3 Search Results for "Vrgoč, Domagoj"


Document
Invited Talk
A Researcher’s Digest of GQL (Invited Talk)

Authors: Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova, and Domagoj Vrgoč

Published in: LIPIcs, Volume 255, 26th International Conference on Database Theory (ICDT 2023)


Abstract
GQL (Graph Query Language) is being developed as a new ISO standard for graph query languages to play the same role for graph databases as SQL plays for relational. In parallel, an extension of SQL for querying property graphs, SQL/PGQ, is added to the SQL standard; it shares the graph pattern matching functionality with GQL. Both standards (not yet published) are hard-to-understand specifications of hundreds of pages. The goal of this paper is to present a digest of the language that is easy for the research community to understand, and thus to initiate research on these future standards for querying graphs. The paper concentrates on pattern matching features shared by GQL and SQL/PGQ, as well as querying facilities of GQL.

Cite as

Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova, and Domagoj Vrgoč. A Researcher’s Digest of GQL (Invited Talk). In 26th International Conference on Database Theory (ICDT 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 255, pp. 1:1-1:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{francis_et_al:LIPIcs.ICDT.2023.1,
  author =	{Francis, Nadime and Gheerbrant, Am\'{e}lie and Guagliardo, Paolo and Libkin, Leonid and Marsault, Victor and Martens, Wim and Murlak, Filip and Peterfreund, Liat and Rogova, Alexandra and Vrgo\v{c}, Domagoj},
  title =	{{A Researcher’s Digest of GQL}},
  booktitle =	{26th International Conference on Database Theory (ICDT 2023)},
  pages =	{1:1--1:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-270-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{255},
  editor =	{Geerts, Floris and Vandevoort, Brecht},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2023.1},
  URN =		{urn:nbn:de:0030-drops-177434},
  doi =		{10.4230/LIPIcs.ICDT.2023.1},
  annote =	{Keywords: GQL, Property Graph, Query Language, Graph Database, Pattern matching, Multi-Graph}
}
Document
Size Bounds and Algorithms for Conjunctive Regular Path Queries

Authors: Tamara Cucumides, Juan Reutter, and Domagoj Vrgoč

Published in: LIPIcs, Volume 255, 26th International Conference on Database Theory (ICDT 2023)


Abstract
Conjunctive regular path queries (CRPQs) are one of the core classes of queries over graph databases. They are join intensive, inheriting their structure from the relational setting, but they also allow arbitrary length paths to connect points that are to be joined. However, despite their popularity, little is known about what are the best algorithms for processing CRPQs. We focus on worst-case optimal algorithms, which are algorithms that run in time bounded by the worst-case output size of queries, and have been recently deployed for simpler graph queries with very promising results. We show that the famous bound on the number of query results by Atserias, Grohe and Marx can be extended to CRPQs, but to obtain tight bounds one needs to work with slightly stronger cardinality profiles. We also discuss what algorithms follow from our analysis. If one pays the cost for fully materializing graph queries, then the techniques developed for conjunctive queries can be reused. If, on the other hand, one imposes constraint on the working memory of algorithms, then worst-case optimal algorithms must be adapted with care: the order of variables in which queries are processed can have striking implications on the running time of queries.

Cite as

Tamara Cucumides, Juan Reutter, and Domagoj Vrgoč. Size Bounds and Algorithms for Conjunctive Regular Path Queries. In 26th International Conference on Database Theory (ICDT 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 255, pp. 13:1-13:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cucumides_et_al:LIPIcs.ICDT.2023.13,
  author =	{Cucumides, Tamara and Reutter, Juan and Vrgo\v{c}, Domagoj},
  title =	{{Size Bounds and Algorithms for Conjunctive Regular Path Queries}},
  booktitle =	{26th International Conference on Database Theory (ICDT 2023)},
  pages =	{13:1--13:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-270-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{255},
  editor =	{Geerts, Floris and Vandevoort, Brecht},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2023.13},
  URN =		{urn:nbn:de:0030-drops-177552},
  doi =		{10.4230/LIPIcs.ICDT.2023.13},
  annote =	{Keywords: graph databases, regular path queries, worst-case optimal algorithms}
}
Document
Cryptocurrency Mining Games with Economic Discount and Decreasing Rewards

Authors: Marcelo Arenas, Juan Reutter, Etienne Toussaint, Martín Ugarte, Francisco Vial, and Domagoj Vrgoč

Published in: LIPIcs, Volume 154, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)


Abstract
In the consensus protocols used in most cryptocurrencies, participants called miners must find valid blocks of transactions and append them to a shared tree-like data structure. Ideally, the rules of the protocol should ensure that miners maximize their gains if they follow a default strategy, which consists on appending blocks only to the longest branch of the tree, called the blockchain. Our goal is to understand under which circumstances are miners encouraged to follow the default strategy. Unfortunately, most of the existing models work with simplified payoff functions, without considering the possibility that rewards decrease over time because of the game rules (like in Bitcoin), nor integrating the fact that a miner naturally prefers to be paid earlier than later (the economic concept of discount). In order to integrate these factors, we consider a more general model where issues such as economic discount and decreasing rewards can be set as parameters of an infinite stochastic game. In this model, we study the limit situation in which a miner does not receive a full reward for a block if it stops being in the blockchain. We show that if rewards are not decreasing, then miners do not have incentives to create new branches, no matter how high their computational power is. On the other hand, when working with decreasing rewards similar to those in Bitcoin, we show that miners have an incentive to create such branches. Nevertheless, this incentive only occurs when a miner controls a proportion of the computational power which is close to half of the computational power of the entire network.

Cite as

Marcelo Arenas, Juan Reutter, Etienne Toussaint, Martín Ugarte, Francisco Vial, and Domagoj Vrgoč. Cryptocurrency Mining Games with Economic Discount and Decreasing Rewards. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 154, pp. 54:1-54:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{arenas_et_al:LIPIcs.STACS.2020.54,
  author =	{Arenas, Marcelo and Reutter, Juan and Toussaint, Etienne and Ugarte, Mart{\'\i}n and Vial, Francisco and Vrgo\v{c}, Domagoj},
  title =	{{Cryptocurrency Mining Games with Economic Discount and Decreasing Rewards}},
  booktitle =	{37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)},
  pages =	{54:1--54:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-140-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{154},
  editor =	{Paul, Christophe and Bl\"{a}ser, Markus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.54},
  URN =		{urn:nbn:de:0030-drops-119150},
  doi =		{10.4230/LIPIcs.STACS.2020.54},
  annote =	{Keywords: cryptocurrency, game theory, cryptomining, economic discount, decreasing rewards}
}
  • Refine by Author
  • 3 Vrgoč, Domagoj
  • 2 Reutter, Juan
  • 1 Arenas, Marcelo
  • 1 Cucumides, Tamara
  • 1 Francis, Nadime
  • Show More...

  • Refine by Classification
  • 1 Information systems → Graph-based database models
  • 1 Information systems → Query languages
  • 1 Information systems → Structured Query Language
  • 1 Theory of computation → Algorithmic game theory and mechanism design
  • 1 Theory of computation → Database query languages (principles)
  • Show More...

  • Refine by Keyword
  • 1 GQL
  • 1 Graph Database
  • 1 Multi-Graph
  • 1 Pattern matching
  • 1 Property Graph
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2023
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail