26 Search Results for "Rodrigues, David"


Document
Near-Optimal Differentially Private Graph Algorithms via the Multidimensional AboveThreshold Mechanism

Authors: Laxman Dhulipala, Monika Henzinger, George Z. Li, Quanquan C. Liu, A. R. Sricharan, and Leqi Zhu

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Many differentially private and classical non-private graph algorithms rely crucially on determining whether some property of each vertex meets a threshold. For example, for the k-core decomposition problem, the classic peeling algorithm iteratively removes a vertex if its induced degree falls below a threshold. The sparse vector technique (SVT) is generally used to transform non-private threshold queries into private ones with only a small additive loss in accuracy. However, a naive application of SVT in the graph setting leads to an amplification of the error by a factor of n due to composition, as SVT is applied to every vertex. In this paper, we resolve this problem by formulating a novel generalized sparse vector technique which we call the Multidimensional AboveThreshold (MAT) Mechanism which generalizes SVT (applied to vectors with one dimension) to vectors with multiple dimensions. When applied to vectors with n dimensions, we solve a number of important graph problems with better bounds than previous work. Specifically, we apply our MAT mechanism to obtain a set of improved bounds for a variety of problems including k-core decomposition, densest subgraph, low out-degree ordering, and vertex coloring. We give a tight local edge differentially private (LEDP) algorithm for k-core decomposition that results in an approximation with O(ε^{-1} log n) additive error and no multiplicative error in O(n) rounds. We also give a new (2+η)-factor multiplicative, O(ε^{-1} log n) additive error algorithm in O(log² n) rounds for any constant η > 0. Both of these results are asymptotically tight against our new lower bound of Ω(log n) for any constant-factor approximation algorithm for k-core decomposition. Our new algorithms for k-core decomposition also directly lead to new algorithms for the related problems of densest subgraph and low out-degree ordering. Finally, we give novel LEDP differentially private defective coloring algorithms that use number of colors given in terms of the arboricity of the graph.

Cite as

Laxman Dhulipala, Monika Henzinger, George Z. Li, Quanquan C. Liu, A. R. Sricharan, and Leqi Zhu. Near-Optimal Differentially Private Graph Algorithms via the Multidimensional AboveThreshold Mechanism. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 91:1-91:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dhulipala_et_al:LIPIcs.ESA.2025.91,
  author =	{Dhulipala, Laxman and Henzinger, Monika and Li, George Z. and Liu, Quanquan C. and Sricharan, A. R. and Zhu, Leqi},
  title =	{{Near-Optimal Differentially Private Graph Algorithms via the Multidimensional AboveThreshold Mechanism}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{91:1--91:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.91},
  URN =		{urn:nbn:de:0030-drops-245601},
  doi =		{10.4230/LIPIcs.ESA.2025.91},
  annote =	{Keywords: differential privacy, abovethreshold, densest subgraph}
}
Document
On Planar Straight-Line Dominance Drawings

Authors: Patrizio Angelini, Michael A. Bekos, Giuseppe Di Battista, Fabrizio Frati, Luca Grilli, and Giacomo Ortali

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We study the following question, which has been considered since the 90’s: Does every st-planar graph admit a planar straight-line dominance drawing? We show concrete evidence for the difficulty of this question, by proving that, unlike upward planar straight-line drawings, planar straight-line dominance drawings with prescribed y-coordinates do not always exist and planar straight-line dominance drawings cannot always be constructed via a contract-draw-expand inductive approach. We also show several classes of st-planar graphs that always admit a planar straight-line dominance drawing. These include st-planar 3-trees in which every stacking operation introduces two edges incoming into the new vertex, st-planar graphs in which every vertex is adjacent to the sink, and st-planar graphs in which no face has the left boundary that is a single edge.

Cite as

Patrizio Angelini, Michael A. Bekos, Giuseppe Di Battista, Fabrizio Frati, Luca Grilli, and Giacomo Ortali. On Planar Straight-Line Dominance Drawings. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 5:1-5:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{angelini_et_al:LIPIcs.WADS.2025.5,
  author =	{Angelini, Patrizio and Bekos, Michael A. and Di Battista, Giuseppe and Frati, Fabrizio and Grilli, Luca and Ortali, Giacomo},
  title =	{{On Planar Straight-Line Dominance Drawings}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{5:1--5:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.5},
  URN =		{urn:nbn:de:0030-drops-242361},
  doi =		{10.4230/LIPIcs.WADS.2025.5},
  annote =	{Keywords: st-graphs, dominance drawings, planar straight-line drawings, upward planarity}
}
Document
Research
Specific Patterns Against Reference Sequences

Authors: Marie-Pierre Béal and Maxime Crochemore

Published in: OASIcs, Volume 132, From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday (2025)


Abstract
We design alignment-free techniques for comparing a set of sequences or just a word, called a target, against another set of words, called a reference. This is done with the detection of factor patterns that distinguish the target from the reference. A target-specific factor of a target T against a reference R is then a factor w of a word in T that is not a factor of a word in R but whose proper factors of w are factors of a word in R. The strategy is based on the notion of minimal absent/forbidden words. We first address the computation of the set of target-specific factors of a target T against a reference R, where T and R are finite sets of sequences. The result is the construction of an automaton accepting the set of all considered target-specific factors. The construction algorithm runs in linear time according to the size of T ∪ R. The second result is the design of an algorithm to compute all the occurrences in a single sequence T of its target-specific factors against a reference R. The algorithm runs in real-time on the target sequence, independently of the number of occurrences of target-specific factors.

Cite as

Marie-Pierre Béal and Maxime Crochemore. Specific Patterns Against Reference Sequences. In From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday. Open Access Series in Informatics (OASIcs), Volume 132, pp. 14:1-14:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{beal_et_al:OASIcs.Grossi.14,
  author =	{B\'{e}al, Marie-Pierre and Crochemore, Maxime},
  title =	{{Specific Patterns Against Reference Sequences}},
  booktitle =	{From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday},
  pages =	{14:1--14:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-391-1},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{132},
  editor =	{Conte, Alessio and Marino, Andrea and Rosone, Giovanna and Vitter, Jeffrey Scott},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Grossi.14},
  URN =		{urn:nbn:de:0030-drops-238130},
  doi =		{10.4230/OASIcs.Grossi.14},
  annote =	{Keywords: Specific pattern, Minimal absent word, Minimal forbidden word, Directed Acyclic Word Graph (DAWG), Suffix automaton}
}
Document
Elements for Weighted Answer-Set Programming

Authors: Francisco Coelho, Bruno Dinis, Dietmar Seipel, and Salvador Abreu

Published in: OASIcs, Volume 135, 14th Symposium on Languages, Applications and Technologies (SLATE 2025)


Abstract
Logic programs, more specifically, answer-set programs, can be annotated with probabilities on facts to express uncertainty. We address the problem of propagating weight annotations on facts (e.g. probabilities) of an answer-set program to its stable models, and from there to events (defined as sets of atoms) in a dataset over the program’s domain. We propose a novel approach which is algebraic in the sense that it relies on an equivalence relation over the set of events. Uncertainty is then described as polynomial expressions over variables. We propagate the weight function in the space of models and events, rather than doing so within the syntax of the program. As evidence that our approach is sound, we show that certain facts behave as expected. Our approach allows us to investigate weight annotated programs and to determine how suitable a given one is for modeling a given dataset containing events. It’s core is illustrated by a running example and the encoding of a Bayesian network.

Cite as

Francisco Coelho, Bruno Dinis, Dietmar Seipel, and Salvador Abreu. Elements for Weighted Answer-Set Programming. In 14th Symposium on Languages, Applications and Technologies (SLATE 2025). Open Access Series in Informatics (OASIcs), Volume 135, pp. 3:1-3:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{coelho_et_al:OASIcs.SLATE.2025.3,
  author =	{Coelho, Francisco and Dinis, Bruno and Seipel, Dietmar and Abreu, Salvador},
  title =	{{Elements for Weighted Answer-Set Programming}},
  booktitle =	{14th Symposium on Languages, Applications and Technologies (SLATE 2025)},
  pages =	{3:1--3:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-387-4},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{135},
  editor =	{Baptista, Jorge and Barateiro, Jos\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SLATE.2025.3},
  URN =		{urn:nbn:de:0030-drops-236836},
  doi =		{10.4230/OASIcs.SLATE.2025.3},
  annote =	{Keywords: Answer-Set Programming, Stable Models, Probabilistic Logic Programming}
}
Document
Portuguese Far-Right Discourse on Social Media: Insights from Topic Modeling

Authors: Mauro Cardoso, Eugénio Ribeiro, and Fernando Batista

Published in: OASIcs, Volume 135, 14th Symposium on Languages, Applications and Technologies (SLATE 2025)


Abstract
This study analyzes the social media discourse of leading figures from Portugal’s far right party CHEGA, examining 10,323 posts on X (formerly Twitter) published between late 2019 and mid‑2024. Using BERTopic, 59 latent topics clustered into two main discursive dynamics were found: (1) ideological and public, and (2) party, electoral and parliamentary related. Within the first dynamic, we conducted a focused sub-analysis of themes related with identity, immigration and security narratives - topics that display posting peaks around electoral cycles, suggesting the strategic use of emotionally charged, identitarian frames for political mobilization. The model exhibits strong topic coherence and lexical diversity, indicating its robustness in extracting thematic structures from politically polarized microtexts. Nevertheless, our findings are constrained by source, the absence of interaction metrics, and the unmet need to link online discourse to offline events. This study demonstrates how computational topic modeling can reveal strategic communication patterns in far-right political discourse and underscores the need for cross-platform and interaction-level research to assess broader societal impact.

Cite as

Mauro Cardoso, Eugénio Ribeiro, and Fernando Batista. Portuguese Far-Right Discourse on Social Media: Insights from Topic Modeling. In 14th Symposium on Languages, Applications and Technologies (SLATE 2025). Open Access Series in Informatics (OASIcs), Volume 135, pp. 12:1-12:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cardoso_et_al:OASIcs.SLATE.2025.12,
  author =	{Cardoso, Mauro and Ribeiro, Eug\'{e}nio and Batista, Fernando},
  title =	{{Portuguese Far-Right Discourse on Social Media: Insights from Topic Modeling}},
  booktitle =	{14th Symposium on Languages, Applications and Technologies (SLATE 2025)},
  pages =	{12:1--12:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-387-4},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{135},
  editor =	{Baptista, Jorge and Barateiro, Jos\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SLATE.2025.12},
  URN =		{urn:nbn:de:0030-drops-236929},
  doi =		{10.4230/OASIcs.SLATE.2025.12},
  annote =	{Keywords: Political Discourse, Topic Modeling, Far-Right, CHEGA (Portugal), Social Media}
}
Document
A DSL for Swarm Intelligence Algorithms

Authors: Kevin Martins and Rui Mendes

Published in: OASIcs, Volume 135, 14th Symposium on Languages, Applications and Technologies (SLATE 2025)


Abstract
We propose a domain-specific language to simplify the expression of Swarm Intelligence algorithms. These algorithms are typically introduced through metaphors, requiring practitioners to manually translate them into low-level implementations.This process can obscure intent and hinder reproducibility. The proposed DSL bridges this gap by capturing algorithmic behavior at a higher level of abstraction. We demonstrate its expressiveness in a few lines of code and evaluate its feasibility through a reference implementation. A discussion is presented that includes empirical comparisons with traditional implementations and future directions of the proposed DSL.

Cite as

Kevin Martins and Rui Mendes. A DSL for Swarm Intelligence Algorithms. In 14th Symposium on Languages, Applications and Technologies (SLATE 2025). Open Access Series in Informatics (OASIcs), Volume 135, pp. 2:1-2:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{martins_et_al:OASIcs.SLATE.2025.2,
  author =	{Martins, Kevin and Mendes, Rui},
  title =	{{A DSL for Swarm Intelligence Algorithms}},
  booktitle =	{14th Symposium on Languages, Applications and Technologies (SLATE 2025)},
  pages =	{2:1--2:17},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-387-4},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{135},
  editor =	{Baptista, Jorge and Barateiro, Jos\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SLATE.2025.2},
  URN =		{urn:nbn:de:0030-drops-236826},
  doi =		{10.4230/OASIcs.SLATE.2025.2},
  annote =	{Keywords: Domain Specific Languages, Swarm Intelligence, Global Optimization}
}
Document
Stepwise Source, a Supporting Tool for Source Code Demonstration

Authors: João Santos, Alvaro Costa Neto, and Pedro Rangel Henriques

Published in: OASIcs, Volume 135, 14th Symposium on Languages, Applications and Technologies (SLATE 2025)


Abstract
The difficulties in teaching and learning computer programming remain a pressing issue to this day. Several studies and tools have been developed over the years to tackle this challenge from many different points-of-view. One of the biggest tools an educator has to support him in a classroom is the progressive explanation of how a source code is constructed and what effects each of its parts has on the overall result. Attempts to translate this live-directed tool to an on-line experience is usually time-consuming and lacking in features. In order to tackle this concern, a tool to create piecewise source code writing demonstrations was developed - Stepwise Source. The main idea behind this application is to allow step-by-step explanation of a source code construction, along with any relevant annotations and automatically assessed challenges that an educator may add. By providing a dynamic platform for both students and lecturers, this software aims to improve the teaching and learning of computer programming, while trying to imitate the information flow of a live lecture, with the added benefit of student-directed pace of explanation. Through interactive guidance and automated assessment, this tool has the potential to foster a deeper understanding of computational principles and promote proficiency in programming skills.

Cite as

João Santos, Alvaro Costa Neto, and Pedro Rangel Henriques. Stepwise Source, a Supporting Tool for Source Code Demonstration. In 14th Symposium on Languages, Applications and Technologies (SLATE 2025). Open Access Series in Informatics (OASIcs), Volume 135, pp. 10:1-10:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{santos_et_al:OASIcs.SLATE.2025.10,
  author =	{Santos, Jo\~{a}o and Costa Neto, Alvaro and Henriques, Pedro Rangel},
  title =	{{Stepwise Source, a Supporting Tool for Source Code Demonstration}},
  booktitle =	{14th Symposium on Languages, Applications and Technologies (SLATE 2025)},
  pages =	{10:1--10:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-387-4},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{135},
  editor =	{Baptista, Jorge and Barateiro, Jos\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SLATE.2025.10},
  URN =		{urn:nbn:de:0030-drops-236906},
  doi =		{10.4230/OASIcs.SLATE.2025.10},
  annote =	{Keywords: Computer Programming Education, Source Code Demonstration, Education Technology}
}
Document
Invited Talk
Vehicle: Bridging the Embedding Gap in the Verification of Neuro-Symbolic Programs (Invited Talk)

Authors: Matthew L. Daggitt, Wen Kokke, Robert Atkey, Ekaterina Komendantskaya, Natalia Slusarz, and Luca Arnaboldi

Published in: LIPIcs, Volume 337, 10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025)


Abstract
Neuro-symbolic programs, i.e. programs containing both machine learning components and traditional symbolic code, are becoming increasingly widespread. Finding a general methodology for verifying such programs is challenging due to both the number of different tools involved and the intricate interface between the "neural" and "symbolic" program components. In this paper we present a general decomposition of the neuro-symbolic verification problem into parts, and examine the problem of the embedding gap that occurs when one tries to combine proofs about the neural and symbolic components. To address this problem we then introduce Vehicle - standing as an abbreviation for a "verification condition language" - an intermediate programming language interface between machine learning frameworks, automated theorem provers, and dependently-typed formalisations of neuro-symbolic programs. Vehicle allows users to specify the properties of the neural components of neuro-symbolic programs once, and then safely compile the specification to each interface using a tailored typing and compilation procedure. We give a high-level overview of Vehicle’s overall design, its interfaces and compilation & type-checking procedures, and then demonstrate its utility by formally verifying the safety of a simple autonomous car controlled by a neural network, operating in a stochastic environment with imperfect information.

Cite as

Matthew L. Daggitt, Wen Kokke, Robert Atkey, Ekaterina Komendantskaya, Natalia Slusarz, and Luca Arnaboldi. Vehicle: Bridging the Embedding Gap in the Verification of Neuro-Symbolic Programs (Invited Talk). In 10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 337, pp. 2:1-2:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{daggitt_et_al:LIPIcs.FSCD.2025.2,
  author =	{Daggitt, Matthew L. and Kokke, Wen and Atkey, Robert and Komendantskaya, Ekaterina and Slusarz, Natalia and Arnaboldi, Luca},
  title =	{{Vehicle: Bridging the Embedding Gap in the Verification of Neuro-Symbolic Programs}},
  booktitle =	{10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025)},
  pages =	{2:1--2:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-374-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{337},
  editor =	{Fern\'{a}ndez, Maribel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2025.2},
  URN =		{urn:nbn:de:0030-drops-236172},
  doi =		{10.4230/LIPIcs.FSCD.2025.2},
  annote =	{Keywords: Neural Network Verification, Types, Interactive Theorem Provers}
}
Document
Track A: Algorithms, Complexity and Games
Fitting Tree Metrics and Ultrametrics in Data Streams

Authors: Amir Carmel, Debarati Das, Evangelos Kipouridis, and Evangelos Pipis

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Fitting distances to tree metrics and ultrametrics are two widely used methods in hierarchical clustering, primarily explored within the context of numerical taxonomy. Formally, given a positive distance function D: binom(V,2) → ℝ_{>0}, the goal is to find a tree (or an ultrametric) T including all elements of set V, such that the difference between the distances among vertices in T and those specified by D is minimized. Numerical taxonomy was first introduced by Sneath and Sokal [Nature 1962], and since then it has been studied extensively in both biology and computer science. In this paper, we initiate the study of ultrametric and tree metric fitting problems in the semi-streaming model, where the distances between pairs of elements from V (with |V| = n), defined by the function D, can arrive in an arbitrary order. We study these problems under various distance norms; namely the 𝓁₀ objective, which aims to minimize the number of modified entries in D to fit a tree-metric or an ultrametric; the 𝓁₁ objective, which seeks to minimize the total sum of distance errors across all pairs of points in V; and the 𝓁_∞ objective, which focuses on minimizing the maximum error incurred by any entries in D. - Our first result addresses the 𝓁₀ objective. We provide a single-pass polynomial-time Õ(n)-space O(1) approximation algorithm for ultrametrics and prove that no single-pass exact algorithm exists, even with exponential time. - Next, we show that the algorithm for 𝓁₀ implies an O(Δ/δ) approximation for the 𝓁₁ objective, where Δ is the maximum, and δ is the minimum absolute difference between distances in the input. This bound matches the best-known approximation for the RAM model using a combinatorial algorithm when Δ/δ = O(n). - For the 𝓁_∞ objective, we provide a complete characterization of the ultrametric fitting problem. First, we present a single-pass polynomial-time Õ(n)-space 2-approximation algorithm and show that no better than 2-approximation is possible, even with exponential time. Furthermore, we show that with an additional pass, it is possible to achieve a polynomial-time exact algorithm for ultrametrics. - Finally, we extend all these results to tree metrics by using only one additional pass through the stream and without asymptotically increasing the approximation factor.

Cite as

Amir Carmel, Debarati Das, Evangelos Kipouridis, and Evangelos Pipis. Fitting Tree Metrics and Ultrametrics in Data Streams. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 42:1-42:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{carmel_et_al:LIPIcs.ICALP.2025.42,
  author =	{Carmel, Amir and Das, Debarati and Kipouridis, Evangelos and Pipis, Evangelos},
  title =	{{Fitting Tree Metrics and Ultrametrics in Data Streams}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{42:1--42:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.42},
  URN =		{urn:nbn:de:0030-drops-234197},
  doi =		{10.4230/LIPIcs.ICALP.2025.42},
  annote =	{Keywords: Streaming, Clustering, Ultrametrics, Tree metrics, Distance fitting}
}
Document
Ensuring Convergence and Invariants Without Coordination

Authors: Dina Borrego, Nuno Preguiça, Elisa Gonzalez Boix, and Carla Ferreira

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
The CAP theorem demonstrates a trade-off between consistency and availability (and, by extension, latency) in systems where network partitions are unavoidable, such as in cloud computing and local-first software. While adopting weak consistency can preserve availability, it may result in inconsistencies that compromise application correctness. Replicated data types provide a principled, coordination-free approach to guarantee convergence but do not consider application invariants. Existing methods for maintaining invariants in replicated systems either rely on coordination - undermining the benefits of weak consistency - or suffer from limited applicability. This paper introduces the No-Op framework, a generic approach for enforcing consistency without coordination while guaranteeing both convergence and invariant preservation. The core idea of the No-Op approach is to resolve conflicts among concurrent operations by prioritising one operation over the other according to programmer-defined conflict resolution policies. This prioritisation transforms the less-preferred operation into a no-side-effect operation, ensuring conflict-free execution. We formalise the model underlying the No-Op framework and introduce a replication protocol built upon it, accompanied by a formal proof of correctness for both the framework and the protocol. Furthermore, we demonstrate the framework’s applicability by showcasing the design of widely used replicated data types and the preservation of a wide range of application invariants.

Cite as

Dina Borrego, Nuno Preguiça, Elisa Gonzalez Boix, and Carla Ferreira. Ensuring Convergence and Invariants Without Coordination. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 4:1-4:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{borrego_et_al:LIPIcs.ECOOP.2025.4,
  author =	{Borrego, Dina and Pregui\c{c}a, Nuno and Gonzalez Boix, Elisa and Ferreira, Carla},
  title =	{{Ensuring Convergence and Invariants Without Coordination}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{4:1--4:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.4},
  URN =		{urn:nbn:de:0030-drops-232978},
  doi =		{10.4230/LIPIcs.ECOOP.2025.4},
  annote =	{Keywords: distributed systems, conflict resolution, RDTs, invariant preservation}
}
Document
Wastrumentation: Portable WebAssembly Dynamic Analysis with Support for Intercession

Authors: Aäron Munsters, Angel Luis Scull Pupo, and Elisa Gonzalez Boix

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
Dynamic program analyses help in understanding a program’s runtime behavior and detect issues related to security, program comprehension, or profiling. Instrumentation platforms aid analysis developers by offering a high-level API to write the analysis, and inserting the analysis into the target program. However, current instrumentation platforms for WebAssembly (Wasm) restrict analysis portability because they require concrete runtime environments. Moreover, their analysis API only allows the development of analyses that observe the target program but cannot modify it. As a result, many popular dynamic analyses present for other languages, such as runtime hardening, virtual patching or runtime optimization, cannot currently be implemented for Wasm atop a dynamic analysis platform. Instead, they need to be built manually, which requires knowledge of low-level details of the Wasm’s semantics and instruction set, and how to safely manipulate it. This paper introduces Wastrumentation, the first dynamic analysis platform for WebAssembly that supports intercession. Our solution, based on source code instrumentation, weaves the analysis code directly into the target program code. Inlining the analysis into the target’s source code avoids dependencies on the runtime environment, making analyses portable across Wasm VMs. Moreover, it enables the implementation of analyses in any Wasm-compatible language. We evaluate our solution in two ways. First, we compare it against a state-of-the-art source code instrumentation platform using the WasmR3 benchmarks. The results show improved memory consumption and competitive performance overhead. Second, we develop an extensive portfolio of dynamic analyses, including novel analyses previously unattainable with source code instrumentation platforms, such as memoization, safe heap access, and the removal of NaN non-determinism.

Cite as

Aäron Munsters, Angel Luis Scull Pupo, and Elisa Gonzalez Boix. Wastrumentation: Portable WebAssembly Dynamic Analysis with Support for Intercession. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 23:1-23:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{munsters_et_al:LIPIcs.ECOOP.2025.23,
  author =	{Munsters, A\"{a}ron and Scull Pupo, Angel Luis and Gonzalez Boix, Elisa},
  title =	{{Wastrumentation: Portable WebAssembly Dynamic Analysis with Support for Intercession}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{23:1--23:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.23},
  URN =		{urn:nbn:de:0030-drops-233153},
  doi =		{10.4230/LIPIcs.ECOOP.2025.23},
  annote =	{Keywords: WebAssembly, dynamic analysis, instrumentation platform, intercession}
}
Document
Tool Paper
A Benchmark Framework for Byzantine Fault Tolerance Testing Algorithms (Tool Paper)

Authors: João Miguel Louro Neto and Burcu Kulahcioglu Ozkan

Published in: OASIcs, Volume 129, 6th International Workshop on Formal Methods for Blockchains (FMBC 2025)


Abstract
Recent discoveries of vulnerabilities in the design and implementation of Byzantine fault-tolerant protocols underscore the need for testing and exploration techniques to ensure their correctness. While there has been some recent effort for automated test generation for BFT protocols, there is no benchmark framework available to systematically evaluate their performance. We present ByzzBench, a benchmark framework designed to evaluate the performance of testing algorithms in detecting Byzantine fault tolerance bugs. ByzzBench is designed for a standardized implementation of BFT protocols and their execution in a controlled testing environment. It controls the nondeterminism in the concurrency, network, and process faults in the protocol execution, enabling the functionality to enforce particular execution scenarios and thereby facilitating the implementation of testing algorithms for BFT protocols.

Cite as

João Miguel Louro Neto and Burcu Kulahcioglu Ozkan. A Benchmark Framework for Byzantine Fault Tolerance Testing Algorithms (Tool Paper). In 6th International Workshop on Formal Methods for Blockchains (FMBC 2025). Open Access Series in Informatics (OASIcs), Volume 129, pp. 13:1-13:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{louroneto_et_al:OASIcs.FMBC.2025.13,
  author =	{Louro Neto, Jo\~{a}o Miguel and Kulahcioglu Ozkan, Burcu},
  title =	{{A Benchmark Framework for Byzantine Fault Tolerance Testing Algorithms}},
  booktitle =	{6th International Workshop on Formal Methods for Blockchains (FMBC 2025)},
  pages =	{13:1--13:11},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-371-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{129},
  editor =	{Marmsoler, Diego and Xu, Meng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.FMBC.2025.13},
  URN =		{urn:nbn:de:0030-drops-230406},
  doi =		{10.4230/OASIcs.FMBC.2025.13},
  annote =	{Keywords: Byzantine Fault Tolerance, BFT Protocols, Automated Testing}
}
Document
Optimal Multilevel Slashing for Blockchains

Authors: Kenan Wood, Hammurabi Mendes, and Jonad Pulaj

Published in: LIPIcs, Volume 324, 28th International Conference on Principles of Distributed Systems (OPODIS 2024)


Abstract
We present the notion of multilevel slashing, where proof-of-stake blockchain validators can obtain gradual levels of assurance that a certain block is bound to be finalized in a global consensus procedure, unless an increasing and optimally large number of Byzantine processes have their staked assets slashed - that is, deducted - due to provably incorrect behavior. Our construction is a highly parameterized generalization of combinatorial intersection systems based on finite projective spaces, with asymptotic high availability and optimal slashing properties. Even under weak conditions, we show that our construction has asymptotically optimal slashing properties with respect to message complexity and validator load; this result also illustrates a fundamental trade off between message complexity, load, and slashing. In addition, we show that any intersection system whose ground elements are disjoint subsets of nodes (e.g. "committees" in committee-based consensus protocols) has asymptotic high availability under similarly weak conditions. Finally, our multilevel construction gives the flexibility to blockchain validators to decide how many "levels" of finalization assurance they wish to obtain. This functionality can be seen either as (i) a form of an early, slashing-based block finalization; or (ii) a service to support reorg tolerance.

Cite as

Kenan Wood, Hammurabi Mendes, and Jonad Pulaj. Optimal Multilevel Slashing for Blockchains. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{wood_et_al:LIPIcs.OPODIS.2024.8,
  author =	{Wood, Kenan and Mendes, Hammurabi and Pulaj, Jonad},
  title =	{{Optimal Multilevel Slashing for Blockchains}},
  booktitle =	{28th International Conference on Principles of Distributed Systems (OPODIS 2024)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-360-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{324},
  editor =	{Bonomi, Silvia and Galletta, Letterio and Rivi\`{e}re, Etienne and Schiavoni, Valerio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2024.8},
  URN =		{urn:nbn:de:0030-drops-225445},
  doi =		{10.4230/LIPIcs.OPODIS.2024.8},
  annote =	{Keywords: Blockchains, Finality, Slashablility, Committees, Availability}
}
Document
Reliable Communication in Hybrid Authentication and Trust Models

Authors: Rowdy Chotkan, Bart Cox, Vincent Rahli, and Jérémie Decouchant

Published in: LIPIcs, Volume 324, 28th International Conference on Principles of Distributed Systems (OPODIS 2024)


Abstract
Reliable communication is a fundamental distributed communication abstraction that allows any two nodes within a network to communicate with each other. It is necessary for more powerful communication primitives, such as broadcast and consensus. Using different authentication models, two classical protocols implement reliable communication in unknown and sufficiently connected networks. In the former, network links are authenticated, and processes rely on dissemination paths to authenticate messages. In the latter, processes generate digital signatures that are flooded throughout the network. This work considers the hybrid system model that combines authenticated links and authenticated processes. Additionally, we aim to leverage the possible presence of trusted nodes (e.g., network gateways) and trusted components (e.g., Intel SGX enclaves). We first extend the two classical reliable communication protocols to leverage trusted nodes. Then we propose DualRC, our most generic algorithm that considers the hybrid authentication model by manipulating dissemination paths and digital signatures, and leverages the possible presence of trusted nodes and trusted components. We describe and prove methods that establish whether our algorithms implement reliable communication on a given network.

Cite as

Rowdy Chotkan, Bart Cox, Vincent Rahli, and Jérémie Decouchant. Reliable Communication in Hybrid Authentication and Trust Models. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 25:1-25:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chotkan_et_al:LIPIcs.OPODIS.2024.25,
  author =	{Chotkan, Rowdy and Cox, Bart and Rahli, Vincent and Decouchant, J\'{e}r\'{e}mie},
  title =	{{Reliable Communication in Hybrid Authentication and Trust Models}},
  booktitle =	{28th International Conference on Principles of Distributed Systems (OPODIS 2024)},
  pages =	{25:1--25:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-360-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{324},
  editor =	{Bonomi, Silvia and Galletta, Letterio and Rivi\`{e}re, Etienne and Schiavoni, Valerio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2024.25},
  URN =		{urn:nbn:de:0030-drops-225611},
  doi =		{10.4230/LIPIcs.OPODIS.2024.25},
  annote =	{Keywords: Reliable communication, Byzantine, Authentication models, Trust}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
  • Refine by Type
  • 26 Document/PDF
  • 19 Document/HTML

  • Refine by Publication Year
  • 14 2025
  • 2 2024
  • 4 2023
  • 1 2022
  • 1 2019
  • Show More...

  • Refine by Author
  • 2 Batista, Fernando
  • 2 Bonifati, Angela
  • 2 Calbimonte, Jean-Paul
  • 2 Chen, Jiaoyan
  • 2 Dell'Aglio, Daniele
  • Show More...

  • Refine by Series/Journal
  • 9 LIPIcs
  • 7 OASIcs
  • 1 LITES
  • 5 TGDK
  • 4 DagSemProc

  • Refine by Classification
  • 4 Theory of computation → Distributed algorithms
  • 3 Information systems → Graph-based database models
  • 2 Computing methodologies → Knowledge representation and reasoning
  • 2 Computing methodologies → Natural language processing
  • 2 Computing methodologies → Temporal reasoning
  • Show More...

  • Refine by Keyword
  • 1 Algebra of Programming
  • 1 Answer-Set Programming
  • 1 Atomic Actions
  • 1 Authentication models
  • 1 Automated Testing
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail