Search Results

Documents authored by Didimo, Walter


Document
Planar Stories of Graph Drawings: Algorithms and Experiments

Authors: Carla Binucci, Sabine Cornelsen, Walter Didimo, Seok-Hee Hong, Eleni Katsanou, Maurizio Patrignani, Antonios Symvonis, and Samuel Wolf

Published in: LIPIcs, Volume 357, 33rd International Symposium on Graph Drawing and Network Visualization (GD 2025)


Abstract
We address the problem of computing a dynamic visualization of a geometric graph G as a sequence of frames. Each frame shows only a portion of the graph but their union covers G entirely. The two main requirements of our dynamic visualization are: (i) guaranteeing drawing stability, so to preserve the user’s mental map; (ii) keeping the visual complexity of each frame low. To satisfy the first requirement, we never change the position of the vertices. Regarding the second requirement, we avoid edge crossings in each frame. More precisely, in the first frame we visualize a suitable subset of non-crossing edges; in each subsequent frame, exactly one new edge enters the visualization and all the edges that cross with it are deleted. We call such a sequence of frames a planar story of G. Our goal is to find a planar story whose minimum number of edges contemporarily displayed is maximized (i.e., a planar story that maximizes the minimum frame size). Besides studying our model from a theoretical point of view, we also design and experimentally compare different algorithms, both exact techniques and heuristics. These algorithms provide an array of alternative trade-offs between efficiency and effectiveness, also depending on the structure of the input graph.

Cite as

Carla Binucci, Sabine Cornelsen, Walter Didimo, Seok-Hee Hong, Eleni Katsanou, Maurizio Patrignani, Antonios Symvonis, and Samuel Wolf. Planar Stories of Graph Drawings: Algorithms and Experiments. In 33rd International Symposium on Graph Drawing and Network Visualization (GD 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 357, pp. 32:1-32:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{binucci_et_al:LIPIcs.GD.2025.32,
  author =	{Binucci, Carla and Cornelsen, Sabine and Didimo, Walter and Hong, Seok-Hee and Katsanou, Eleni and Patrignani, Maurizio and Symvonis, Antonios and Wolf, Samuel},
  title =	{{Planar Stories of Graph Drawings: Algorithms and Experiments}},
  booktitle =	{33rd International Symposium on Graph Drawing and Network Visualization (GD 2025)},
  pages =	{32:1--32:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-403-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{357},
  editor =	{Dujmovi\'{c}, Vida and Montecchiani, Fabrizio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2025.32},
  URN =		{urn:nbn:de:0030-drops-250182},
  doi =		{10.4230/LIPIcs.GD.2025.32},
  annote =	{Keywords: Graph Drawing, Dynamic Graphs, Graph Stories, Heuristics, ILP}
}
Document
Poster Abstract
TReView: Visualizing the European Union Transparency Register (Poster Abstract)

Authors: Cristiano Bernardini, Davide Campanelli, Walter Didimo, Luca Grilli, Giuseppe Liotta, and Benedetto Ponti

Published in: LIPIcs, Volume 357, 33rd International Symposium on Graph Drawing and Network Visualization (GD 2025)


Abstract
We present TReView, the first visual analytics system for the exploration of the European Union (EU) Transparency Register, a large repository that aims to enhance transparency around lobbying activities within the EU, by enabling public oversight of meetings between lobbyists and EU officials.

Cite as

Cristiano Bernardini, Davide Campanelli, Walter Didimo, Luca Grilli, Giuseppe Liotta, and Benedetto Ponti. TReView: Visualizing the European Union Transparency Register (Poster Abstract). In 33rd International Symposium on Graph Drawing and Network Visualization (GD 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 357, pp. 45:1-45:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bernardini_et_al:LIPIcs.GD.2025.45,
  author =	{Bernardini, Cristiano and Campanelli, Davide and Didimo, Walter and Grilli, Luca and Liotta, Giuseppe and Ponti, Benedetto},
  title =	{{TReView: Visualizing the European Union Transparency Register}},
  booktitle =	{33rd International Symposium on Graph Drawing and Network Visualization (GD 2025)},
  pages =	{45:1--45:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-403-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{357},
  editor =	{Dujmovi\'{c}, Vida and Montecchiani, Fabrizio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2025.45},
  URN =		{urn:nbn:de:0030-drops-250310},
  doi =		{10.4230/LIPIcs.GD.2025.45},
  annote =	{Keywords: Transparency Registry, European Union, Graph Visualization, Interactive Visualization, Visual Analytics}
}
Document
Poster Abstract
Defective Linear Layouts of Graphs (Poster Abstract)

Authors: Michael A. Bekos, Carla Binucci, Emilio Di Giacomo, Walter Didimo, Luca Grilli, Maria Eleni Pavlidi, Alessandra Tappini, and Alexandra Weinberger

Published in: LIPIcs, Volume 357, 33rd International Symposium on Graph Drawing and Network Visualization (GD 2025)


Abstract
A linear layout of a graph defines a total order of the vertices and partitions the edges into either stacks or queues, i.e., crossing-free and non-nested sets of edges along the order, respectively. In this work, we study defective linear layouts that allow forbidden patterns among edges of the same set. Our focus is on k-defective stack layouts and k-defective queue layouts, in which the conflict graph representing the forbidden patterns among the edges of each stack or queue has maximum degree at most k.

Cite as

Michael A. Bekos, Carla Binucci, Emilio Di Giacomo, Walter Didimo, Luca Grilli, Maria Eleni Pavlidi, Alessandra Tappini, and Alexandra Weinberger. Defective Linear Layouts of Graphs (Poster Abstract). In 33rd International Symposium on Graph Drawing and Network Visualization (GD 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 357, pp. 49:1-49:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bekos_et_al:LIPIcs.GD.2025.49,
  author =	{Bekos, Michael A. and Binucci, Carla and Di Giacomo, Emilio and Didimo, Walter and Grilli, Luca and Pavlidi, Maria Eleni and Tappini, Alessandra and Weinberger, Alexandra},
  title =	{{Defective Linear Layouts of Graphs}},
  booktitle =	{33rd International Symposium on Graph Drawing and Network Visualization (GD 2025)},
  pages =	{49:1--49:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-403-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{357},
  editor =	{Dujmovi\'{c}, Vida and Montecchiani, Fabrizio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2025.49},
  URN =		{urn:nbn:de:0030-drops-250350},
  doi =		{10.4230/LIPIcs.GD.2025.49},
  annote =	{Keywords: Linear layouts, stack layouts, queue layouts, defective layouts}
}
Document
Linear Layouts of Graphs with Priority Queues

Authors: Emilio Di Giacomo, Walter Didimo, Henry Förster, Torsten Ueckerdt, and Johannes Zink

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
A linear layout of a graph consists of a linear ordering of its vertices and a partition of its edges into pages such that the edges assigned to the same page obey some constraint. The two most prominent and widely studied types of linear layouts are stack and queue layouts, in which any two edges assigned to the same page are forbidden to cross and nest, respectively. The names of these two layouts derive from the fact that, when parsing the graph according to the linear vertex ordering, the edges in a single page can be stored using a single stack or queue, respectively. Recently, the concepts of stack and queue layouts have been extended by using a double-ended queue or a restricted-input queue for storing the edges of a page. We extend this line of study to edge-weighted graphs by introducing priority queue layouts, that is, the edges on each page are stored in a priority queue whose keys are the edge weights. First, we show that there are edge-weighted graphs that require a linear number of priority queues. Second, we characterize the graphs that admit a priority queue layout with a single queue, regardless of the edge-weight function, and we provide an efficient recognition algorithm. Third, we show that the number of priority queues required independently of the edge-weight function is bounded by the pathwidth of the graph, but can be arbitrarily large already for graphs of treewidth two. Finally, we prove that determining the minimum number of priority queues is NP-complete if the linear ordering of the vertices is fixed.

Cite as

Emilio Di Giacomo, Walter Didimo, Henry Förster, Torsten Ueckerdt, and Johannes Zink. Linear Layouts of Graphs with Priority Queues. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 29:1-29:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{digiacomo_et_al:LIPIcs.WADS.2025.29,
  author =	{Di Giacomo, Emilio and Didimo, Walter and F\"{o}rster, Henry and Ueckerdt, Torsten and Zink, Johannes},
  title =	{{Linear Layouts of Graphs with Priority Queues}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{29:1--29:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.29},
  URN =		{urn:nbn:de:0030-drops-242602},
  doi =		{10.4230/LIPIcs.WADS.2025.29},
  annote =	{Keywords: linear layouts, recognition and characterization, priority queue layouts}
}
Document
Simple Realizability of Abstract Topological Graphs

Authors: Giordano Da Lozzo, Walter Didimo, Fabrizio Montecchiani, Miriam Münch, Maurizio Patrignani, and Ignaz Rutter

Published in: LIPIcs, Volume 322, 35th International Symposium on Algorithms and Computation (ISAAC 2024)


Abstract
An abstract topological graph (AT-graph) is a pair A = (G, X), where G = (V,E) is a graph and X ⊆ binom(E,2) is a set of pairs of edges of G. A realization of A is a drawing Γ_A of G in the plane such that any two edges e₁,e₂ of G cross in Γ_A if and only if (e₁,e₂) ∈ X; Γ_A is simple if any two edges intersect at most once (either at a common endpoint or at a proper crossing). The AT-graph Realizability (ATR) problem asks whether an input AT-graph admits a realization. The version of this problem that requires a simple realization is called Simple AT-graph Realizability (SATR). It is a classical result that both ATR and SATR are NP-complete [Kratochvíl, 1991; Kratochvíl and Matoušek, 1989]. In this paper, we study the SATR problem from a new structural perspective. More precisely, we consider the size λ(A) of the largest connected component of the crossing graph of any realization of A, i.e., the graph C(A) = (E, X). This parameter represents a natural way to measure the level of interplay among edge crossings. First, we prove that SATR is NP-complete when λ(A) ≥ 6. On the positive side, we give an optimal linear-time algorithm that solves SATR when λ(A) ≤ 3 and returns a simple realization if one exists. Our algorithm is based on several ingredients, in particular the reduction to a new embedding problem subject to constraints that require certain pairs of edges to alternate (in the rotation system), and a sequence of transformations that exploit the interplay between alternation constraints and the SPQR-tree and PQ-tree data structures to eventually arrive at a simpler embedding problem that can be solved with standard techniques.

Cite as

Giordano Da Lozzo, Walter Didimo, Fabrizio Montecchiani, Miriam Münch, Maurizio Patrignani, and Ignaz Rutter. Simple Realizability of Abstract Topological Graphs. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 23:1-23:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dalozzo_et_al:LIPIcs.ISAAC.2024.23,
  author =	{Da Lozzo, Giordano and Didimo, Walter and Montecchiani, Fabrizio and M\"{u}nch, Miriam and Patrignani, Maurizio and Rutter, Ignaz},
  title =	{{Simple Realizability of Abstract Topological Graphs}},
  booktitle =	{35th International Symposium on Algorithms and Computation (ISAAC 2024)},
  pages =	{23:1--23:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-354-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{322},
  editor =	{Mestre, Juli\'{a}n and Wirth, Anthony},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.23},
  URN =		{urn:nbn:de:0030-drops-221501},
  doi =		{10.4230/LIPIcs.ISAAC.2024.23},
  annote =	{Keywords: Abstract Topological Graphs, SPQR-Trees, Synchronized PQ-Trees}
}
Document
On the Complexity of Recognizing k^+-Real Face Graphs

Authors: Michael A. Bekos, Giuseppe Di Battista, Emilio Di Giacomo, Walter Didimo, Michael Kaufmann, and Fabrizio Montecchiani

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
A nonplanar drawing Γ of a graph G divides the plane into topologically connected regions, called faces (or cells). The boundary of each face is formed by vertices, crossings, and edge segments. Given a positive integer k, we say that Γ is a k^+-real face drawing of G if the boundary of each face of Γ contains at least k vertices of G. The study of k^+-real face drawings started in a paper by Binucci et al. (WG 2023), where edge density bounds and relationships with other beyond-planar graph classes are proved. In this paper, we investigate the complexity of recognizing k^+-real face graphs, i.e., graphs that admit a k^+-real face drawing. We study both the general unconstrained scenario and the 2-layer scenario in which the graph is bipartite, the vertices of the two partition sets lie on two distinct horizontal layers, and the edges are straight-line segments. We give NP-completeness results for the unconstrained scenario and efficient recognition algorithms for the 2-layer setting.

Cite as

Michael A. Bekos, Giuseppe Di Battista, Emilio Di Giacomo, Walter Didimo, Michael Kaufmann, and Fabrizio Montecchiani. On the Complexity of Recognizing k^+-Real Face Graphs. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 32:1-32:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bekos_et_al:LIPIcs.GD.2024.32,
  author =	{Bekos, Michael A. and Di Battista, Giuseppe and Di Giacomo, Emilio and Didimo, Walter and Kaufmann, Michael and Montecchiani, Fabrizio},
  title =	{{On the Complexity of Recognizing k^+-Real Face Graphs}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{32:1--32:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.32},
  URN =		{urn:nbn:de:0030-drops-213167},
  doi =		{10.4230/LIPIcs.GD.2024.32},
  annote =	{Keywords: Beyond planarity, k^+-real face drawings, 2-layer drawings, recognition algorithm, NP-hardness}
}
Document
Rectilinear-Upward Planarity Testing of Digraphs

Authors: Walter Didimo, Michael Kaufmann, Giuseppe Liotta, Giacomo Ortali, and Maurizio Patrignani

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
A rectilinear-upward planar drawing of a digraph G is a crossing-free drawing of G where each edge is either a horizontal or a vertical segment, and such that no directed edge points downward. Rectilinear-Upward Planarity Testing is the problem of deciding whether a digraph G admits a rectilinear-upward planar drawing. We show that: (i) Rectilinear-Upward Planarity Testing is NP-complete, even if G is biconnected; (ii) it can be solved in linear time when an upward planar embedding of G is fixed; (iii) the problem is polynomial-time solvable for biconnected digraphs of treewidth at most two, i.e., for digraphs whose underlying undirected graph is a series-parallel graph; (iv) for any biconnected digraph the problem is fixed-parameter tractable when parameterized by the number of sources and sinks in the digraph.

Cite as

Walter Didimo, Michael Kaufmann, Giuseppe Liotta, Giacomo Ortali, and Maurizio Patrignani. Rectilinear-Upward Planarity Testing of Digraphs. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 26:1-26:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{didimo_et_al:LIPIcs.ISAAC.2023.26,
  author =	{Didimo, Walter and Kaufmann, Michael and Liotta, Giuseppe and Ortali, Giacomo and Patrignani, Maurizio},
  title =	{{Rectilinear-Upward Planarity Testing of Digraphs}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{26:1--26:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.26},
  URN =		{urn:nbn:de:0030-drops-193283},
  doi =		{10.4230/LIPIcs.ISAAC.2023.26},
  annote =	{Keywords: Graph drawing, orthogonal drawings, upward drawings, rectilinear planarity, upward planarity}
}
Document
Upward Book Embeddings of st-Graphs

Authors: Carla Binucci, Giordano Da Lozzo, Emilio Di Giacomo, Walter Didimo, Tamara Mchedlidze, and Maurizio Patrignani

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
We study k-page upward book embeddings (kUBEs) of st-graphs, that is, book embeddings of single-source single-sink directed acyclic graphs on k pages with the additional requirement that the vertices of the graph appear in a topological ordering along the spine of the book. We show that testing whether a graph admits a kUBE is NP-complete for k >= 3. A hardness result for this problem was previously known only for k = 6 [Heath and Pemmaraju, 1999]. Motivated by this negative result, we focus our attention on k=2. On the algorithmic side, we present polynomial-time algorithms for testing the existence of 2UBEs of planar st-graphs with branchwidth b and of plane st-graphs whose faces have a special structure. These algorithms run in O(f(b)* n+n^3) time and O(n) time, respectively, where f is a singly-exponential function on b. Moreover, on the combinatorial side, we present two notable families of plane st-graphs that always admit an embedding-preserving 2UBE.

Cite as

Carla Binucci, Giordano Da Lozzo, Emilio Di Giacomo, Walter Didimo, Tamara Mchedlidze, and Maurizio Patrignani. Upward Book Embeddings of st-Graphs. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 13:1-13:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{binucci_et_al:LIPIcs.SoCG.2019.13,
  author =	{Binucci, Carla and Da Lozzo, Giordano and Di Giacomo, Emilio and Didimo, Walter and Mchedlidze, Tamara and Patrignani, Maurizio},
  title =	{{Upward Book Embeddings of st-Graphs}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{13:1--13:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.13},
  URN =		{urn:nbn:de:0030-drops-104170},
  doi =		{10.4230/LIPIcs.SoCG.2019.13},
  annote =	{Keywords: Upward Book Embeddings, st-Graphs, SPQR-trees, Branchwidth, Sphere-cut Decomposition}
}
Document
08191 Working Group Report – X-graphs of Y-graphs and their Representations

Authors: Vladimir Batagelj, Franz J. Brandenburg, Walter Didimo, Guiseppe Liotta, and Maurizio Patrignani

Published in: Dagstuhl Seminar Proceedings, Volume 8191, Graph Drawing with Applications to Bioinformatics and Social Sciences (2008)


Abstract
We address graph decomposition problems that help the hybrid visualization of large graphs, where different graphic metaphors (node-link, matrix, etc.) are used in the same picture. We generalize the $X$-graphs of $Y$-graphs model introduced by Brandenburg (Brandenburg, F.J.: Graph clustering I: Cycles of cliques. In Di Battista, G., ed.: Graph Drawing (Proc. GD '97). Volume 1353 of Lecture Notes Comput. Sci., Springer-Verlag (1997) 158--168) to formalize the problem of automatically identifying dense subgraphs ($Y$-graphs, clusters) that are prone to be collapsed and shown with a matricial representation when needed. We show that (planar, $K_5$)-recognition, that is, the problem of identifying $K_5$ subgraphs such that the graph obtained by collapsing them is planar, is NP-hard. On the positive side, we show that it is possible to determine the highest value of $k$ such that $G$ is a (planar,$k$-core)-graph in $O(m + n log(n))$ time.

Cite as

Vladimir Batagelj, Franz J. Brandenburg, Walter Didimo, Guiseppe Liotta, and Maurizio Patrignani. 08191 Working Group Report – X-graphs of Y-graphs and their Representations. In Graph Drawing with Applications to Bioinformatics and Social Sciences. Dagstuhl Seminar Proceedings, Volume 8191, pp. 1-17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{batagelj_et_al:DagSemProc.08191.5,
  author =	{Batagelj, Vladimir and Brandenburg, Franz J. and Didimo, Walter and Liotta, Guiseppe and Patrignani, Maurizio},
  title =	{{08191 Working Group Report – X-graphs of Y-graphs and their Representations}},
  booktitle =	{Graph Drawing with Applications to Bioinformatics and Social Sciences},
  pages =	{1--17},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{8191},
  editor =	{Stephen P. Borgatti and Stephen Kobourov and Oliver Kohlbacher and Petra Mutzel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.08191.5},
  URN =		{urn:nbn:de:0030-drops-15563},
  doi =		{10.4230/DagSemProc.08191.5},
  annote =	{Keywords: Graph drawing, X-graphs of Y-graphs, visualization of large graphs}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail