22 Search Results for "Czerwiński, Wojciech"


Document
Invited Paper
Challenges of the Reachability Problem in Infinite-State Systems (Invited Paper)

Authors: Wojciech Czerwiński

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
The reachability problem is a central problem for various infinite state systems like automata with pushdown, with different kinds of counters or combinations thereof. Despite its centrality and decades of research the community still lacks a lot of answers for fundamental and basic questions of that type. I briefly describe my personal viewpoint on the current state of art and emphasise interesting directions, which are worth investigating in my opinion. I also formulate several easy to formulate and understand challenges, which might be pretty hard to solve but at the same time illustrate fundamental lack of our understanding in the area.

Cite as

Wojciech Czerwiński. Challenges of the Reachability Problem in Infinite-State Systems (Invited Paper). In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 2:1-2:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{czerwinski:LIPIcs.MFCS.2024.2,
  author =	{Czerwi\'{n}ski, Wojciech},
  title =	{{Challenges of the Reachability Problem in Infinite-State Systems}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{2:1--2:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.2},
  URN =		{urn:nbn:de:0030-drops-205582},
  doi =		{10.4230/LIPIcs.MFCS.2024.2},
  annote =	{Keywords: reachability problem, infinite-state systems, vector addition systems, pushdown}
}
Document
Acyclic Petri and Workflow Nets with Resets

Authors: Dmitry Chistikov, Wojciech Czerwiński, Piotr Hofman, Filip Mazowiecki, and Henry Sinclair-Banks

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
In this paper we propose two new subclasses of Petri nets with resets, for which the reachability and coverability problems become tractable. Namely, we add an acyclicity condition that only applies to the consumptions and productions, not the resets. The first class is acyclic Petri nets with resets, and we show that coverability is PSPACE-complete for them. This contrasts the known Ackermann-hardness for coverability in (not necessarily acyclic) Petri nets with resets. We prove that the reachability problem remains undecidable for acyclic Petri nets with resets. The second class concerns workflow nets, a practically motivated and natural subclass of Petri nets. Here, we show that both coverability and reachability in acyclic workflow nets with resets are PSPACE-complete. Without the acyclicity condition, reachability and coverability in workflow nets with resets are known to be equally hard as for Petri nets with resets, that being Ackermann-hard and undecidable, respectively.

Cite as

Dmitry Chistikov, Wojciech Czerwiński, Piotr Hofman, Filip Mazowiecki, and Henry Sinclair-Banks. Acyclic Petri and Workflow Nets with Resets. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 16:1-16:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chistikov_et_al:LIPIcs.FSTTCS.2023.16,
  author =	{Chistikov, Dmitry and Czerwi\'{n}ski, Wojciech and Hofman, Piotr and Mazowiecki, Filip and Sinclair-Banks, Henry},
  title =	{{Acyclic Petri and Workflow Nets with Resets}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{16:1--16:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.16},
  URN =		{urn:nbn:de:0030-drops-193892},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.16},
  annote =	{Keywords: Petri nets, Workflow Nets, Resets, Acyclic, Reachability, Coverability}
}
Document
Languages Given by Finite Automata over the Unary Alphabet

Authors: Wojciech Czerwiński, Maciej Dębski, Tomasz Gogasz, Gordon Hoi, Sanjay Jain, Michał Skrzypczak, Frank Stephan, and Christopher Tan

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
This paper studies the complexity of operations on finite automata and the complexity of their decision problems when the alphabet is unary and n the number of states of the finite automata considered. The following main results are obtained: 1) Equality and inclusion of NFAs can be decided within time 2^O((n log n)^{1/3}); previous upper bound 2^O((n log n)^{1/2}) was by Chrobak (1986) via DFA conversion. 2) The state complexity of operations of UFAs (unambiguous finite automata) increases for complementation and union at most by quasipolynomial; however, for concatenation of two n-state UFAs, the worst case is an UFA of at least 2^Ω(n^{1/6}) states. Previously the upper bounds for complementation and union were exponential-type and this lower bound for concatenation is new.

Cite as

Wojciech Czerwiński, Maciej Dębski, Tomasz Gogasz, Gordon Hoi, Sanjay Jain, Michał Skrzypczak, Frank Stephan, and Christopher Tan. Languages Given by Finite Automata over the Unary Alphabet. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 22:1-22:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.FSTTCS.2023.22,
  author =	{Czerwi\'{n}ski, Wojciech and D\k{e}bski, Maciej and Gogasz, Tomasz and Hoi, Gordon and Jain, Sanjay and Skrzypczak, Micha{\l} and Stephan, Frank and Tan, Christopher},
  title =	{{Languages Given by Finite Automata over the Unary Alphabet}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{22:1--22:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.22},
  URN =		{urn:nbn:de:0030-drops-193959},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.22},
  annote =	{Keywords: Nondeterministic Finite Automata, Unambiguous Finite Automata, Upper Bounds on Runtime, Conditional Lower Bounds, Languages over the Unary Alphabet}
}
Document
New Lower Bounds for Reachability in Vector Addition Systems

Authors: Wojciech Czerwiński, Ismaël Jecker, Sławomir Lasota, Jérôme Leroux, and Łukasz Orlikowski

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
We investigate the dimension-parametric complexity of the reachability problem in vector addition systems with states (VASS) and its extension with pushdown stack (pushdown VASS). Up to now, the problem is known to be F_d-hard for VASS of dimension 3d+2 (the complexity class F_d corresponds to the kth level of the fast-growing hierarchy), and no essentially better bound is known for pushdown VASS. We provide a new construction that improves the lower bound for VASS: F_d-hardness in dimension 2d+3. Furthermore, building on our new insights we show a new lower bound for pushdown VASS: F_d-hardness in dimension d/2 + 6. This dimension-parametric lower bound is strictly stronger than the upper bound for VASS, which suggests that the (still unknown) complexity of the reachability problem in pushdown VASS is higher than in plain VASS (where it is Ackermann-complete).

Cite as

Wojciech Czerwiński, Ismaël Jecker, Sławomir Lasota, Jérôme Leroux, and Łukasz Orlikowski. New Lower Bounds for Reachability in Vector Addition Systems. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 35:1-35:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.FSTTCS.2023.35,
  author =	{Czerwi\'{n}ski, Wojciech and Jecker, Isma\"{e}l and Lasota, S{\l}awomir and Leroux, J\'{e}r\^{o}me and Orlikowski, {\L}ukasz},
  title =	{{New Lower Bounds for Reachability in Vector Addition Systems}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{35:1--35:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.35},
  URN =		{urn:nbn:de:0030-drops-194088},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.35},
  annote =	{Keywords: vector addition systems, reachability problem, pushdown vector addition system, lower bounds}
}
Document
Monus Semantics in Vector Addition Systems with States

Authors: Pascal Baumann, Khushraj Madnani, Filip Mazowiecki, and Georg Zetzsche

Published in: LIPIcs, Volume 279, 34th International Conference on Concurrency Theory (CONCUR 2023)


Abstract
Vector addition systems with states (VASS) are a popular model for concurrent systems. However, many decision problems have prohibitively high complexity. Therefore, it is sometimes useful to consider overapproximating semantics in which these problems can be decided more efficiently. We study an overapproximation, called monus semantics, that slightly relaxes the semantics of decrements: A key property of a vector addition systems is that in order to decrement a counter, this counter must have a positive value. In contrast, our semantics allows decrements of zero-valued counters: If such a transition is executed, the counter just remains zero. It turns out that if only a subset of transitions is used with monus semantics (and the others with classical semantics), then reachability is undecidable. However, we show that if monus semantics is used throughout, reachability remains decidable. In particular, we show that reachability for VASS with monus semantics is as hard as that of classical VASS (i.e. Ackermann-hard), while the zero-reachability and coverability are easier (i.e. EXPSPACE-complete and NP-complete, respectively). We provide a comprehensive account of the complexity of the general reachability problem, reachability of zero configurations, and coverability under monus semantics. We study these problems in general VASS, two-dimensional VASS, and one-dimensional VASS, with unary and binary counter updates.

Cite as

Pascal Baumann, Khushraj Madnani, Filip Mazowiecki, and Georg Zetzsche. Monus Semantics in Vector Addition Systems with States. In 34th International Conference on Concurrency Theory (CONCUR 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 279, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{baumann_et_al:LIPIcs.CONCUR.2023.10,
  author =	{Baumann, Pascal and Madnani, Khushraj and Mazowiecki, Filip and Zetzsche, Georg},
  title =	{{Monus Semantics in Vector Addition Systems with States}},
  booktitle =	{34th International Conference on Concurrency Theory (CONCUR 2023)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-299-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{279},
  editor =	{P\'{e}rez, Guillermo A. and Raskin, Jean-Fran\c{c}ois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2023.10},
  URN =		{urn:nbn:de:0030-drops-190047},
  doi =		{10.4230/LIPIcs.CONCUR.2023.10},
  annote =	{Keywords: Vector addition systems, Overapproximation, Reachability, Coverability}
}
Document
Invited Talk
Involved VASS Zoo (Invited Talk)

Authors: Wojciech Czerwiński

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
We briefly describe recent advances on understanding the complexity of the reachability problem for vector addition systems (or equivalently for vector addition systems with states - VASSes). We present a zoo of a few involved VASS examples, which illustrate various aspects of hardness of VASSes and various techniques of proving lower complexity bounds.

Cite as

Wojciech Czerwiński. Involved VASS Zoo (Invited Talk). In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 5:1-5:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{czerwinski:LIPIcs.CONCUR.2022.5,
  author =	{Czerwi\'{n}ski, Wojciech},
  title =	{{Involved VASS Zoo}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{5:1--5:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.5},
  URN =		{urn:nbn:de:0030-drops-170681},
  doi =		{10.4230/LIPIcs.CONCUR.2022.5},
  annote =	{Keywords: vector addition systems, reachability problem, low dimensions, examples}
}
Document
Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable

Authors: Wojciech Czerwiński and Piotr Hofman

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
We consider the problems of language inclusion and language equivalence for Vector Addition Systems with States (VASSes) with the acceptance condition defined by the set of accepting states (and more generally by some upward-closed conditions). In general the problem of language equivalence is undecidable even for one-dimensional VASSes, thus to get decidability we investigate restricted subclasses. On one hand we show that the problem of language inclusion of a VASS in k-ambiguous VASS (for any natural k) is decidable and even in Ackermann. On the other hand we prove that the language equivalence problem is Ackermann-hard already for deterministic VASSes. These two results imply Ackermann-completeness for language inclusion and equivalence in several possible restrictions. Some of our techniques can be also applied in much broader generality in infinite-state systems, namely for some subclass of well-structured transition systems.

Cite as

Wojciech Czerwiński and Piotr Hofman. Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 16:1-16:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.CONCUR.2022.16,
  author =	{Czerwi\'{n}ski, Wojciech and Hofman, Piotr},
  title =	{{Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{16:1--16:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.16},
  URN =		{urn:nbn:de:0030-drops-170796},
  doi =		{10.4230/LIPIcs.CONCUR.2022.16},
  annote =	{Keywords: vector addition systems, language inclusion, language equivalence, determinism, unambiguity, bounded ambiguity, Petri nets, well-structured transition systems}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Improved Lower Bounds for Reachability in Vector Addition Systems

Authors: Wojciech Czerwiński, Sławomir Lasota, and Łukasz Orlikowski

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We investigate computational complexity of the reachability problem for vector addition systems (or, equivalently, Petri nets), the central algorithmic problem in verification of concurrent systems. Concerning its complexity, after 40 years of stagnation, a non-elementary lower bound has been shown recently: the problem needs a tower of exponentials of time or space, where the height of tower is linear in the input size. We improve on this lower bound, by increasing the height of tower from linear to exponential. As a side-effect, we obtain better lower bounds for vector addition systems of fixed dimension.

Cite as

Wojciech Czerwiński, Sławomir Lasota, and Łukasz Orlikowski. Improved Lower Bounds for Reachability in Vector Addition Systems. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 128:1-128:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.ICALP.2021.128,
  author =	{Czerwi\'{n}ski, Wojciech and Lasota, S{\l}awomir and Orlikowski, {\L}ukasz},
  title =	{{Improved Lower Bounds for Reachability in Vector Addition Systems}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{128:1--128:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.128},
  URN =		{urn:nbn:de:0030-drops-141973},
  doi =		{10.4230/LIPIcs.ICALP.2021.128},
  annote =	{Keywords: Petri nets, vector addition systems, reachability problem}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
New Techniques for Universality in Unambiguous Register Automata

Authors: Wojciech Czerwiński, Antoine Mottet, and Karin Quaas

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
Register automata are finite automata equipped with a finite set of registers ranging over the domain of some relational structure like (ℕ; =) or (ℚ; <). Register automata process words over the domain, and along a run of the automaton, the registers can store data from the input word for later comparisons. It is long known that the universality problem, i.e., the problem to decide whether a given register automaton accepts all words over the domain, is undecidable. Recently, we proved the problem to be decidable in 2-ExpSpace if the register automaton under study is over (ℕ; =) and unambiguous, i.e., every input word has at most one accepting run; this result was shortly after improved to 2-ExpTime by Barloy and Clemente. In this paper, we go one step further and prove that the problem is in ExpSpace, and in PSpace if the number of registers is fixed. Our proof is based on new techniques that additionally allow us to show that the problem is in PSpace for single-register automata over (ℚ; <). As a third technical contribution we prove that the problem is decidable (in ExpSpace) for a more expressive model of unambiguous register automata, where the registers can take values nondeterministically, if defined over (ℕ; =) and only one register is used.

Cite as

Wojciech Czerwiński, Antoine Mottet, and Karin Quaas. New Techniques for Universality in Unambiguous Register Automata. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 129:1-129:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.ICALP.2021.129,
  author =	{Czerwi\'{n}ski, Wojciech and Mottet, Antoine and Quaas, Karin},
  title =	{{New Techniques for Universality in Unambiguous Register Automata}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{129:1--129:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.129},
  URN =		{urn:nbn:de:0030-drops-141983},
  doi =		{10.4230/LIPIcs.ICALP.2021.129},
  annote =	{Keywords: Register Automata, Data Languages, Unambiguity, Unambiguous, Universality, Containment, Language Inclusion, Equivalence}
}
Document
Universality Problem for Unambiguous VASS

Authors: Wojciech Czerwiński, Diego Figueira, and Piotr Hofman

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
We study languages of unambiguous VASS, that is, Vector Addition Systems with States, whose transitions read letters from a finite alphabet, and whose acceptance condition is defined by a set of final states (i.e., the coverability language). We show that the problem of universality for unambiguous VASS is ExpSpace-complete, in sheer contrast to Ackermann-completeness for arbitrary VASS, even in dimension 1. When the dimension d ∈ ℕ is fixed, the universality problem is PSpace-complete if d ≥ 2, and coNP-hard for 1-dimensional VASSes (also known as One Counter Nets).

Cite as

Wojciech Czerwiński, Diego Figueira, and Piotr Hofman. Universality Problem for Unambiguous VASS. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 36:1-36:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.CONCUR.2020.36,
  author =	{Czerwi\'{n}ski, Wojciech and Figueira, Diego and Hofman, Piotr},
  title =	{{Universality Problem for Unambiguous VASS}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{36:1--36:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.36},
  URN =		{urn:nbn:de:0030-drops-128486},
  doi =		{10.4230/LIPIcs.CONCUR.2020.36},
  annote =	{Keywords: unambiguity, vector addition systems, universality problems}
}
Document
Reachability in Fixed Dimension Vector Addition Systems with States

Authors: Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip Mazowiecki

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
The reachability problem is a central decision problem in verification of vector addition systems with states (VASS). In spite of recent progress, the complexity of the reachability problem remains unsettled, and it is closely related to the lengths of shortest VASS runs that witness reachability. We obtain three main results for VASS of fixed dimension. For the first two, we assume that the integers in the input are given in unary, and that the control graph of the given VASS is flat (i.e., without nested cycles). We obtain a family of VASS in dimension 3 whose shortest runs are exponential, and we show that the reachability problem is NP-hard in dimension 7. These results resolve negatively questions that had been posed by the works of Blondin et al. in LICS 2015 and Englert et al. in LICS 2016, and contribute a first construction that distinguishes 3-dimensional flat VASS from 2-dimensional ones. Our third result, by means of a novel family of products of integer fractions, shows that 4-dimensional VASS can have doubly exponentially long shortest runs. The smallest dimension for which this was previously known is 14.

Cite as

Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip Mazowiecki. Reachability in Fixed Dimension Vector Addition Systems with States. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 48:1-48:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.CONCUR.2020.48,
  author =	{Czerwi\'{n}ski, Wojciech and Lasota, S{\l}awomir and Lazi\'{c}, Ranko and Leroux, J\'{e}r\^{o}me and Mazowiecki, Filip},
  title =	{{Reachability in Fixed Dimension Vector Addition Systems with States}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{48:1--48:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.48},
  URN =		{urn:nbn:de:0030-drops-128605},
  doi =		{10.4230/LIPIcs.CONCUR.2020.48},
  annote =	{Keywords: reachability problem, vector addition systems, Petri nets}
}
Document
Invited Talk
Finkel Was Right: Counter-Examples to Several Conjectures on Variants of Vector Addition Systems (Invited Talk)

Authors: Ranko Lazić

Published in: LIPIcs, Volume 150, 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)


Abstract
Studying one-dimensional grammar vector addition systems has long been advocated by Alain Finkel. In this presentation, we shall see how research on those systems has led to the recent breakthrough tower lower bound for the reachability problem on vector addition systems, obtained by Czerwiński et al. In fact, we shall look at how appropriate modifications of an underlying technical construction can lead to counter-examples to several conjectures on one-dimensional grammar vector addition systems, fixed-dimensional vector addition systems, and fixed-dimensional flat vector addition systems.

Cite as

Ranko Lazić. Finkel Was Right: Counter-Examples to Several Conjectures on Variants of Vector Addition Systems (Invited Talk). In 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 150, pp. 3:1-3:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{lazic:LIPIcs.FSTTCS.2019.3,
  author =	{Lazi\'{c}, Ranko},
  title =	{{Finkel Was Right: Counter-Examples to Several Conjectures on Variants of Vector Addition Systems}},
  booktitle =	{39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)},
  pages =	{3:1--3:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-131-3},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{150},
  editor =	{Chattopadhyay, Arkadev and Gastin, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2019.3},
  URN =		{urn:nbn:de:0030-drops-115653},
  doi =		{10.4230/LIPIcs.FSTTCS.2019.3},
  annote =	{Keywords: Petri nets, vector addition systems, reachability}
}
Document
Regular Separability and Intersection Emptiness Are Independent Problems

Authors: Ramanathan S. Thinniyam and Georg Zetzsche

Published in: LIPIcs, Volume 150, 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)


Abstract
The problem of regular separability asks, given two languages K and L, whether there exists a regular language S that includes K and is disjoint from L. This problem becomes interesting when the input languages K and L are drawn from language classes beyond the regular languages. For such classes, a mild and useful assumption is that they are full trios, i.e. closed under rational transductions. All the results on regular separability for full trios obtained so far exhibited a noteworthy correspondence with the intersection emptiness problem: In each case, regular separability is decidable if and only if intersection emptiness is decidable. This raises the question whether for full trios, regular separability can be reduced to intersection emptiness or vice-versa. We present counterexamples showing that neither of the two problems can be reduced to the other. More specifically, we describe full trios C_1, D_1, C_2, D_2 such that (i) intersection emptiness is decidable for C_1 and D_1, but regular separability is undecidable for C_1 and D_1 and (ii) regular separability is decidable for C_2 and D_2, but intersection emptiness is undecidable for C_2 and D_2.

Cite as

Ramanathan S. Thinniyam and Georg Zetzsche. Regular Separability and Intersection Emptiness Are Independent Problems. In 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 150, pp. 51:1-51:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{thinniyam_et_al:LIPIcs.FSTTCS.2019.51,
  author =	{Thinniyam, Ramanathan S. and Zetzsche, Georg},
  title =	{{Regular Separability and Intersection Emptiness Are Independent Problems}},
  booktitle =	{39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)},
  pages =	{51:1--51:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-131-3},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{150},
  editor =	{Chattopadhyay, Arkadev and Gastin, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2019.51},
  URN =		{urn:nbn:de:0030-drops-116138},
  doi =		{10.4230/LIPIcs.FSTTCS.2019.51},
  annote =	{Keywords: Regular separability, intersection emptiness, decidability}
}
Document
Improved Bounds for the Excluded-Minor Approximation of Treedepth

Authors: Wojciech Czerwiński, Wojciech Nadara, and Marcin Pilipczuk

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
Treedepth, a more restrictive graph width parameter than treewidth and pathwidth, plays a major role in the theory of sparse graph classes. We show that there exists a constant C such that for every integers a,b >= 2 and a graph G, if the treedepth of G is at least Cab log a, then the treewidth of G is at least a or G contains a subcubic (i.e., of maximum degree at most 3) tree of treedepth at least b as a subgraph. As a direct corollary, we obtain that every graph of treedepth Omega(k^3 log k) is either of treewidth at least k, contains a subdivision of full binary tree of depth k, or contains a path of length 2^k. This improves the bound of Omega(k^5 log^2 k) of Kawarabayashi and Rossman [SODA 2018]. We also show an application for approximation algorithms of treedepth: given a graph G of treedepth k and treewidth t, one can in polynomial time compute a treedepth decomposition of G of width O(kt log^{3/2} t). This improves upon a bound of O(kt^2 log t) stemming from a tradeoff between known results. The main technical ingredient in our result is a proof that every tree of treedepth d contains a subcubic subtree of treedepth at least d * log_3 ((1+sqrt{5})/2).

Cite as

Wojciech Czerwiński, Wojciech Nadara, and Marcin Pilipczuk. Improved Bounds for the Excluded-Minor Approximation of Treedepth. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 34:1-34:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.ESA.2019.34,
  author =	{Czerwi\'{n}ski, Wojciech and Nadara, Wojciech and Pilipczuk, Marcin},
  title =	{{Improved Bounds for the Excluded-Minor Approximation of Treedepth}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{34:1--34:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.34},
  URN =		{urn:nbn:de:0030-drops-111557},
  doi =		{10.4230/LIPIcs.ESA.2019.34},
  annote =	{Keywords: treedepth, excluded minor}
}
Document
Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time

Authors: Paweł Parys

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
Calude, Jain, Khoussainov, Li, and Stephan (2017) proposed a quasi-polynomial-time algorithm solving parity games. After this breakthrough result, a few other quasi-polynomial-time algorithms were introduced; none of them is easy to understand. Moreover, it turns out that in practice they operate very slowly. On the other side there is Zielonka’s recursive algorithm, which is very simple, exponential in the worst case, and the fastest in practice. We combine these two approaches: we propose a small modification of Zielonka’s algorithm, which ensures that the running time is at most quasi-polynomial. In effect, we obtain a simple algorithm that solves parity games in quasi-polynomial time. We also hope that our algorithm, after further optimizations, can lead to an algorithm that shares the good performance of Zielonka’s algorithm on typical inputs, while reducing the worst-case complexity on difficult inputs.

Cite as

Paweł Parys. Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 10:1-10:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{parys:LIPIcs.MFCS.2019.10,
  author =	{Parys, Pawe{\l}},
  title =	{{Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{10:1--10:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.10},
  URN =		{urn:nbn:de:0030-drops-109543},
  doi =		{10.4230/LIPIcs.MFCS.2019.10},
  annote =	{Keywords: Parity games, Zielonka’s algorithm, quasi-polynomial time}
}
  • Refine by Author
  • 12 Czerwiński, Wojciech
  • 6 Czerwinski, Wojciech
  • 4 Hofman, Piotr
  • 4 Lasota, Slawomir
  • 4 Lasota, Sławomir
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 9 vector addition systems
  • 7 Petri nets
  • 5 reachability problem
  • 4 decidability
  • 2 Coverability
  • Show More...

  • Refine by Type
  • 22 document

  • Refine by Publication Year
  • 5 2019
  • 4 2023
  • 2 2017
  • 2 2018
  • 2 2020
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail