11 Search Results for "Cheong, Otfried"


Document
Engineering A* Search for the Flip Distance of Plane Triangulations

Authors: Philip Mayer and Petra Mutzel

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
The flip distance for two triangulations of a point set is defined as the smallest number of edge flips needed to transform one triangulation into another, where an edge flip is the act of replacing an edge of a triangulation by a different edge such that the result remains a triangulation. We adapt and engineer a sophisticated A* search algorithm acting on the so-called flip graph. In particular, we prove that previously proposed lower bounds for the flip distance form consistent heuristics for A* and show that they can be computed efficiently using dynamic algorithms. As an alternative approach, we present an integer linear program (ILP) for the flip distance problem. We experimentally evaluate our approaches on a new real-world benchmark data set based on an application in geodesy, namely sea surface reconstruction. Our evaluation reveals that A* search consistently outperforms our ILP formulation as well as a naive baseline, which is bidirectional breadth-first search. In particular, the runtime of our approach improves upon the baseline by more than two orders of magnitude. Furthermore, our A* search successfully solves most of the considered sea surface instances with up to 41 points. This is a substantial improvement compared to the baseline, which struggles with subsets of the real-world data of size 25. Lastly, to allow the consideration of global sea level data, we developed a decomposition-based heuristic for the flip distance. In our experiments it yields optimal flip distance values for most of the considered sea level data and it can be applied to large data sets due to its fast runtime.

Cite as

Philip Mayer and Petra Mutzel. Engineering A* Search for the Flip Distance of Plane Triangulations. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 23:1-23:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mayer_et_al:LIPIcs.SEA.2024.23,
  author =	{Mayer, Philip and Mutzel, Petra},
  title =	{{Engineering A* Search for the Flip Distance of Plane Triangulations}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{23:1--23:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.23},
  URN =		{urn:nbn:de:0030-drops-203887},
  doi =		{10.4230/LIPIcs.SEA.2024.23},
  annote =	{Keywords: Computational Geometry, Triangulations, Flip Distance, A-star Search, Integer Linear Programming}
}
Document
Track A: Algorithms, Complexity and Games
Constrained Level Planarity Is FPT with Respect to the Vertex Cover Number

Authors: Boris Klemz and Marie Diana Sieper

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The problem Level Planarity asks for a crossing-free drawing of a graph in the plane such that vertices are placed at prescribed y-coordinates (called levels) and such that every edge is realized as a y-monotone curve. In the variant Constrained Level Planarity, each level y is equipped with a partial order ≺_y on its vertices and in the desired drawing the left-to-right order of vertices on level y has to be a linear extension of ≺_y. Constrained Level Planarity is known to be a remarkably difficult problem: previous results by Klemz and Rote [ACM Trans. Alg.'19] and by Brückner and Rutter [SODA'17] imply that it remains NP-hard even when restricted to graphs whose tree-depth and feedback vertex set number are bounded by a constant and even when the instances are additionally required to be either proper, meaning that each edge spans two consecutive levels, or ordered, meaning that all given partial orders are total orders. In particular, these results rule out the existence of FPT-time (even XP-time) algorithms with respect to these and related graph parameters (unless P=NP). However, the parameterized complexity of Constrained Level Planarity with respect to the vertex cover number of the input graph remained open. In this paper, we show that Constrained Level Planarity can be solved in FPT-time when parameterized by the vertex cover number. In view of the previous intractability statements, our result is best-possible in several regards: a speed-up to polynomial time or a generalization to the aforementioned smaller graph parameters is not possible, even if restricting to proper or ordered instances.

Cite as

Boris Klemz and Marie Diana Sieper. Constrained Level Planarity Is FPT with Respect to the Vertex Cover Number. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 99:1-99:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{klemz_et_al:LIPIcs.ICALP.2024.99,
  author =	{Klemz, Boris and Sieper, Marie Diana},
  title =	{{Constrained Level Planarity Is FPT with Respect to the Vertex Cover Number}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{99:1--99:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.99},
  URN =		{urn:nbn:de:0030-drops-202428},
  doi =		{10.4230/LIPIcs.ICALP.2024.99},
  annote =	{Keywords: Parameterized Complexity, Graph Drawing, Planar Poset Diagram, Level Planarity, Constrained Level Planarity, Vertex Cover, FPT, Computational Geometry}
}
Document
Geometric Matching and Bottleneck Problems

Authors: Sergio Cabello, Siu-Wing Cheng, Otfried Cheong, and Christian Knauer

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
Let P be a set of at most n points and let R be a set of at most n geometric ranges, such as disks and rectangles, where each p ∈ P has an associated supply s_{p} > 0, and each r ∈ R has an associated demand d_r > 0. A (many-to-many) matching is a set 𝒜 of ordered triples (p,r,a_{pr}) ∈ P × R × ℝ_{> 0} such that p ∈ r and the a_{pr}’s satisfy the constraints given by the supplies and demands. We show how to compute a maximum matching, that is, a matching maximizing ∑_{(p,r,a_{pr}) ∈ 𝒜} a_{pr}. Using our techniques, we can also solve minimum bottleneck problems, such as computing a perfect matching between a set of n red points P and a set of n blue points Q that minimizes the length of the longest edge. For the L_∞-metric, we can do this in time O(n^{1+ε}) in any fixed dimension, for the L₂-metric in the plane in time O(n^{4/3 + ε}), for any ε > 0.

Cite as

Sergio Cabello, Siu-Wing Cheng, Otfried Cheong, and Christian Knauer. Geometric Matching and Bottleneck Problems. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 31:1-31:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cabello_et_al:LIPIcs.SoCG.2024.31,
  author =	{Cabello, Sergio and Cheng, Siu-Wing and Cheong, Otfried and Knauer, Christian},
  title =	{{Geometric Matching and Bottleneck Problems}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{31:1--31:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.31},
  URN =		{urn:nbn:de:0030-drops-199768},
  doi =		{10.4230/LIPIcs.SoCG.2024.31},
  annote =	{Keywords: Many-to-many matching, bipartite, planar, geometric, approximation}
}
Document
Media Exposition
Ipelets for the Convex Polygonal Geometry (Media Exposition)

Authors: Nithin Parepally, Ainesh Chatterjee, Auguste H. Gezalyan, Hongyang Du, Sukrit Mangla, Kenny Wu, Sarah Hwang, and David M. Mount

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
There are many structures, both classical and modern, involving convex polygonal geometries whose deeper understanding would be facilitated through interactive visualizations. The Ipe extensible drawing editor, developed by Otfried Cheong, is a widely used software system for generating geometric figures. One of its features is the capability to extend its functionality through programs called Ipelets. In this media submission, we showcase a collection of new Ipelets that construct a variety of geometric objects based on polygonal geometries. These include Macbeath regions, metric balls in the forward and reverse Funk distance, metric balls in the Hilbert metric, polar bodies, the minimum enclosing ball of a point set, and minimum spanning trees in both the Funk and Hilbert metrics. We also include a number of utilities on convex polygons, including union, intersection, subtraction, and Minkowski sum (previously implemented as a CGAL Ipelet).

Cite as

Nithin Parepally, Ainesh Chatterjee, Auguste H. Gezalyan, Hongyang Du, Sukrit Mangla, Kenny Wu, Sarah Hwang, and David M. Mount. Ipelets for the Convex Polygonal Geometry (Media Exposition). In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 92:1-92:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{parepally_et_al:LIPIcs.SoCG.2024.92,
  author =	{Parepally, Nithin and Chatterjee, Ainesh and Gezalyan, Auguste H. and Du, Hongyang and Mangla, Sukrit and Wu, Kenny and Hwang, Sarah and Mount, David M.},
  title =	{{Ipelets for the Convex Polygonal Geometry}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{92:1--92:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.92},
  URN =		{urn:nbn:de:0030-drops-200375},
  doi =		{10.4230/LIPIcs.SoCG.2024.92},
  annote =	{Keywords: Hilbert metric, Macbeath Regions, Polar Bodies, Convexity}
}
Document
The Reverse Kakeya Problem

Authors: Sang Won Bae, Sergio Cabello, Otfried Cheong, Yoonsung Choi, Fabian Stehn, and Sang Duk Yoon

Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)


Abstract
We prove a generalization of Pál's 1921 conjecture that if a convex shape P can be placed in any orientation inside a convex shape Q in the plane, then P can also be turned continuously through 360° inside Q. We also prove a lower bound of Omega(m n^{2}) on the number of combinatorially distinct maximal placements of a convex m-gon P in a convex n-gon Q. This matches the upper bound proven by Agarwal et al.

Cite as

Sang Won Bae, Sergio Cabello, Otfried Cheong, Yoonsung Choi, Fabian Stehn, and Sang Duk Yoon. The Reverse Kakeya Problem. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 6:1-6:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bae_et_al:LIPIcs.SoCG.2018.6,
  author =	{Bae, Sang Won and Cabello, Sergio and Cheong, Otfried and Choi, Yoonsung and Stehn, Fabian and Yoon, Sang Duk},
  title =	{{The Reverse Kakeya Problem}},
  booktitle =	{34th International Symposium on Computational Geometry (SoCG 2018)},
  pages =	{6:1--6:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-066-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{99},
  editor =	{Speckmann, Bettina and T\'{o}th, Csaba D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.6},
  URN =		{urn:nbn:de:0030-drops-87199},
  doi =		{10.4230/LIPIcs.SoCG.2018.6},
  annote =	{Keywords: Kakeya problem, convex, isodynamic point, turning}
}
Document
Placing your Coins on a Shelf

Authors: Helmut Alt, Kevin Buchin, Steven Chaplick, Otfried Cheong, Philipp Kindermann, Christian Knauer, and Fabian Stehn

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
We consider the problem of packing a family of disks 'on a shelf,' that is, such that each disk touches the x-axis from above and such that no two disks overlap. We prove that the problem of minimizing the distance between the leftmost point and the rightmost point of any disk is NP-hard. On the positive side, we show how to approximate this problem within a factor of 4/3 in O(n log n) time, and provide an O(n log n)-time exact algorithm for a special case, in particular when the ratio between the largest and smallest radius is at most four.

Cite as

Helmut Alt, Kevin Buchin, Steven Chaplick, Otfried Cheong, Philipp Kindermann, Christian Knauer, and Fabian Stehn. Placing your Coins on a Shelf. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 4:1-4:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{alt_et_al:LIPIcs.ISAAC.2017.4,
  author =	{Alt, Helmut and Buchin, Kevin and Chaplick, Steven and Cheong, Otfried and Kindermann, Philipp and Knauer, Christian and Stehn, Fabian},
  title =	{{Placing your Coins on a Shelf}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{4:1--4:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.4},
  URN =		{urn:nbn:de:0030-drops-82145},
  doi =		{10.4230/LIPIcs.ISAAC.2017.4},
  annote =	{Keywords: packing problems, approximation algorithms, NP-hardness}
}
Document
Shortcuts for the Circle

Authors: Sang Won Bae, Mark de Berg, Otfried Cheong, Joachim Gudmundsson, and Christos Levcopoulos

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
Let C be the unit circle in R^2. We can view C as a plane graph whose vertices are all the points on C, and the distance between any two points on C is the length of the smaller arc between them. We consider a graph augmentation problem on C, where we want to place k >= 1 shortcuts on C such that the diameter of the resulting graph is minimized. We analyze for each k with 1 <= k <= 7 what the optimal set of shortcuts is. Interestingly, the minimum diameter one can obtain is not a strictly decreasing function of k. For example, with seven shortcuts one cannot obtain a smaller diameter than with six shortcuts. Finally, we prove that the optimal diameter is 2 + Theta(1/k^(2/3)) for any k.

Cite as

Sang Won Bae, Mark de Berg, Otfried Cheong, Joachim Gudmundsson, and Christos Levcopoulos. Shortcuts for the Circle. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 9:1-9:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{bae_et_al:LIPIcs.ISAAC.2017.9,
  author =	{Bae, Sang Won and de Berg, Mark and Cheong, Otfried and Gudmundsson, Joachim and Levcopoulos, Christos},
  title =	{{Shortcuts for the Circle}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{9:1--9:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.9},
  URN =		{urn:nbn:de:0030-drops-82133},
  doi =		{10.4230/LIPIcs.ISAAC.2017.9},
  annote =	{Keywords: Computational geometry, graph augmentation problem, circle, shortcut, diameter}
}
Document
The Number of Holes in the Union of Translates of a Convex Set in Three Dimensions

Authors: Boris Aronov, Otfried Cheong, Michael Gene Dobbins, and Xavier Goaoc

Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)


Abstract
We show that the union of translates of a convex body in three dimensional space can have a cubic number holes in the worst case, where a hole in a set is a connected component of its compliment. This refutes a 20-year-old conjecture. As a consequence, we also obtain improved lower bounds on the complexity of motion planning problems and of Voronoi diagrams with convex distance functions.

Cite as

Boris Aronov, Otfried Cheong, Michael Gene Dobbins, and Xavier Goaoc. The Number of Holes in the Union of Translates of a Convex Set in Three Dimensions. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{aronov_et_al:LIPIcs.SoCG.2016.10,
  author =	{Aronov, Boris and Cheong, Otfried and Dobbins, Michael Gene and Goaoc, Xavier},
  title =	{{The Number of Holes in the Union of Translates of a Convex Set in Three Dimensions}},
  booktitle =	{32nd International Symposium on Computational Geometry (SoCG 2016)},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-009-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{51},
  editor =	{Fekete, S\'{a}ndor and Lubiw, Anna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.10},
  URN =		{urn:nbn:de:0030-drops-59024},
  doi =		{10.4230/LIPIcs.SoCG.2016.10},
  annote =	{Keywords: Union complexity, Convex sets, Motion planning}
}
Document
Approximating Convex Shapes With Respect to Symmetric Difference Under Homotheties

Authors: Juyoung Yon, Sang Won Bae, Siu-Wing Cheng, Otfried Cheong, and Bryan T. Wilkinson

Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)


Abstract
The symmetric difference is a robust operator for measuring the error of approximating one shape by another. Given two convex shapes P and C, we study the problem of minimizing the volume of their symmetric difference under all possible scalings and translations of C. We prove that the problem can be solved by convex programming. We also present a combinatorial algorithm for convex polygons in the plane that runs in O((m+n) log^3(m+n)) expected time, where n and m denote the number of vertices of P and C, respectively.

Cite as

Juyoung Yon, Sang Won Bae, Siu-Wing Cheng, Otfried Cheong, and Bryan T. Wilkinson. Approximating Convex Shapes With Respect to Symmetric Difference Under Homotheties. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 63:1-63:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{yon_et_al:LIPIcs.SoCG.2016.63,
  author =	{Yon, Juyoung and Bae, Sang Won and Cheng, Siu-Wing and Cheong, Otfried and Wilkinson, Bryan T.},
  title =	{{Approximating Convex Shapes With Respect to Symmetric Difference Under Homotheties}},
  booktitle =	{32nd International Symposium on Computational Geometry (SoCG 2016)},
  pages =	{63:1--63:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-009-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{51},
  editor =	{Fekete, S\'{a}ndor and Lubiw, Anna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.63},
  URN =		{urn:nbn:de:0030-drops-59551},
  doi =		{10.4230/LIPIcs.SoCG.2016.63},
  annote =	{Keywords: shape matching, convexity, symmetric difference, homotheties}
}
Document
Computational Geometry (Dagstuhl Seminar 15111)

Authors: Otfried Cheong, Jeff Erickson, and Monique Teillaud

Published in: Dagstuhl Reports, Volume 5, Issue 3 (2015)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 15111 "Computational Geometry". The seminar was held from 8th to 13th March 2015 and 41 senior and young researchers from various countries and continents attended it. Recent developments in the field were presented and new challenges in computational geometry were identified.

Cite as

Otfried Cheong, Jeff Erickson, and Monique Teillaud. Computational Geometry (Dagstuhl Seminar 15111). In Dagstuhl Reports, Volume 5, Issue 3, pp. 41-62, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@Article{cheong_et_al:DagRep.5.3.41,
  author =	{Cheong, Otfried and Erickson, Jeff and Teillaud, Monique},
  title =	{{Computational Geometry (Dagstuhl Seminar 15111)}},
  pages =	{41--62},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2015},
  volume =	{5},
  number =	{3},
  editor =	{Cheong, Otfried and Erickson, Jeff and Teillaud, Monique},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.5.3.41},
  URN =		{urn:nbn:de:0030-drops-52689},
  doi =		{10.4230/DagRep.5.3.41},
  annote =	{Keywords: Algorithms, geometry, theory, approximation, implementation, combinatorics, topology}
}
Document
Computational Geometry (Dagstuhl Seminar 13101)

Authors: Otfried Cheong, Kurt Mehlhorn, and Monique Teillaud

Published in: Dagstuhl Reports, Volume 3, Issue 3 (2013)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 13101 "Computational Geometry". The seminar was held from 3rd to 8th March 2013 and 47 senior and young researchers from various countries and continents attended it. Recent developments in the field were presented and new challenges in computational geometry were identified. This report collects abstracts of the talks and a list of open problems.

Cite as

Otfried Cheong, Kurt Mehlhorn, and Monique Teillaud. Computational Geometry (Dagstuhl Seminar 13101). In Dagstuhl Reports, Volume 3, Issue 3, pp. 1-23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@Article{cheong_et_al:DagRep.3.3.1,
  author =	{Cheong, Otfried and Mehlhorn, Kurt and Teillaud, Monique},
  title =	{{Computational Geometry (Dagstuhl Seminar 13101)}},
  pages =	{1--23},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2013},
  volume =	{3},
  number =	{3},
  editor =	{Cheong, Otfried and Mehlhorn, Kurt and Teillaud, Monique},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.3.3.1},
  URN =		{urn:nbn:de:0030-drops-40210},
  doi =		{10.4230/DagRep.3.3.1},
  annote =	{Keywords: Algorithms, geometry, theory, approximation, implementation, combinatorics, topology}
}
  • Refine by Author
  • 8 Cheong, Otfried
  • 3 Bae, Sang Won
  • 2 Cabello, Sergio
  • 2 Cheng, Siu-Wing
  • 2 Knauer, Christian
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Computational geometry
  • 1 Human-centered computing → Graph drawings
  • 1 Mathematics of computing → Graphs and surfaces
  • 1 Mathematics of computing → Paths and connectivity problems
  • 1 Theory of computation → Fixed parameter tractability

  • Refine by Keyword
  • 3 approximation
  • 2 Algorithms
  • 2 Computational Geometry
  • 2 combinatorics
  • 2 geometry
  • Show More...

  • Refine by Type
  • 11 document

  • Refine by Publication Year
  • 4 2024
  • 2 2016
  • 2 2017
  • 1 2013
  • 1 2015
  • Show More...