82 Search Results for "Morin, Pat"


Volume

LIPIcs, Volume 349

19th International Symposium on Algorithms and Data Structures (WADS 2025)

WADS 2025, August 11-15, 2025, York University, Toronto, Canada

Editors: Pat Morin and Eunjin Oh

Document
External-Memory Priority Queues with Optimal Insertions

Authors: Gerth Stølting Brodal, Michael T. Goodrich, John Iacono, Jared Lo, Ulrich Meyer, Victor Pagan, Nodari Sitchinava, and Rolf Svenning

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We present an external-memory priority queue structure supporting Insert and DeleteMin with amortized 𝒪(1) and 𝒪(lg N) comparisons, respectively, and amortized 𝒪(1/B) and 𝒪(1/B log_{M/B} N/B) I/Os, respectively. Here, M is the size of the internal memory, B is the block size of I/Os between internal and external memory, and N is the number of elements in the priority queue just before an operation is performed. Previous external-memory priority queues required amortized 𝒪(lg N) comparisons and 𝒪(1/B log_{M/B} N/B) I/Os for both Insert and DeleteMin. The construction requires the minimal assumption M ≥ 2B.

Cite as

Gerth Stølting Brodal, Michael T. Goodrich, John Iacono, Jared Lo, Ulrich Meyer, Victor Pagan, Nodari Sitchinava, and Rolf Svenning. External-Memory Priority Queues with Optimal Insertions. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 5:1-5:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{brodal_et_al:LIPIcs.ESA.2025.5,
  author =	{Brodal, Gerth St{\o}lting and Goodrich, Michael T. and Iacono, John and Lo, Jared and Meyer, Ulrich and Pagan, Victor and Sitchinava, Nodari and Svenning, Rolf},
  title =	{{External-Memory Priority Queues with Optimal Insertions}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{5:1--5:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.5},
  URN =		{urn:nbn:de:0030-drops-244734},
  doi =		{10.4230/LIPIcs.ESA.2025.5},
  annote =	{Keywords: priority queues, external memory, cache aware, amortized complexity}
}
Document
Instance-Optimal Imprecise Convex Hull

Authors: Sarita de Berg, Ivor van der Hoog, Eva Rotenberg, Daniel Rutschmann, and Sampson Wong

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Imprecise measurements of a point set P = (p₁, …, p_n) can be modelled by a family of regions F = (R₁, …, R_n), where each imprecise region R_i ∈ F contains a unique point p_i ∈ P. A retrieval models an accurate measurement by replacing an imprecise region R_i with its corresponding point p_i. We construct the convex hull of an imprecise point set in the plane, by determining the cyclic ordering of the convex hull vertices of P as efficiently as possible. Efficiency is interpreted in two ways: (i) minimising the number of retrievals, and (ii) the computation time to determine the set of regions that must be retrieved. Previous works focused on only one of these two aspects: either minimising retrievals or optimising algorithmic runtime. Our contribution is the first to simultaneously achieve both. Let r(F, P) denote the minimal number of retrievals required by any algorithm to determine the convex hull of P for a given instance (F, P). For a family F of n constant-complexity polygons, our main result is a reconstruction algorithm that performs Θ(r(F, P)) retrievals in O(r(F, P) log³ n) time. Compared to previous approaches that achieve optimal retrieval counts, we improve the runtime per retrieval from polynomial to polylogarithmic. We extend the generality of previous results to simple k-gons, to pairwise disjoint disks with radii in [1,k], and to unit disks where at most k disks overlap in a single point. Our runtime scales linearly with k.

Cite as

Sarita de Berg, Ivor van der Hoog, Eva Rotenberg, Daniel Rutschmann, and Sampson Wong. Instance-Optimal Imprecise Convex Hull. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 25:1-25:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ESA.2025.25,
  author =	{de Berg, Sarita and van der Hoog, Ivor and Rotenberg, Eva and Rutschmann, Daniel and Wong, Sampson},
  title =	{{Instance-Optimal Imprecise Convex Hull}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{25:1--25:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.25},
  URN =		{urn:nbn:de:0030-drops-244932},
  doi =		{10.4230/LIPIcs.ESA.2025.25},
  annote =	{Keywords: convex hull, imprecise geometry preprocessing model, partial information}
}
Document
An Improved Bound for Plane Covering Paths

Authors: Hugo A. Akitaya, Greg Aloupis, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, Cyril Gavoille, John Iacono, Linda Kleist, Michiel Smid, Diane Souvaine, and Leonidas Theocharous

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A covering path for a finite set P of points in the plane is a polygonal path such that every point of P lies on a segment of the path. The vertices of the path need not be at points of P. A covering path is plane if its segments do not cross each other. Let π(n) be the minimum number such that every set of n points in the plane admits a plane covering path with at most π(n) segments. We prove that π(n) ≤ ⌈6n/7⌉. This improves the previous best-known upper bound of ⌈21n/22⌉, due to Biniaz (SoCG 2023). Our proof is constructive and yields a simple O(n log n)-time algorithm for computing a plane covering path.

Cite as

Hugo A. Akitaya, Greg Aloupis, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, Cyril Gavoille, John Iacono, Linda Kleist, Michiel Smid, Diane Souvaine, and Leonidas Theocharous. An Improved Bound for Plane Covering Paths. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 75:1-75:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{a.akitaya_et_al:LIPIcs.ESA.2025.75,
  author =	{A. Akitaya, Hugo and Aloupis, Greg and Biniaz, Ahmad and Bose, Prosenjit and De Carufel, Jean-Lou and Gavoille, Cyril and Iacono, John and Kleist, Linda and Smid, Michiel and Souvaine, Diane and Theocharous, Leonidas},
  title =	{{An Improved Bound for Plane Covering Paths}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{75:1--75:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.75},
  URN =		{urn:nbn:de:0030-drops-245432},
  doi =		{10.4230/LIPIcs.ESA.2025.75},
  annote =	{Keywords: Covering Path, Upper Bound, Simple Algorithm}
}
Document
A Unified FPT Framework for Crossing Number Problems

Authors: Éric Colin de Verdière and Petr Hliněný

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The basic (and traditional) crossing number problem is to determine the minimum number of crossings in a topological drawing of an input graph in the plane. We develop a unified framework that smoothly captures many generalized crossing number problems, and that yields fixed-parameter tractable (FPT) algorithms for them not only in the plane but also on surfaces. Our framework takes the following form. We fix a surface S, an integer r, and a map κ from the set of topological drawings of graphs in S to ℤ_+ ∪ {∞}, satisfying some natural monotonicity conditions, but essentially describing the allowed drawings and how we want to count the crossings in them. Then deciding whether an input graph G has an allowed drawing D on S with κ(D) ≤ r can be done in time quadratic in the size of G (and exponential in other parameters). More generally, we may take as input an edge-colored graph, and distinguish crossings by the colors of the involved edges; and we may allow to perform a bounded number of edge removals and vertex splits to G before drawing it. The proof is a reduction to the embeddability of a graph on a two-dimensional simplicial complex. This framework implies, in a unified way, quadratic FPT algorithms for many topological crossing number variants established in the graph drawing community. Some of these variants already had previously published FPT algorithms, mostly relying on Courcelle’s metatheorem, but for many of those, we obtain an algorithm with a better runtime. Moreover, our framework extends, at no cost, to these crossing number variants in any fixed surface.

Cite as

Éric Colin de Verdière and Petr Hliněný. A Unified FPT Framework for Crossing Number Problems. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{colindeverdiere_et_al:LIPIcs.ESA.2025.21,
  author =	{Colin de Verdi\`{e}re, \'{E}ric and Hlin\v{e}n\'{y}, Petr},
  title =	{{A Unified FPT Framework for Crossing Number Problems}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{21:1--21:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.21},
  URN =		{urn:nbn:de:0030-drops-244897},
  doi =		{10.4230/LIPIcs.ESA.2025.21},
  annote =	{Keywords: computational geometry, fixed-parameter tractability, graph drawing, graph embedding, crossing number, two-dimensional simplicial complex, surface}
}
Document
Linear Layouts Revisited: Stacks, Queues, and Exact Algorithms

Authors: Thomas Depian, Simon D. Fink, Robert Ganian, and Vaishali Surianarayanan

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
In spite of the extensive study of stack and queue layouts, many fundamental questions remain open concerning the complexity-theoretic frontiers for computing stack and queue layouts. A stack (resp. queue) layout places vertices along a line and assigns edges to pages so that no two edges on the same page are crossing (resp. nested). We provide three new algorithms which together substantially expand our understanding of these problems: 1) A fixed-parameter algorithm for computing minimum-page stack and queue layouts w.r.t. the vertex integrity of an n-vertex graph G. This result is motivated by an open question in the literature and generalizes the previous algorithms parameterizing by the vertex cover number of G. The proof relies on a newly developed Ramsey pruning technique. Vertex integrity intuitively measures the vertex deletion distance to a subgraph with only small connected components. 2) An n^𝒪(q 𝓁) algorithm for computing 𝓁-page stack and queue layouts of page width at most q. This is the first algorithm avoiding a double-exponential dependency on the parameters. The page width of a layout measures the maximum number of edges one needs to cross on any page to reach the outer face. 3) A 2^𝒪(n) algorithm for computing 1-page queue layouts. This improves upon the previously fastest n^𝒪(n) algorithm and can be seen as a counterpart to the recent subexponential algorithm for computing 2-page stack layouts [ICALP'24], but relies on an entirely different technique.

Cite as

Thomas Depian, Simon D. Fink, Robert Ganian, and Vaishali Surianarayanan. Linear Layouts Revisited: Stacks, Queues, and Exact Algorithms. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 15:1-15:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{depian_et_al:LIPIcs.ESA.2025.15,
  author =	{Depian, Thomas and Fink, Simon D. and Ganian, Robert and Surianarayanan, Vaishali},
  title =	{{Linear Layouts Revisited: Stacks, Queues, and Exact Algorithms}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{15:1--15:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.15},
  URN =		{urn:nbn:de:0030-drops-244835},
  doi =		{10.4230/LIPIcs.ESA.2025.15},
  annote =	{Keywords: stack layouts, queue layouts, parameterized algorithms, vertex integrity, Ramsey theory}
}
Document
RANDOM
Sublinear Space Graph Algorithms in the Continual Release Model

Authors: Alessandro Epasto, Quanquan C. Liu, Tamalika Mukherjee, and Felix Zhou

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
The graph continual release model of differential privacy seeks to produce differentially private solutions to graph problems under a stream of edge updates where new private solutions are released after each update. Thus far, previously known edge-differentially private algorithms for most graph problems including densest subgraph and matchings in the continual release setting only output real-value estimates (not vertex subset solutions) and do not use sublinear space. Instead, they rely on computing exact graph statistics on the input [Hendrik Fichtenberger et al., 2021; Shuang Song et al., 2018]. In this paper, we leverage sparsification to address the above shortcomings for edge-insertion streams. Our edge-differentially private algorithms use sublinear space with respect to the number of edges in the graph while some also achieve sublinear space in the number of vertices in the graph. In addition, for the densest subgraph problem, we also output edge-differentially private vertex subset solutions; no previous graph algorithms in the continual release model output such subsets. We make novel use of assorted sparsification techniques from the non-private streaming and static graph algorithms literature to achieve new results in the sublinear space, continual release setting. This includes algorithms for densest subgraph, maximum matching, as well as the first continual release k-core decomposition algorithm. We also develop a novel sparse level data structure for k-core decomposition that may be of independent interest. To complement our insertion-only algorithms, we conclude with polynomial additive error lower bounds for edge-privacy in the fully dynamic setting, where only logarithmic lower bounds were previously known.

Cite as

Alessandro Epasto, Quanquan C. Liu, Tamalika Mukherjee, and Felix Zhou. Sublinear Space Graph Algorithms in the Continual Release Model. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 40:1-40:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{epasto_et_al:LIPIcs.APPROX/RANDOM.2025.40,
  author =	{Epasto, Alessandro and Liu, Quanquan C. and Mukherjee, Tamalika and Zhou, Felix},
  title =	{{Sublinear Space Graph Algorithms in the Continual Release Model}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{40:1--40:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.40},
  URN =		{urn:nbn:de:0030-drops-244064},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.40},
  annote =	{Keywords: Differential Privacy, Continual Release, Densest Subgraph, k-Core Decomposition, Maximum Matching}
}
Document
Fast Kd-Trees for the Kullback-Leibler Divergence and Other Decomposable Bregman Divergences

Authors: Tuyen Pham and Hubert Wagner

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
The contributions of the paper span theoretical and implementational results. First, we prove that Kd-trees can be extended to ℝ^d with the distance measured by an arbitrary Bregman divergence. Perhaps surprisingly, this shows that the triangle inequality is not necessary for correct pruning in Kd-trees. Second, we offer an efficient algorithm and C++ implementation for nearest neighbour search for decomposable Bregman divergences. The implementation supports the Kullback-Leibler divergence (relative entropy) which is a popular distance between probability vectors and is commonly used in statistics and machine learning. This is a step toward broadening the usage of computational geometry algorithms. Our benchmarks show that our implementation efficiently handles both exact and approximate nearest neighbour queries. Compared to a linear search, we achieve two orders of magnitude speedup for practical scenarios in dimension up to 100. Our solution is simpler and more efficient than competing methods.

Cite as

Tuyen Pham and Hubert Wagner. Fast Kd-Trees for the Kullback-Leibler Divergence and Other Decomposable Bregman Divergences. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 45:1-45:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{pham_et_al:LIPIcs.WADS.2025.45,
  author =	{Pham, Tuyen and Wagner, Hubert},
  title =	{{Fast Kd-Trees for the Kullback-Leibler Divergence and Other Decomposable Bregman Divergences}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{45:1--45:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.45},
  URN =		{urn:nbn:de:0030-drops-242766},
  doi =		{10.4230/LIPIcs.WADS.2025.45},
  annote =	{Keywords: Kd-tree, k-d tree, nearest neighbour search, Bregman divergence, decomposable Bregman divergence, KL divergence, relative entropy, cross entropy, Shannon’s entropy}
}
Document
B-Treaps Revised: Write Efficient Randomized Block Search Trees with High Load

Authors: Roodabeh Safavi and Martin P. Seybold

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
Uniquely represented (UR) data structures represent each logical state with a unique storage state. We study the problem of maintaining a dynamic set of n keys from a totally ordered universe in this context. UR structures are also called "strongly history independent" structures in the literature. We introduce a two-layer data structure called (α,ε)-Randomized Block Search Tree (RBST) that is uniquely represented and suitable for external memory (EM). Though RBSTs naturally generalize the well-known binary Treaps, several new ideas are needed to analyze the expected search, update, and storage efficiency in terms of block-reads, block-writes, and blocks stored. We prove that searches have O(ε^{-1} + log_α n) block-reads, that dynamic updates perform O(ε^{-1} + log_α(n)/α) block-writes and O(ε^{-2}+(1+(ε^{-1}+log n)/α)log_α n) block-reads, and that (α, ε)-RBSTs have an asymptotic load-factor of at least (1-ε) for every ε ∈ (0,1/2]. Thus (α, ε)-RBSTs improve on the known, uniquely represented B-Treap [Golovin; ICALP'09]. Compared with non-UR structures, the RBST is also, to the best of our knowledge, the first external memory structure that is storage-efficient and has a non-amortized, write-efficient update bound.

Cite as

Roodabeh Safavi and Martin P. Seybold. B-Treaps Revised: Write Efficient Randomized Block Search Trees with High Load. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 47:1-47:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{safavi_et_al:LIPIcs.WADS.2025.47,
  author =	{Safavi, Roodabeh and Seybold, Martin P.},
  title =	{{B-Treaps Revised: Write Efficient Randomized Block Search Trees with High Load}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{47:1--47:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.47},
  URN =		{urn:nbn:de:0030-drops-242786},
  doi =		{10.4230/LIPIcs.WADS.2025.47},
  annote =	{Keywords: Unique Representation, Randomization, Top-Down Analysis, Block Search Tree, Write-Efficiency, Storage-Efficiency}
}
Document
Deterministic (2/3 - ε)-Approximation of Matroid Intersection Using Nearly-Linear Independence-Oracle Queries

Authors: Tatsuya Terao

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
In the matroid intersection problem, we are given two matroids ℳ₁ = (V, ℐ₁) and ℳ₂ = (V, ℐ₂) defined on the same ground set V of n elements, and the objective is to find a common independent set S ∈ ℐ₁ ∩ ℐ₂ of largest possible cardinality, denoted by r. In this paper, we consider a deterministic matroid intersection algorithm with only a nearly linear number of independence oracle queries. Our contribution is to present a deterministic O(n/(ε) + r log r)-independence-query (2/3-ε)-approximation algorithm for any ε > 0. Our idea is very simple: we apply a recent Õ(n √r/ε)-independence-query (1 - ε)-approximation algorithm of Blikstad [ICALP 2021], but terminate it before completion. Moreover, we also present a semi-streaming algorithm for (2/3 -ε)-approximation of matroid intersection in O(1/ε) passes.

Cite as

Tatsuya Terao. Deterministic (2/3 - ε)-Approximation of Matroid Intersection Using Nearly-Linear Independence-Oracle Queries. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 50:1-50:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{terao:LIPIcs.WADS.2025.50,
  author =	{Terao, Tatsuya},
  title =	{{Deterministic (2/3 - \epsilon)-Approximation of Matroid Intersection Using Nearly-Linear Independence-Oracle Queries}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{50:1--50:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.50},
  URN =		{urn:nbn:de:0030-drops-242812},
  doi =		{10.4230/LIPIcs.WADS.2025.50},
  annote =	{Keywords: Matroid intersection, approximation algorithm, streaming algorithm}
}
Document
On the I/O Complexity of the Cocke-Younger-Kasami Algorithm and of a Family of Related Dynamic Programming Algorithms

Authors: Lorenzo De Stefani and Vedant Gupta

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
Asymptotically tight lower bounds are derived for the Input/Output (I/O) complexity of a class of dynamic programming algorithms, including matrix chain multiplication, optimal polygon triangulation, and the construction of optimal binary search trees. Assuming no recomputation of intermediate values, we establish an Ω(n³/(√M B)) I/O lower bound, where n denotes the size of the input and M denotes the size of the available fast memory (cache). When recomputation is allowed, we show that the same bound holds for M < cn, where c is a positive constant. In the case where M ≥ 2n, we show an Ω(n/B) I/O lower bound. We also discuss algorithms for which the number of executed I/O operations matches asymptotically each of the presented lower bounds, which are thus asymptotically tight. Additionally, we refine our general method to obtain a lower bound for the I/O complexity of the Cocke-Younger-Kasami algorithm, where the size of the grammar impacts the I/O complexity. An upper bound with asymptotically matching performance in many cases is also provided.

Cite as

Lorenzo De Stefani and Vedant Gupta. On the I/O Complexity of the Cocke-Younger-Kasami Algorithm and of a Family of Related Dynamic Programming Algorithms. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 49:1-49:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{destefani_et_al:LIPIcs.WADS.2025.49,
  author =	{De Stefani, Lorenzo and Gupta, Vedant},
  title =	{{On the I/O Complexity of the Cocke-Younger-Kasami Algorithm and of a Family of Related Dynamic Programming Algorithms}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{49:1--49:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.49},
  URN =		{urn:nbn:de:0030-drops-242800},
  doi =		{10.4230/LIPIcs.WADS.2025.49},
  annote =	{Keywords: I/O complexity, Dynamic Programming Algorithms, Lower Bounds, Recomputation, Cocke-Younger-Kasami}
}
Document
Streaming Algorithms for Conflict-Free Coloring

Authors: Rogers Mathew, Fahad Panolan, and Seshikanth

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
Conflict-free coloring of a hypergraph ℋ = (V,ℰ) using k colors is a function f:V → {1,2, …, k} such that for all E ∈ ℰ, there exists a vertex v ∈ E with a unique color. That is, f(v)≠ f(u) for all u ∈ E ⧵ {v}. The minimum k for which ℋ has a conflict-free coloring using k colors is called the conflict-free chromatic number of ℋ. For a simple graph G, a conflict-free coloring of the hypergraph with vertex set V(G) and edge set being the set of all closed neighborhoods of the vertices in G is called a conflict-free closed neighborhood (CFCN) coloring of G. CFCN chromatic number, denoted by χ_{CN}(G), is the minimum number of colors used in a conflict-free closed neighborhood coloring of G. Analogously, we define conflict-free open neighborhood (CFON) coloring and CFON chromatic number, χ_{ON}(G), of a graph G. There are various works on proving upper and lower bounds of χ_{ON}(G) and χ_{CN}(G). In this work, we develop streaming algorithms for CFCN and CFON coloring of a graph where the number of colors used matches the best-known upper bounds of χ_{ON}(G) and χi_{CN}(G). Our algorithms use as input an edge stream of the graph G in the insertion-only model. Our results and the best-known bounds for χ_{ON}(G) and χ_{CN}(G) are given below. 1. Pach and Tardos [Combinatorics, Probability and Computing, 2009] showed that, for any n vertex graph G, χ_{CN}(G) = O(ln² n). Glebov, Szabó and Tardos [Combinatorics, Probability and Computing, 2014] showed the existence of graphs G with χ_{CN}(G) = Ω(ln² n). We design a randomized single-pass semi-streaming algorithm (i.e., it uses O(n ln n) space that, given an n-vertex graph G, outputs a CFCN coloring of G using O(ln² n) colors with probability at least (1-2/n). 2. Bhyravarapu, Kalyanasundaram, Mathew [Journal of Graph Theory, 2021] showed that for a graph G with maximum degree Δ, χ_{CN}(G) = O(ln² Δ). The methods used by our algorithms give rise to a simpler, alternate proof for this bound. 3. It is known that χ_{ON}(G) ≤ 1/2 + √{2n + 1/4} (See Pach and Tardos [Combinatorics, Probability and Computing, 2009] and Ph.D. thesis of Cheilaris). This bound is asymptotically tight. - We design a deterministic single-pass O(n√n) space streaming algorithm that, given a graph G on n vertices, finds a CFON coloring using 2√n colors. - We design a randomized, single-pass, semi-streaming algorithm to find a CFON coloring of a graph G using O(√n ln² n) colors with success probability at least (1-2/n). 4. It is known that χ_{ON}(G) ≤ Δ+1, where Δ is the maximum degree of a vertex in G. Further, there are graphs G known with χ_{ON}(G) = Δ + 1. We design a randomized two-pass semi-streaming algorithm (uses O(1/(ε²) n ln³ n) space) that outputs a CFON coloring of G using (1+ε)Δ colors, for any ε > 0, with a probability at least (1-1/n).

Cite as

Rogers Mathew, Fahad Panolan, and Seshikanth. Streaming Algorithms for Conflict-Free Coloring. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 44:1-44:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{mathew_et_al:LIPIcs.WADS.2025.44,
  author =	{Mathew, Rogers and Panolan, Fahad and Seshikanth},
  title =	{{Streaming Algorithms for Conflict-Free Coloring}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{44:1--44:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.44},
  URN =		{urn:nbn:de:0030-drops-242756},
  doi =		{10.4230/LIPIcs.WADS.2025.44},
  annote =	{Keywords: Streaming algorithm, conflict-free coloring, vertex coloring, randomized algorithms}
}
Document
On the Complexity of Finding 1-Center Spanning Trees

Authors: Pin-Hsian Lee, Meng-Tsung Tsai, and Hung-Lung Wang

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We consider the problem of finding a spanning tree T of a given undirected graph G such that any other spanning tree can be obtained from T by removing k edges and subsequently adding k edges, where k is minimized over all spanning trees of G. We refer to this minimum k as the treeradius of G. Treeradius is an interesting graph parameter with natural interpretations: (1) It is the smallest radius of a Hamming ball centered at an extreme point of the spanning tree polytope that covers the entire polytope. (2) Any graph with bounded treeradius also has bounded treewidth. Consequently, if a problem admits a fixed-parameter algorithm parameterized by treewidth, it also admits a fixed-parameter algorithm parameterized by treeradius. In this paper, we show that computing the exact treeradius for n-vertex graphs requires 2^Ω(n) time under the Exponential Time Hypothesis (ETH) and does not admit a PTAS, with an inapproximability bound of 1153/1152, unless P = NP. This hardness result is surprising, as treeradius has significantly higher ETH complexity compared to analogous problems on shortest path polytopes and star subgraph polytopes.

Cite as

Pin-Hsian Lee, Meng-Tsung Tsai, and Hung-Lung Wang. On the Complexity of Finding 1-Center Spanning Trees. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 43:1-43:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{lee_et_al:LIPIcs.WADS.2025.43,
  author =	{Lee, Pin-Hsian and Tsai, Meng-Tsung and Wang, Hung-Lung},
  title =	{{On the Complexity of Finding 1-Center Spanning Trees}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{43:1--43:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.43},
  URN =		{urn:nbn:de:0030-drops-242743},
  doi =		{10.4230/LIPIcs.WADS.2025.43},
  annote =	{Keywords: Treeradius, Spanning tree polytope, Shortest s, t-path polytope}
}
Document
Farthest-Point Voronoi Diagrams in the Hilbert Metric

Authors: Minju Song, Mook Kwon Jung, and Hee-Kap Ahn

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
The Hilbert metric, introduced by David Hilbert in 1895, is a projective metric defined on a bounded convex domain in a Euclidean space. For a convex polygon with m vertices and n point sites lying inside the polygon in the plane, it is shown that the nearest-point Voronoi diagram in the Hilbert metric has combinatorial complexity of O(mn) [Gezalyan and Mount, SoCG 2023]. In this paper, we show that the farthest-point Voronoi diagram in the Hilbert metric has combinatorial complexity O(m), which is independent of the number of sites. Also, we present an efficient algorithm to compute the farthest-point Voronoi diagram.

Cite as

Minju Song, Mook Kwon Jung, and Hee-Kap Ahn. Farthest-Point Voronoi Diagrams in the Hilbert Metric. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 48:1-48:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{song_et_al:LIPIcs.WADS.2025.48,
  author =	{Song, Minju and Jung, Mook Kwon and Ahn, Hee-Kap},
  title =	{{Farthest-Point Voronoi Diagrams in the Hilbert Metric}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{48:1--48:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.48},
  URN =		{urn:nbn:de:0030-drops-242797},
  doi =		{10.4230/LIPIcs.WADS.2025.48},
  annote =	{Keywords: Farthest-point Voronoi diagram, Hilbert metric, Complexity, Algorithm}
}
Document
Complete Volume
LIPIcs, Volume 349, WADS 2025, Complete Volume

Authors: Pat Morin and Eunjin Oh

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
LIPIcs, Volume 349, WADS 2025, Complete Volume

Cite as

19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 1-882, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Proceedings{morin_et_al:LIPIcs.WADS.2025,
  title =	{{LIPIcs, Volume 349, WADS 2025, Complete Volume}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{1--882},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025},
  URN =		{urn:nbn:de:0030-drops-245905},
  doi =		{10.4230/LIPIcs.WADS.2025},
  annote =	{Keywords: LIPIcs, Volume 349, WADS 2025, Complete Volume}
}
  • Refine by Type
  • 81 Document/PDF
  • 68 Document/HTML
  • 1 Volume

  • Refine by Publication Year
  • 74 2025
  • 3 2024
  • 1 2022
  • 2 2019
  • 2 2018

  • Refine by Author
  • 10 Morin, Pat
  • 9 Bose, Prosenjit
  • 3 De Carufel, Jean-Lou
  • 3 Defrain, Oscar
  • 3 Ganian, Robert
  • Show More...

  • Refine by Series/Journal
  • 80 LIPIcs
  • 1 OASIcs

  • Refine by Classification
  • 22 Theory of computation → Computational geometry
  • 12 Mathematics of computing → Graph theory
  • 10 Theory of computation → Design and analysis of algorithms
  • 9 Theory of computation → Parameterized complexity and exact algorithms
  • 5 Theory of computation → Graph algorithms analysis
  • Show More...

  • Refine by Keyword
  • 2 Approximation
  • 2 Approximation algorithms
  • 2 Data structures
  • 2 FPT
  • 2 Geometric Spanners
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail