32 Search Results for "Hofmann, Martin"


Document
Survey
Resilience in Knowledge Graph Embeddings

Authors: Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
In recent years, knowledge graphs have gained interest and witnessed widespread applications in various domains, such as information retrieval, question-answering, recommendation systems, amongst others. Large-scale knowledge graphs to this end have demonstrated their utility in effectively representing structured knowledge. To further facilitate the application of machine learning techniques, knowledge graph embedding models have been developed. Such models can transform entities and relationships within knowledge graphs into vectors. However, these embedding models often face challenges related to noise, missing information, distribution shift, adversarial attacks, etc. This can lead to sub-optimal embeddings and incorrect inferences, thereby negatively impacting downstream applications. While the existing literature has focused so far on adversarial attacks on KGE models, the challenges related to the other critical aspects remain unexplored. In this paper, we, first of all, give a unified definition of resilience, encompassing several factors such as generalisation, in-distribution generalization, distribution adaption, and robustness. After formalizing these concepts for machine learning in general, we define them in the context of knowledge graphs. To find the gap in the existing works on resilience in the context of knowledge graphs, we perform a systematic survey, taking into account all these aspects mentioned previously. Our survey results show that most of the existing works focus on a specific aspect of resilience, namely robustness. After categorizing such works based on their respective aspects of resilience, we discuss the challenges and future research directions.

Cite as

Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo. Resilience in Knowledge Graph Embeddings. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 1:1-1:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{sharma_et_al:TGDK.3.2.1,
  author =	{Sharma, Arnab and Kouagou, N'Dah Jean and Ngomo, Axel-Cyrille Ngonga},
  title =	{{Resilience in Knowledge Graph Embeddings}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{1:1--1:38},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.1},
  URN =		{urn:nbn:de:0030-drops-248117},
  doi =		{10.4230/TGDK.3.2.1},
  annote =	{Keywords: Knowledge graphs, Resilience, Robustness}
}
Document
Prophecies All the Way: Game-Based Model-Checking for HyperQPTL Beyond ∀*∃*

Authors: Sarah Winter and Martin Zimmermann

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
Model-checking HyperLTL, a temporal logic expressing properties of sets of traces with applications to information-flow based security and privacy, has a decidable, but TOWER-complete, model-checking problem. While the classical model-checking algorithm for full HyperLTL is automata-theoretic, more recently, a game-based alternative for the ∀*∃*-fragment has been presented. Here, we employ imperfect information-games to extend the game-based approach to full HyperQPTL, which features arbitrary quantifier prefixes and quantification over propositions and can express every ω-regular hyperproperty. As a byproduct of our game-based algorithm, we obtain finite-state implementations of Skolem functions via transducers with lookahead that explain satisfaction or violation of HyperQPTL properties.

Cite as

Sarah Winter and Martin Zimmermann. Prophecies All the Way: Game-Based Model-Checking for HyperQPTL Beyond ∀*∃*. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 37:1-37:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{winter_et_al:LIPIcs.CONCUR.2025.37,
  author =	{Winter, Sarah and Zimmermann, Martin},
  title =	{{Prophecies All the Way: Game-Based Model-Checking for HyperQPTL Beyond \forall*\exists*}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{37:1--37:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.37},
  URN =		{urn:nbn:de:0030-drops-239872},
  doi =		{10.4230/LIPIcs.CONCUR.2025.37},
  annote =	{Keywords: HyperLTL, HyperQPTL, model-checking games, prophecies}
}
Document
RESCUE: Multi-Robot Planning Under Resource Uncertainty and Objective Criticality

Authors: Franco Cordeiro, Samuel Tardieu, and Laurent Pautet

Published in: LIPIcs, Volume 335, 37th Euromicro Conference on Real-Time Systems (ECRTS 2025)


Abstract
Robot planning in distributed systems, such as drone fleets performing active perception missions, presents complex challenges. These missions require cooperation to achieve objectives like collecting sensor data or capturing images. Multi-robot systems offer significant advantages, including faster execution and increased robustness, as robots can compensate for individual failures. However, resource costs, affected by environmental factors such as wind or terrain, are highly uncertain, impacting battery consumption and overall performance. Mission objectives are often prioritized by criticality, such as retrieving data from low-battery sensors to prevent data loss. Addressing these priorities requires sophisticated scheduling to navigate high-dimensional state-action spaces. While heuristics are useful for approximating solutions, few approaches extend to multi-robot systems or adequately address cost uncertainty and criticality, particularly during replanning. The Mixed-Criticality (MC) paradigm, extensively studied in real-time scheduling, provides a framework for handling cost uncertainty by ensuring the completion of high-critical tasks. Despite its potential, the application of MC in distributed systems remains limited. To address the decision-making challenges faced by distributed robots operating under cost uncertainty and objective criticality, we propose four contributions: a comprehensive model integrating criticality, uncertainty, and robustness; distributed synchronization and replanning mechanisms; the incorporation of mixed-criticality principles into multi-robot systems; and enhanced resilience against robot failures. We evaluated our solution, named RESCUE, in a simulated scenario and show how it increases the robustness by reducing the oversizing of the system and completing up to 40% more objectives. We found an increase in resilience of the multi-robot system as our solution not only guaranteed the safe return of every non-faulty robot, but also reduced the effects of a faulty robot by up to 14%. We also computed the performance gain compared to using MCTS in a single robot of up to 2.31 for 5 robots.

Cite as

Franco Cordeiro, Samuel Tardieu, and Laurent Pautet. RESCUE: Multi-Robot Planning Under Resource Uncertainty and Objective Criticality. In 37th Euromicro Conference on Real-Time Systems (ECRTS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 335, pp. 5:1-5:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cordeiro_et_al:LIPIcs.ECRTS.2025.5,
  author =	{Cordeiro, Franco and Tardieu, Samuel and Pautet, Laurent},
  title =	{{RESCUE: Multi-Robot Planning Under Resource Uncertainty and Objective Criticality}},
  booktitle =	{37th Euromicro Conference on Real-Time Systems (ECRTS 2025)},
  pages =	{5:1--5:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-377-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{335},
  editor =	{Mancuso, Renato},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2025.5},
  URN =		{urn:nbn:de:0030-drops-235835},
  doi =		{10.4230/LIPIcs.ECRTS.2025.5},
  annote =	{Keywords: Multi-Robot Systems, Embedded Systems, Safety/Mixed-Critical Systems, Real-Time Systems, Monte-Carlo Tree Search}
}
Document
On the Metric Nature of (Differential) Logical Relations

Authors: Ugo Dal Lago, Naohiko Hoshino, and Paolo Pistone

Published in: LIPIcs, Volume 337, 10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025)


Abstract
Differential logical relations are a method to measure distances between higher-order programs. They differ from standard methods based on program metrics in that differences between functional programs are themselves functions, relating errors in input with errors in output, this way providing a more fine grained, contextual, information. The aim of this paper is to clarify the metric nature of differential logical relations. While previous work has shown that these do not give rise, in general, to (quasi-)metric spaces nor to partial metric spaces, we show that the distance functions arising from such relations, that we call quasi-quasi-metrics, can be related to both quasi-metrics and partial metrics, the latter being also captured by suitable relational definitions. Moreover, we exploit such connections to deduce some new compositional reasoning principles for program differences.

Cite as

Ugo Dal Lago, Naohiko Hoshino, and Paolo Pistone. On the Metric Nature of (Differential) Logical Relations. In 10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 337, pp. 15:1-15:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dallago_et_al:LIPIcs.FSCD.2025.15,
  author =	{Dal Lago, Ugo and Hoshino, Naohiko and Pistone, Paolo},
  title =	{{On the Metric Nature of (Differential) Logical Relations}},
  booktitle =	{10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025)},
  pages =	{15:1--15:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-374-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{337},
  editor =	{Fern\'{a}ndez, Maribel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2025.15},
  URN =		{urn:nbn:de:0030-drops-236300},
  doi =		{10.4230/LIPIcs.FSCD.2025.15},
  annote =	{Keywords: Differential Logical Relations, Quantales, Quasi-Metrics, Partial Metrics}
}
Document
Implementing a Type Theory with Observational Equality, Using Normalisation by Evaluation

Authors: Matthew Sirman, Meven Lennon-Bertrand, and Neel Krishnaswami

Published in: LIPIcs, Volume 336, 30th International Conference on Types for Proofs and Programs (TYPES 2024)


Abstract
We report on an experimental implementation in Haskell of a dependent type theory featuring an observational equality type, based on Pujet et al.’s CCobs. We use normalisation by evaluation to produce an efficient normalisation function, which is used to implement a bidirectional type checker. To allow for greater expressivity, we extend the core CCobs calculus with quotient types and inductive types. To make the system usable, we explore various proof-assistant features, notably a rudimentary version of a "hole" system similar to Agda’s. While rather crude, this experience should inform other, more substantial implementation efforts of observational equality.

Cite as

Matthew Sirman, Meven Lennon-Bertrand, and Neel Krishnaswami. Implementing a Type Theory with Observational Equality, Using Normalisation by Evaluation. In 30th International Conference on Types for Proofs and Programs (TYPES 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 336, pp. 5:1-5:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{sirman_et_al:LIPIcs.TYPES.2024.5,
  author =	{Sirman, Matthew and Lennon-Bertrand, Meven and Krishnaswami, Neel},
  title =	{{Implementing a Type Theory with Observational Equality, Using Normalisation by Evaluation}},
  booktitle =	{30th International Conference on Types for Proofs and Programs (TYPES 2024)},
  pages =	{5:1--5:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-376-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{336},
  editor =	{M{\o}gelberg, Rasmus Ejlers and van den Berg, Benno},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2024.5},
  URN =		{urn:nbn:de:0030-drops-233673},
  doi =		{10.4230/LIPIcs.TYPES.2024.5},
  annote =	{Keywords: Dependent type theory, Bidirectional typing, Observational equality, Normalisation by evaluation}
}
Document
Formalizing Equivalences Without Tears

Authors: Tom de Jong

Published in: LIPIcs, Volume 336, 30th International Conference on Types for Proofs and Programs (TYPES 2024)


Abstract
This expository note describes two convenient techniques in the context of homotopy type theory for proving - and formalizing - that a given map is an equivalence. The first technique decomposes the map as a series of basic equivalences, while the second refines this approach using the 3-for-2 property of equivalences. The techniques are illustrated by proving a basic result in synthetic homotopy theory.

Cite as

Tom de Jong. Formalizing Equivalences Without Tears. In 30th International Conference on Types for Proofs and Programs (TYPES 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 336, pp. 1:1-1:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dejong:LIPIcs.TYPES.2024.1,
  author =	{de Jong, Tom},
  title =	{{Formalizing Equivalences Without Tears}},
  booktitle =	{30th International Conference on Types for Proofs and Programs (TYPES 2024)},
  pages =	{1:1--1:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-376-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{336},
  editor =	{M{\o}gelberg, Rasmus Ejlers and van den Berg, Benno},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2024.1},
  URN =		{urn:nbn:de:0030-drops-233632},
  doi =		{10.4230/LIPIcs.TYPES.2024.1},
  annote =	{Keywords: 3-for-2 property, 2-out-of-3 property, definitional equality, equivalence, formalization of mathematics, synthetic homotopy theory, type theory}
}
Document
Track A: Algorithms, Complexity and Games
Algorithms for the Diverse-k-SAT Problem: The Geometry of Satisfying Assignments

Authors: Per Austrin, Ioana O. Bercea, Mayank Goswami, Nutan Limaye, and Adarsh Srinivasan

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Given a k-CNF formula and an integer s ≥ 2, we study algorithms that obtain s solutions to the formula that are as dispersed as possible. For s = 2, this problem of computing the diameter of a k-CNF formula was initiated by Creszenzi and Rossi, who showed strong hardness results even for k = 2. The current best upper bound [Angelsmark and Thapper '04] goes to 4ⁿ as k → ∞. As our first result, we show that this quadratic blow up is not necessary by utilizing the Fast-Fourier transform (FFT) to give a O^*(2ⁿ) time exact algorithm for computing the diameter of any k-CNF formula. For s > 2, the problem was raised in the SAT community (Nadel '11) and several heuristics have been proposed for it, but no algorithms with theoretical guarantees are known. We give exact algorithms using FFT and clique-finding that run in O^*(2^{(s-1)n}) and O^*(s² |Ω_{𝐅}|^{ω ⌈ s/3 ⌉}) respectively, where |Ω_{𝐅}| is the size of the solutions space of the formula 𝐅 and ω is the matrix multiplication exponent. However, current SAT algorithms for finding one solution run in time O^*(2^{ε_{k}n}) for ε_{k} ≈ 1-Θ(1/k), which is much faster than all above run times. As our main result, we analyze two popular SAT algorithms - PPZ (Paturi, Pudlák, Zane '97) and Schöning’s ('02) algorithms, and show that in time poly(s)O^*(2^{ε_{k}n}), they can be used to approximate diameter as well as the dispersion (s > 2) problem. While we need to modify Schöning’s original algorithm for technical reasons, we show that the PPZ algorithm, without any modification, samples solutions in a geometric sense. We believe this geometric sampling property of PPZ may be of independent interest. Finally, we focus on diverse solutions to NP-complete optimization problems, and give bi-approximations running in time poly(s)O^*(2^{ε n}) with ε < 1 for several problems such as Maximum Independent Set, Minimum Vertex Cover, Minimum Hitting Set, Feedback Vertex Set, Multicut on Trees and Interval Vertex Deletion. For all of these problems, all existing exact methods for finding optimal diverse solutions have a runtime with at least an exponential dependence on the number of solutions s. Our methods show that by relaxing to bi-approximations, this dependence on s can be made polynomial.

Cite as

Per Austrin, Ioana O. Bercea, Mayank Goswami, Nutan Limaye, and Adarsh Srinivasan. Algorithms for the Diverse-k-SAT Problem: The Geometry of Satisfying Assignments. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 14:1-14:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{austrin_et_al:LIPIcs.ICALP.2025.14,
  author =	{Austrin, Per and Bercea, Ioana O. and Goswami, Mayank and Limaye, Nutan and Srinivasan, Adarsh},
  title =	{{Algorithms for the Diverse-k-SAT Problem: The Geometry of Satisfying Assignments}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{14:1--14:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.14},
  URN =		{urn:nbn:de:0030-drops-233916},
  doi =		{10.4230/LIPIcs.ICALP.2025.14},
  annote =	{Keywords: Exponential time algorithms, Satisfiability, k-SAT, PPZ, Sch\"{o}ning, Dispersion, Diversity}
}
Document
Slightly Non-Linear Higher-Order Tree Transducers

Authors: Lê Thành Dũng (Tito) Nguyễn and Gabriele Vanoni

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
We investigate the tree-to-tree functions computed by "affine λ-transducers": tree automata whose memory consists of an affine λ-term instead of a finite state. They can be seen as variations on Gallot, Lemay and Salvati’s Linear High-Order Deterministic Tree Transducers. When the memory is almost purely affine (à la Kanazawa), we show that these machines can be translated to tree-walking transducers (and with a purely affine memory, we get a reversible tree-walking transducer). This leads to a proof of an inexpressivity conjecture of Nguyễn and Pradic on "implicit automata" in an affine λ-calculus. We also prove that a more powerful variant, extended with preprocessing by an MSO relabeling and allowing a limited amount of non-linearity, is equivalent in expressive power to Engelfriet, Hoogeboom and Samwel’s invisible pebble tree transducers. The key technical tool in our proofs is the Interaction Abstract Machine (IAM), an operational avatar of Girard’s geometry of interaction, a semantics of linear logic. We work with ad-hoc specializations to λ-terms of low exponential depth of a tree-generating version of the IAM.

Cite as

Lê Thành Dũng (Tito) Nguyễn and Gabriele Vanoni. Slightly Non-Linear Higher-Order Tree Transducers. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 68:1-68:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{nguyen_et_al:LIPIcs.STACS.2025.68,
  author =	{Nguy\~{ê}n, L\^{e} Th\`{a}nh D\~{u}ng (Tito) and Vanoni, Gabriele},
  title =	{{Slightly Non-Linear Higher-Order Tree Transducers}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{68:1--68:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.68},
  URN =		{urn:nbn:de:0030-drops-228934},
  doi =		{10.4230/LIPIcs.STACS.2025.68},
  annote =	{Keywords: Almost affine lambda-calculus, geometry of interaction, reversibility, tree transducers, tree-walking automata}
}
Document
Identity-Preserving Lax Extensions and Where to Find Them

Authors: Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, and Paul Wild

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
Generic notions of bisimulation for various types of systems (nondeterministic, probabilistic, weighted etc.) rely on identity-preserving (normal) lax extensions of the functor encapsulating the system type, in the paradigm of universal coalgebra. It is known that preservation of weak pullbacks is a sufficient condition for a functor to admit a normal lax extension (the Barr extension, which in fact is then even strict); in the converse direction, nothing is currently known about necessary (weak) pullback preservation conditions for the existence of normal lax extensions. In the present work, we narrow this gap by showing on the one hand that functors admitting a normal lax extension preserve 1/4-iso pullbacks, i.e. pullbacks in which at least one of the projections is an isomorphism. On the other hand, we give sufficient conditions, showing that a functor admits a normal lax extension if it weakly preserves either 1/4-iso pullbacks and 4/4-epi pullbacks (i.e. pullbacks in which all morphisms are epic) or inverse images. We apply these criteria to concrete examples, in particular to functors modelling neighbourhood systems and weighted systems.

Cite as

Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, and Paul Wild. Identity-Preserving Lax Extensions and Where to Find Them. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 40:1-40:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{goncharov_et_al:LIPIcs.STACS.2025.40,
  author =	{Goncharov, Sergey and Hofmann, Dirk and Nora, Pedro and Schr\"{o}der, Lutz and Wild, Paul},
  title =	{{Identity-Preserving Lax Extensions and Where to Find Them}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{40:1--40:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.40},
  URN =		{urn:nbn:de:0030-drops-228665},
  doi =		{10.4230/LIPIcs.STACS.2025.40},
  annote =	{Keywords: (Bi-)simulations, lax extensions, modal logics, coalgebra}
}
Document
Quantitative Graded Semantics and Spectra of Behavioural Metrics

Authors: Jonas Forster, Lutz Schröder, Paul Wild, Harsh Beohar, Sebastian Gurke, Barbara König, and Karla Messing

Published in: LIPIcs, Volume 326, 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)


Abstract
Behavioural metrics provide a quantitative refinement of classical two-valued behavioural equivalences on systems with quantitative data, such as metric or probabilistic transition systems. In analogy to the linear-time/ branching-time spectrum of two-valued behavioural equivalences on transition systems, behavioural metrics vary in granularity, and are often characterized by fragments of suitable modal logics. In the latter respect, the quantitative case is, however, more involved than the two-valued one; in fact, we show that probabilistic metric trace distance cannot be characterized by any compositionally defined modal logic with unary modalities. We go on to provide a unifying treatment of spectra of behavioural metrics in the emerging framework of graded monads, working in coalgebraic generality, that is, parametrically in the system type. In the ensuing development of quantitative graded semantics, we introduce algebraic presentations of graded monads on the category of metric spaces. Moreover, we provide a general criterion for a given real-valued modal logic to characterize a given behavioural distance. As a case study, we apply this criterion to obtain a new characteristic modal logic for trace distance in fuzzy metric transition systems.

Cite as

Jonas Forster, Lutz Schröder, Paul Wild, Harsh Beohar, Sebastian Gurke, Barbara König, and Karla Messing. Quantitative Graded Semantics and Spectra of Behavioural Metrics. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 326, pp. 33:1-33:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{forster_et_al:LIPIcs.CSL.2025.33,
  author =	{Forster, Jonas and Schr\"{o}der, Lutz and Wild, Paul and Beohar, Harsh and Gurke, Sebastian and K\"{o}nig, Barbara and Messing, Karla},
  title =	{{Quantitative Graded Semantics and Spectra of Behavioural Metrics}},
  booktitle =	{33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)},
  pages =	{33:1--33:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-362-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{326},
  editor =	{Endrullis, J\"{o}rg and Schmitz, Sylvain},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2025.33},
  URN =		{urn:nbn:de:0030-drops-227907},
  doi =		{10.4230/LIPIcs.CSL.2025.33},
  annote =	{Keywords: transition systems, modal logics, coalgebras, behavioural metrics}
}
Document
The Lambda Calculus Is Quantifiable

Authors: Valentin Maestracci and Paolo Pistone

Published in: LIPIcs, Volume 326, 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)


Abstract
In this paper we introduce several quantitative methods for the lambda-calculus based on partial metrics, a well-studied variant of standard metric spaces that have been used to metrize non-Hausdorff topologies, like those arising from Scott domains. First, we study quantitative variants, based on program distances, of sensible equational theories for the λ-calculus, like those arising from Böhm trees and from the contextual preorder. Then, we introduce applicative distances capturing higher-order Scott topologies, including reflexive objects like the D_∞ model. Finally, we provide a quantitative insight on the well-known connection between the Böhm tree of a λ-term and its Taylor expansion, by showing that the latter can be presented as an isometric transformation.

Cite as

Valentin Maestracci and Paolo Pistone. The Lambda Calculus Is Quantifiable. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 326, pp. 34:1-34:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{maestracci_et_al:LIPIcs.CSL.2025.34,
  author =	{Maestracci, Valentin and Pistone, Paolo},
  title =	{{The Lambda Calculus Is Quantifiable}},
  booktitle =	{33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)},
  pages =	{34:1--34:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-362-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{326},
  editor =	{Endrullis, J\"{o}rg and Schmitz, Sylvain},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2025.34},
  URN =		{urn:nbn:de:0030-drops-227911},
  doi =		{10.4230/LIPIcs.CSL.2025.34},
  annote =	{Keywords: Lambda-calculus, Scott semantics, Partial metric spaces, B\"{o}hm trees, Taylor expansion}
}
Document
Vision
Machine Learning and Knowledge Graphs: Existing Gaps and Future Research Challenges

Authors: Claudia d'Amato, Louis Mahon, Pierre Monnin, and Giorgos Stamou

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
The graph model is nowadays largely adopted to model a wide range of knowledge and data, spanning from social networks to knowledge graphs (KGs), representing a successful paradigm of how symbolic and transparent AI can scale on the World Wide Web. However, due to their unprecedented volume, they are generally tackled by Machine Learning (ML) and mostly numeric based methods such as graph embedding models (KGE) and deep neural networks (DNNs). The latter methods have been proved lately very efficient, leading the current AI spring. In this vision paper, we introduce some of the main existing methods for combining KGs and ML, divided into two categories: those using ML to improve KGs, and those using KGs to improve results on ML tasks. From this introduction, we highlight research gaps and perspectives that we deem promising and currently under-explored for the involved research communities, spanning from KG support for LLM prompting, integration of KG semantics in ML models to symbol-based methods, interpretability of ML models, and the need for improved benchmark datasets. In our opinion, such perspectives are stepping stones in an ultimate view of KGs as central assets for neuro-symbolic and explainable AI.

Cite as

Claudia d'Amato, Louis Mahon, Pierre Monnin, and Giorgos Stamou. Machine Learning and Knowledge Graphs: Existing Gaps and Future Research Challenges. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 8:1-8:35, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{damato_et_al:TGDK.1.1.8,
  author =	{d'Amato, Claudia and Mahon, Louis and Monnin, Pierre and Stamou, Giorgos},
  title =	{{Machine Learning and Knowledge Graphs: Existing Gaps and Future Research Challenges}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{8:1--8:35},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.8},
  URN =		{urn:nbn:de:0030-drops-194824},
  doi =		{10.4230/TGDK.1.1.8},
  annote =	{Keywords: Graph-based Learning, Knowledge Graph Embeddings, Large Language Models, Explainable AI, Knowledge Graph Completion \& Curation}
}
Document
Invited Talk
Quotients in Dependent Type Theory (Invited Talk)

Authors: Andrew M. Pitts

Published in: LIPIcs, Volume 167, 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)


Abstract
Constructs that involve taking a quotient are commonplace in mathematics. Here I will consider how they are treated within dependent type theory. The notion of quotient type has its origins in the Nuprl theorem-proving system [R. L. Constable et al., 1986] for extensional type theory. Later Hofmann formulated a version for intensional type theory in his thesis [M. Hofmann, 1995]. This depends on having a pre-existing notion of intensional identity type. Hofmann used Martin-Löf’s notion, the indexed family inductively generated from proofs of reflexivity [B. Nordström et al., 1990]. The recent homotopical view of identity in terms of path types [The Univalent Foundations Program, 2013] gives a more liberal perspective and has brought with it the notion of higher inductive type (HIT) [P. L. Lumsdaine and M. Shulman, 2019], subsuming both inductive and quotient types. Inductively defined indexed families of types (in all their various forms) are perhaps the most useful concept that dependent type theory has contributed to the practice of computer assistance for formalizing mathematical proofs. However, it is often the case that a particular application of such types needs not only to inductively generate a collection of objects, but also to make identifications between the objects. In classical mathematics one can first generate and then identify, using the Axiom of Choice to lift infinitary constructions to the quotient. HITs can allow one to avoid such non-constructive uses of choice by inter-twining generation and identification. Perhaps more important than the constructive/non-constructive issue is that simultaneously declaring how to generate and how to identify can be a very natural way of defining some construct from the user’s point of view. This is why HITs promise to be so useful, once we have robust and convenient mechanisms in theorem-proving systems for defining HITs and defining functions out of HITs. Although some HITs have been axiomatized in various systems, at the moment the only system I know of with built in support for defining quite general forms of HIT and using them is the implementation of cubical type theory [C. Cohen et al., 2018] within recent versions of the Agda system [A. Vezzosi et al., 2019]. The higher dimensional aspect of identity in cubical type theory is fascinating; nevertheless, the simpler one-dimensional version of identity, in which one has uniqueness of identity proofs (UIP), is adequate for many applications. Although some regard UIP as a bug of early versions of Agda with it’s original form of dependent pattern matching [T. Coquand, 1992], it is by choice a feature of the Lean prover [J. Avigad et al., 2020]. Altenkirch and Kaposi [T. Altenkirch and A. Kaposi, 2016] have termed the one-dimensional version of HITs quotient inductive types (QITs) and they promise to be very useful even in the setting of type theory with UIP. In this talk I survey some of these developments, including a recent reduction of QITs to quotients [M. P. Fiore et al., 2020], and the prospects for better support in theorem-provers for quotient constructions.

Cite as

Andrew M. Pitts. Quotients in Dependent Type Theory (Invited Talk). In 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 167, pp. 3:1-3:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{pitts:LIPIcs.FSCD.2020.3,
  author =	{Pitts, Andrew M.},
  title =	{{Quotients in Dependent Type Theory}},
  booktitle =	{5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)},
  pages =	{3:1--3:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-155-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{167},
  editor =	{Ariola, Zena M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2020.3},
  URN =		{urn:nbn:de:0030-drops-123256},
  doi =		{10.4230/LIPIcs.FSCD.2020.3},
  annote =	{Keywords: dependent type theory, quotient, quotient inductive type, theorem-proving systems}
}
Document
Martin Hofmann’s Case for Non-Strictly Positive Data Types

Authors: Ulrich Berger, Ralph Matthes, and Anton Setzer

Published in: LIPIcs, Volume 130, 24th International Conference on Types for Proofs and Programs (TYPES 2018)


Abstract
We describe the breadth-first traversal algorithm by Martin Hofmann that uses a non-strictly positive data type and carry out a simple verification in an extensional setting. Termination is shown by implementing the algorithm in the strongly normalising extension of system F by Mendler-style recursion. We then analyze the same algorithm by alternative verifications first in an intensional setting using a non-strictly positive inductive definition (not just a non-strictly positive data type), and subsequently by two different algebraic reductions. The verification approaches are compared in terms of notions of simulation and should elucidate the somewhat mysterious algorithm and thus make a case for other uses of non-strictly positive data types. Except for the termination proof, which cannot be formalised in Coq, all proofs were formalised in Coq and some of the algorithms were implemented in Agda and Haskell.

Cite as

Ulrich Berger, Ralph Matthes, and Anton Setzer. Martin Hofmann’s Case for Non-Strictly Positive Data Types. In 24th International Conference on Types for Proofs and Programs (TYPES 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 130, pp. 1:1-1:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{berger_et_al:LIPIcs.TYPES.2018.1,
  author =	{Berger, Ulrich and Matthes, Ralph and Setzer, Anton},
  title =	{{Martin Hofmann’s Case for Non-Strictly Positive Data Types}},
  booktitle =	{24th International Conference on Types for Proofs and Programs (TYPES 2018)},
  pages =	{1:1--1:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-106-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{130},
  editor =	{Dybjer, Peter and Esp{\'\i}rito Santo, Jos\'{e} and Pinto, Lu{\'\i}s},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2018.1},
  URN =		{urn:nbn:de:0030-drops-114052},
  doi =		{10.4230/LIPIcs.TYPES.2018.1},
  annote =	{Keywords: non strictly-positive data types, breadth-first traversal, program verification, Mendler-style recursion, System F, theorem proving, Coq, Agda, Haskell}
}
Document
From Theory to Practice of Algebraic Effects and Handlers (Dagstuhl Seminar 16112)

Authors: Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop

Published in: Dagstuhl Reports, Volume 6, Issue 3 (2016)


Abstract
Dagstuhl Seminar 16112 was devoted to research in algebraic effects and handlers, a chapter in the principles of programming languages which addresses computational effects (such as I/O, state, exceptions, nondeterminism, and many others). The speakers and the working groups covered a range of topics, including comparisons between various control mechanisms (handlers vs. delimited control), implementation of an effect system for OCaml, compilation techniques for algebraic effects and handlers, and implementations of effects in Haskell.

Cite as

Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop. From Theory to Practice of Algebraic Effects and Handlers (Dagstuhl Seminar 16112). In Dagstuhl Reports, Volume 6, Issue 3, pp. 44-58, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@Article{bauer_et_al:DagRep.6.3.44,
  author =	{Bauer, Andrej and Hofmann, Martin and Pretnar, Matija and Yallop, Jeremy},
  title =	{{From Theory to Practice of Algebraic Effects and Handlers (Dagstuhl Seminar 16112)}},
  pages =	{44--58},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2016},
  volume =	{6},
  number =	{3},
  editor =	{Bauer, Andrej and Hofmann, Martin and Pretnar, Matija and Yallop, Jeremy},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.6.3.44},
  URN =		{urn:nbn:de:0030-drops-61489},
  doi =		{10.4230/DagRep.6.3.44},
  annote =	{Keywords: algebraic effects, computational effects, handlers, implementation techniques, programming languages}
}
  • Refine by Type
  • 32 Document/PDF
  • 11 Document/HTML

  • Refine by Publication Year
  • 11 2025
  • 1 2023
  • 1 2020
  • 1 2019
  • 1 2016
  • Show More...

  • Refine by Author
  • 8 Hofmann, Martin
  • 5 Benton, Nick
  • 4 Ahmed, Amal
  • 3 Kovar, Martin
  • 2 Birkedal, Lars
  • Show More...

  • Refine by Series/Journal
  • 14 LIPIcs
  • 2 TGDK
  • 1 DagRep
  • 15 DagSemProc

  • Refine by Classification
  • 4 Theory of computation → Type theory
  • 3 Theory of computation → Modal and temporal logics
  • 2 Theory of computation → Logic and verification
  • 2 Theory of computation → Program semantics
  • 1 Computer systems organization → Embedded and cyber-physical systems
  • Show More...

  • Refine by Keyword
  • 4 Mutable State
  • 4 Program Logics
  • 4 Semantics
  • 4 Type Systems
  • 2 Logical Relations
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail