based on the concept of mutually avoiding sets, and adapts in some sense the modular decomposition of graphs in the world of chirotopes. The associated tree always exists and is unique up to some appropriate constraints. We also show how to compute the number of triangulations of a chirotope efficiently, starting from its tree and the (weighted) numbers of triangulations of its parts.

Cite as

Mathilde Bouvel, Valentin Feray, Xavier Goaoc, and Florent Koechlin. A Canonical Tree Decomposition for Chirotopes. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bouvel_et_al:LIPIcs.SoCG.2024.23,
  author =	{Bouvel, Mathilde and Feray, Valentin and Goaoc, Xavier and Koechlin, Florent},
  title =	{{A Canonical Tree Decomposition for Chirotopes}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{23:1--23:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.23},
  URN =		{urn:nbn:de:0030-drops-199680},
  doi =		{10.4230/LIPIcs.SoCG.2024.23},
  annote =	{Keywords: Order type, modular decomposition, counting triangulations, mutually avoiding point sets, generating functions, rewriting systems}
}
Document
Complete Volume
LIPIcs, Volume 224, SoCG 2022, Complete Volume

Authors: Xavier Goaoc and Michael Kerber

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
LIPIcs, Volume 224, SoCG 2022, Complete Volume

Cite as

38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 1-1110, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Proceedings{goaoc_et_al:LIPIcs.SoCG.2022,
  title =	{{LIPIcs, Volume 224, SoCG 2022, Complete Volume}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{1--1110},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022},
  URN =		{urn:nbn:de:0030-drops-160075},
  doi =		{10.4230/LIPIcs.SoCG.2022},
  annote =	{Keywords: LIPIcs, Volume 224, SoCG 2022, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Xavier Goaoc and Michael Kerber

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 0:i-0:xx, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{goaoc_et_al:LIPIcs.SoCG.2022.0,
  author =	{Goaoc, Xavier and Kerber, Michael},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{0:i--0:xx},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.0},
  URN =		{urn:nbn:de:0030-drops-160087},
  doi =		{10.4230/LIPIcs.SoCG.2022.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Tiling with Squares and Packing Dominos in Polynomial Time

Authors: Anders Aamand, Mikkel Abrahamsen, Thomas Ahle, and Peter M. R. Rasmussen

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
A polyomino is a polygonal region with axis-parallel edges and corners of integral coordinates, which may have holes. In this paper, we consider planar tiling and packing problems with polyomino pieces and a polyomino container P. We give polynomial-time algorithms for deciding if P can be tiled with k× k squares for any fixed k which can be part of the input (that is, deciding if P is the union of a set of non-overlapping k× k squares) and for packing P with a maximum number of non-overlapping and axis-parallel 2× 1 dominos, allowing rotations by 90^∘. As packing is more general than tiling, the latter algorithm can also be used to decide if P can be tiled by 2× 1 dominos. These are classical problems with important applications in VLSI design, and the related problem of finding a maximum packing of 2× 2 squares is known to be NP-hard [J. Algorithms 1990]. For our three problems there are known pseudo-polynomial-time algorithms, that is, algorithms with running times polynomial in the area or perimeter of P. However, the standard, compact way to represent a polygon is by listing the coordinates of the corners in binary. We use this representation, and thus present the first polynomial-time algorithms for the problems. Concretely, we give a simple O(nlog n)-time algorithm for tiling with squares, where n is the number of corners of P. We then give a more involved algorithm that reduces the problems of packing and tiling with dominos to finding a maximum and perfect matching in a graph with O(n³) vertices. This leads to algorithms with running times O(n³(log³ n)/(log²log n)) and O(n³(log² n)/(log log n)), respectively.

Cite as

Anders Aamand, Mikkel Abrahamsen, Thomas Ahle, and Peter M. R. Rasmussen. Tiling with Squares and Packing Dominos in Polynomial Time. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 1:1-1:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{aamand_et_al:LIPIcs.SoCG.2022.1,
  author =	{Aamand, Anders and Abrahamsen, Mikkel and Ahle, Thomas and Rasmussen, Peter M. R.},
  title =	{{Tiling with Squares and Packing Dominos in Polynomial Time}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{1:1--1:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.1},
  URN =		{urn:nbn:de:0030-drops-160096},
  doi =		{10.4230/LIPIcs.SoCG.2022.1},
  annote =	{Keywords: packing, tiling, polyominos}
}
Document
On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem

Authors: Peyman Afshani, Mark de Berg, Kevin Buchin, Jie Gao, Maarten Löffler, Amir Nayyeri, Benjamin Raichel, Rik Sarkar, Haotian Wang, and Hao-Tsung Yang

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
We consider the following surveillance problem: Given a set P of n sites in a metric space and a set R of k robots with the same maximum speed, compute a patrol schedule of minimum latency for the robots. Here a patrol schedule specifies for each robot an infinite sequence of sites to visit (in the given order) and the latency L of a schedule is the maximum latency of any site, where the latency of a site s is the supremum of the lengths of the time intervals between consecutive visits to s. When k = 1 the problem is equivalent to the travelling salesman problem (TSP) and thus it is NP-hard. For k ≥ 2 (which is the version we are interested in) the problem becomes even more challenging; for example, it is not even clear if the decision version of the problem is decidable, in particular in the Euclidean case. We have two main results. We consider cyclic solutions in which the set of sites must be partitioned into 𝓁 groups, for some 𝓁 ≤ k, and each group is assigned a subset of the robots that move along the travelling salesman tour of the group at equal distance from each other. Our first main result is that approximating the optimal latency of the class of cyclic solutions can be reduced to approximating the optimal travelling salesman tour on some input, with only a 1+ε factor loss in the approximation factor and an O((k/ε) ^k) factor loss in the runtime, for any ε > 0. Our second main result shows that an optimal cyclic solution is a 2(1-1/k)-approximation of the overall optimal solution. Note that for k = 2 this implies that an optimal cyclic solution is optimal overall. We conjecture that this is true for k ≥ 3 as well. The results have a number of consequences. For the Euclidean version of the problem, for instance, combining our results with known results on Euclidean TSP, yields a PTAS for approximating an optimal cyclic solution, and it yields a (2(1-1/k)+ε)-approximation of the optimal unrestricted (not necessarily cyclic) solution. If the conjecture mentioned above is true, then our algorithm is actually a PTAS for the general problem in the Euclidean setting. Similar results can be obtained by combining our results with other known TSP algorithms in non-Euclidean metrics.

Cite as

Peyman Afshani, Mark de Berg, Kevin Buchin, Jie Gao, Maarten Löffler, Amir Nayyeri, Benjamin Raichel, Rik Sarkar, Haotian Wang, and Hao-Tsung Yang. On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 2:1-2:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{afshani_et_al:LIPIcs.SoCG.2022.2,
  author =	{Afshani, Peyman and de Berg, Mark and Buchin, Kevin and Gao, Jie and L\"{o}ffler, Maarten and Nayyeri, Amir and Raichel, Benjamin and Sarkar, Rik and Wang, Haotian and Yang, Hao-Tsung},
  title =	{{On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{2:1--2:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.2},
  URN =		{urn:nbn:de:0030-drops-160109},
  doi =		{10.4230/LIPIcs.SoCG.2022.2},
  annote =	{Keywords: Approximation, Motion Planning, Scheduling}
}
  • Refine by Type
  • 98 Document/PDF
  • 9 Document/HTML
  • 1 Volume

  • Refine by Publication Year
  • 9 2025
  • 1 2024
  • 77 2022
  • 2 2021
  • 2 2020
  • Show More...

  • Refine by Author
  • 14 Goaoc, Xavier
  • 6 Patáková, Zuzana
  • 4 Nusser, André
  • 4 Tancer, Martin
  • 3 Bringmann, Karl
  • Show More...

  • Refine by Series/Journal
  • 98 LIPIcs

  • Refine by Classification
  • 67 Theory of computation → Computational geometry
  • 12 Theory of computation → Design and analysis of algorithms
  • 9 Mathematics of computing → Geometric topology
  • 8 Mathematics of computing → Algebraic topology
  • 6 Mathematics of computing → Combinatorics
  • Show More...

  • Refine by Keyword
  • 5 persistent homology
  • 3 Computational Geometry
  • 3 computational geometry
  • 2 Dynamic Time Warping
  • 2 Graph drawing
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail