81 Search Results for "Gawrychowski, Pawel"


Volume

LIPIcs, Volume 191

32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)

CPM 2021, July 5-7, 2021, Wrocław, Poland

Editors: Paweł Gawrychowski and Tatiana Starikovskaya

Document
Connectivity Labeling in Faulty Colored Graphs

Authors: Asaf Petruschka, Shay Spair, and Elad Tzalik

Published in: LIPIcs, Volume 319, 38th International Symposium on Distributed Computing (DISC 2024)


Abstract
Fault-tolerant connectivity labelings are schemes that, given an n-vertex graph G = (V,E) and a parameter f, produce succinct yet informative labels for the elements of the graph. Given only the labels of two vertices u,v and of the elements in a faulty-set F with |F| ≤ f, one can determine if u,v are connected in G-F, the surviving graph after removing F. For the edge or vertex faults models, i.e., F ⊆ E or F ⊆ V, a sequence of recent work established schemes with poly(f,log n)-bit labels for general graphs. This paper considers the color faults model, recently introduced in the context of spanners [Petruschka, Sapir and Tzalik, ITCS '24], which accounts for known correlations between failures. Here, the edges (or vertices) of the input G are arbitrarily colored, and the faulty elements in F are colors; a failing color causes all edges (vertices) of that color to crash. While treating color faults by naïvly applying solutions for many failing edges or vertices is inefficient, the known correlations could potentially be exploited to provide better solutions. Our main contribution is settling the label length complexity for connectivity under one color fault (f = 1). The existing implicit solution, by black-box application of the state-of-the-art scheme for edge faults of [Dory and Parter, PODC '21], might yield labels of Ω(n) bits. We provide a deterministic scheme with labels of Õ(√n) bits in the worst case, and a matching lower bound. Moreover, our scheme is universally optimal: even schemes tailored to handle only colorings of one specific graph topology (i.e., may store the topology "for free") cannot produce asymptotically smaller labels. We characterize the optimal length by a new graph parameter bp(G) called the ball packing number. We further extend our labeling approach to yield a routing scheme avoiding a single forbidden color, with routing tables of size Õ(bp(G)) bits. We also consider the centralized setting, and show an Õ(n)-space oracle, answering connectivity queries under one color fault in Õ(1) time. Curiously, by our results, no oracle with such space can be evenly distributed as labels. Turning to f ≥ 2 color faults, we give a randomized labeling scheme with Õ(n^{1-1/2^f})-bit labels, along with a lower bound of Ω(n^{1-1/(f+1)}) bits. For f = 2, we make partial improvement by providing labels of Õ(diam(G)√n) bits, and show that this scheme is (nearly) optimal when diam(G) = Õ(1). Additionally, we present a general reduction from the above all-pairs formulation of fault-tolerant connectivity labeling (in any fault model) to the single-source variant, which could also be applicable for centralized oracles, streaming, or dynamic algorithms.

Cite as

Asaf Petruschka, Shay Spair, and Elad Tzalik. Connectivity Labeling in Faulty Colored Graphs. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 36:1-36:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{petruschka_et_al:LIPIcs.DISC.2024.36,
  author =	{Petruschka, Asaf and Spair, Shay and Tzalik, Elad},
  title =	{{Connectivity Labeling in Faulty Colored Graphs}},
  booktitle =	{38th International Symposium on Distributed Computing (DISC 2024)},
  pages =	{36:1--36:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-352-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{319},
  editor =	{Alistarh, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.36},
  URN =		{urn:nbn:de:0030-drops-212622},
  doi =		{10.4230/LIPIcs.DISC.2024.36},
  annote =	{Keywords: Labeling schemes, Fault-tolerance}
}
Document
Longest Common Substring with Gaps and Related Problems

Authors: Aranya Banerjee, Daniel Gibney, and Sharma V. Thankachan

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The longest common substring (also known as longest common factor) and longest common subsequence problems are two well-studied classical string problems. The former is solvable in optimal 𝒪(n) time for two strings of length m and n with m ≤ n, and the latter is solvable in 𝒪(nm) time, which is conditionally optimal under the Strong Exponential Time Hypothesis. In this work, we study the problem of longest common factor with gaps, that is, finding a set of at most k matching substrings obeying precedence conditions with maximum total length. For k = 1, this is equivalent to the longest common factor problem, and for k = m, this is equivalent to the longest common subsequence problem. Our work demonstrates that, for constant k, this problem can be solved in strongly subquadratic time, i.e., nm^{1 - Θ(1)}. Motivated by co-linear chaining applications in Computational Biology, we further demonstrate that the longest common factor with gaps results can be extended to the case where the matches are restricted to maximal exact matches (MEMs). To further demonstrate the applicability of our techniques, we show that a similar approach can be used for a restricted version of the episode matching problem where one seeks an ordered set of at most k matches whose concatenation equals a query pattern P and the length of the substring of T containing the matches is minimized. These solutions all run in strongly subquadratic time for constant k.

Cite as

Aranya Banerjee, Daniel Gibney, and Sharma V. Thankachan. Longest Common Substring with Gaps and Related Problems. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 16:1-16:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{banerjee_et_al:LIPIcs.ESA.2024.16,
  author =	{Banerjee, Aranya and Gibney, Daniel and Thankachan, Sharma V.},
  title =	{{Longest Common Substring with Gaps and Related Problems}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{16:1--16:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.16},
  URN =		{urn:nbn:de:0030-drops-210877},
  doi =		{10.4230/LIPIcs.ESA.2024.16},
  annote =	{Keywords: Pattern Matching, Longest Common Subsequence, Episode Matching}
}
Document
Height-Bounded Lempel-Ziv Encodings

Authors: Hideo Bannai, Mitsuru Funakoshi, Diptarama Hendrian, Myuji Matsuda, and Simon J. Puglisi

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We introduce height-bounded LZ encodings (LZHB), a new family of compressed representations that are variants of Lempel-Ziv parsings with a focus on bounding the worst-case access time to arbitrary positions in the text directly via the compressed representation. An LZ-like encoding is a partitioning of the string into phrases of length 1 which can be encoded literally, or phrases of length at least 2 which have a previous occurrence in the string and can be encoded by its position and length. An LZ-like encoding induces an implicit referencing forest on the set of positions of the string. An LZHB encoding is an LZ-like encoding where the height of the implicit referencing forest is bounded. An LZHB encoding with height constraint h allows access to an arbitrary position of the underlying text using O(h) predecessor queries. While computing the optimal (i.e., smallest) LZHB encoding efficiently seems to be difficult [Cicalese & Ugazio 2024, arXiv, to appear at DLT 2024], we give the first linear time algorithm for strings over a constant size alphabet that computes the greedy LZHB encoding, i.e., the string is processed from beginning to end, and the longest prefix of the remaining string that can satisfy the height constraint is taken as the next phrase. Our algorithms significantly improve both theoretically and practically, the very recently and independently proposed algorithms by Lipták et al. (CPM 2024). We also analyze the size of height bounded LZ encodings in the context of repetitiveness measures, and show that there exists a constant c such that the size ẑ_{HB(clog n)} of the optimal LZHB encoding whose height is bounded by clog n for any string of length n is O(ĝ_{rl}), where ĝ_{rl} is the size of the smallest run-length grammar. Furthermore, we show that there exists a family of strings such that ẑ_{HB(clog n)} = o(ĝ_{rl}), thus making ẑ_{HB(clog n)} one of the smallest known repetitiveness measures for which O(polylog n) time access is possible using linear (O(ẑ_{HB(clog n)})) space.

Cite as

Hideo Bannai, Mitsuru Funakoshi, Diptarama Hendrian, Myuji Matsuda, and Simon J. Puglisi. Height-Bounded Lempel-Ziv Encodings. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 18:1-18:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bannai_et_al:LIPIcs.ESA.2024.18,
  author =	{Bannai, Hideo and Funakoshi, Mitsuru and Hendrian, Diptarama and Matsuda, Myuji and Puglisi, Simon J.},
  title =	{{Height-Bounded Lempel-Ziv Encodings}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{18:1--18:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.18},
  URN =		{urn:nbn:de:0030-drops-210899},
  doi =		{10.4230/LIPIcs.ESA.2024.18},
  annote =	{Keywords: Lempel-Ziv parsing, data compression}
}
Document
Longest Common Extensions with Wildcards: Trade-Off and Applications

Authors: Gabriel Bathie, Panagiotis Charalampopoulos, and Tatiana Starikovskaya

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study the Longest Common Extension (LCE) problem in a string containing wildcards. Wildcards (also called "don't cares" or "holes") are special characters that match any other character in the alphabet, similar to the character "?" in Unix commands or "." in regular expression engines. We consider the problem parametrized by G, the number of maximal contiguous groups of wildcards in the input string. Our main contribution is a simple data structure for this problem that can be built in O(n (G/t) log n) time, occupies O(nG/t) space, and answers queries in O(t) time, for any t ∈ [1 .. G]. Up to the O(log n) factor, this interpolates smoothly between the data structure of Crochemore et al. [JDA 2015], which has O(nG) preprocessing time and space, and O(1) query time, and a simple solution based on the "kangaroo jumping" technique [Landau and Vishkin, STOC 1986], which has O(n) preprocessing time and space, and O(G) query time. By establishing a connection between this problem and Boolean matrix multiplication, we show that our solution is optimal up to subpolynomial factors when G = Ω(n) under a widely believed hypothesis. In addition, we develop a new simple, deterministic and combinatorial algorithm for sparse Boolean matrix multiplication. Finally, we show that our data structure can be used to obtain efficient algorithms for approximate pattern matching and structural analysis of strings with wildcards. First, we consider the problem of pattern matching with k errors (i.e., edit operations) in the setting where both the pattern and the text may contain wildcards. The "kangaroo jumping" technique can be adapted to yield an algorithm for this problem with runtime O(n(k+G)), where G is the total number of maximal contiguous groups of wildcards in the text and the pattern and n is the length of the text. By combining "kangaroo jumping" with a tailor-made data structure for LCE queries, Akutsu [IPL 1995] devised an O(n√{km} polylog m)-time algorithm. We improve on both algorithms when k ≪ G ≪ m by giving an algorithm with runtime O(n(k + √{Gk log n})). Secondly, we give O(n√G log n)-time and O(n)-space algorithms for computing the prefix array, as well as the quantum/deterministic border and period arrays of a string with wildcards. This is an improvement over the O(n√{nlog n})-time algorithms of Iliopoulos and Radoszewski [CPM 2016] when G = O(n / log n).

Cite as

Gabriel Bathie, Panagiotis Charalampopoulos, and Tatiana Starikovskaya. Longest Common Extensions with Wildcards: Trade-Off and Applications. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 19:1-19:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bathie_et_al:LIPIcs.ESA.2024.19,
  author =	{Bathie, Gabriel and Charalampopoulos, Panagiotis and Starikovskaya, Tatiana},
  title =	{{Longest Common Extensions with Wildcards: Trade-Off and Applications}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{19:1--19:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.19},
  URN =		{urn:nbn:de:0030-drops-210904},
  doi =		{10.4230/LIPIcs.ESA.2024.19},
  annote =	{Keywords: Longest common prefix, longest common extension, wildcards, Boolean matrix multiplication, approximate pattern matching, periodicity arrays}
}
Document
Pattern Matching with Mismatches and Wildcards

Authors: Gabriel Bathie, Panagiotis Charalampopoulos, and Tatiana Starikovskaya

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In this work, we address the problem of approximate pattern matching with wildcards. Given a pattern P of length m containing D wildcards, a text T of length n, and an integer k, our objective is to identify all fragments of T within Hamming distance k from P. Our primary contribution is an algorithm with runtime 𝒪(n + (D+k)(G+k)⋅ n/m) for this problem. Here, G ≤ D represents the number of maximal wildcard fragments in P. We derive this algorithm by elaborating in a non-trivial way on the ideas presented by [Charalampopoulos, Kociumaka, and Wellnitz, FOCS'20] for pattern matching with mismatches (without wildcards). Our algorithm improves over the state of the art when D, G, and k are small relative to n. For instance, if m = n/2, k = G = n^{2/5}, and D = n^{3/5}, our algorithm operates in 𝒪(n) time, surpassing the Ω(n^{6/5}) time requirement of all previously known algorithms. In the case of exact pattern matching with wildcards (k = 0), we present a much simpler algorithm with runtime 𝒪(n + DG ⋅ n/m) that clearly illustrates our main technical innovation: the utilisation of positions of P that do not belong to any fragment of P with a density of wildcards much larger than D/m as anchors for the sought (approximate) occurrences. Notably, our algorithm outperforms the best-known 𝒪(n log m)-time FFT-based algorithms of [Cole and Hariharan, STOC'02] and [Clifford and Clifford, IPL'04] if DG = o(m log m). We complement our algorithmic results with a structural characterization of the k-mismatch occurrences of P. We demonstrate that in a text of length 𝒪(m), these occurrences can be partitioned into 𝒪((D+k)(G+k)) arithmetic progressions. Additionally, we construct an infinite family of examples with Ω((D+k)k) arithmetic progressions of occurrences, leveraging a combinatorial result on progression-free sets [Elkin, SODA'10].

Cite as

Gabriel Bathie, Panagiotis Charalampopoulos, and Tatiana Starikovskaya. Pattern Matching with Mismatches and Wildcards. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 20:1-20:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bathie_et_al:LIPIcs.ESA.2024.20,
  author =	{Bathie, Gabriel and Charalampopoulos, Panagiotis and Starikovskaya, Tatiana},
  title =	{{Pattern Matching with Mismatches and Wildcards}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{20:1--20:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.20},
  URN =		{urn:nbn:de:0030-drops-210910},
  doi =		{10.4230/LIPIcs.ESA.2024.20},
  annote =	{Keywords: pattern matching, wildcards, mismatches, Hamming distance}
}
Document
String 2-Covers with No Length Restrictions

Authors: Itai Boneh, Shay Golan, and Arseny Shur

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
A λ-cover of a string S is a set of strings {C_i}₁^λ such that every index in S is contained in an occurrence of at least one string C_i. The existence of a 1-cover defines a well-known class of quasi-periodic strings. Quasi-periodicity can be decided in linear time, and all 1-covers of a string can be reported in linear time as well. Since in general it is NP-complete to decide whether a string has a λ-cover, the natural next step is the development of efficient algorithms for 2-covers. Radoszewski and Straszyński [ESA 2020] analysed the particular case where the strings in a 2-cover must be of the same length. They provided an algorithm that reports all such 2-covers of S in time near-linear in |S| and in the size of the output. In this work, we consider 2-covers in full generality. Since every length-n string has Ω(n²) trivial 2-covers (every prefix and suffix of total length at least n constitute such a 2-cover), we state the reporting problem as follows: given a string S and a number m, report all 2-covers {C₁,C₂} of S with length |C₁|+|C₂| upper bounded by m. We present an Õ(n + output) time algorithm solving this problem, with output being the size of the output. This algorithm admits a simpler modification that finds a 2-cover of minimum length. We also provide an Õ(n) time construction of a 2-cover oracle which, given two substrings C₁,C₂ of S, reports in poly-logarithmic time whether {C₁,C₂} is a 2-cover of S.

Cite as

Itai Boneh, Shay Golan, and Arseny Shur. String 2-Covers with No Length Restrictions. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 31:1-31:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{boneh_et_al:LIPIcs.ESA.2024.31,
  author =	{Boneh, Itai and Golan, Shay and Shur, Arseny},
  title =	{{String 2-Covers with No Length Restrictions}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{31:1--31:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.31},
  URN =		{urn:nbn:de:0030-drops-211029},
  doi =		{10.4230/LIPIcs.ESA.2024.31},
  annote =	{Keywords: Quasi-periodicity, String cover, Range query, Range stabbing}
}
Document
Exploring the Approximability Landscape of 3SUM

Authors: Karl Bringmann, Ahmed Ghazy, and Marvin Künnemann

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Since an increasing number of problems in P have conditional lower bounds against exact algorithms, it is natural to study which of these problems can be efficiently approximated. Often, however, there are many potential ways to formulate an approximate version of a problem. We ask: How sensitive is the (in-)approximability of a problem in P to its precise formulation? To this end, we perform a case study using the popular 3SUM problem. Its many equivalent formulations give rise to a wide range of potential approximate relaxations. Specifically, to obtain an approximate relaxation in our framework, one can choose among the options: (a) 3SUM or Convolution 3SUM, (b) monochromatic or trichromatic, (c) allowing under-approximation, over-approximation, or both, (d) approximate decision or approximate optimization, (e) single output or multiple outputs and (f) implicit or explicit target (given as input). We show general reduction principles between some variants and find that we can classify the remaining problems (over polynomially bounded positive integers) into three regimes: 1) (1+ε)-approximable in near-linear time Õ(n + 1/ε), 2) (1+ε)-approximable in near-quadratic time Õ(n/ε) or Õ(n+1/ε²), or 3) non-approximable, i.e., requiring time n^{2± o(1)} even for any approximation factor. In each of these three regimes, we provide matching upper and conditional lower bounds. To prove our results, we establish two results that may be of independent interest: Over polynomially bounded integers, we show subquadratic equivalence of (min,+)-convolution and polyhedral 3SUM, and we prove equivalence of the Strong 3SUM conjecture and the Strong Convolution 3SUM conjecture.

Cite as

Karl Bringmann, Ahmed Ghazy, and Marvin Künnemann. Exploring the Approximability Landscape of 3SUM. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 34:1-34:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bringmann_et_al:LIPIcs.ESA.2024.34,
  author =	{Bringmann, Karl and Ghazy, Ahmed and K\"{u}nnemann, Marvin},
  title =	{{Exploring the Approximability Landscape of 3SUM}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{34:1--34:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.34},
  URN =		{urn:nbn:de:0030-drops-211057},
  doi =		{10.4230/LIPIcs.ESA.2024.34},
  annote =	{Keywords: Fine-grained Complexity, Conditional Lower Bounds, Approximation Schemes, Min-Plus Convolution}
}
Document
Better Diameter Algorithms for Bounded VC-Dimension Graphs and Geometric Intersection Graphs

Authors: Lech Duraj, Filip Konieczny, and Krzysztof Potępa

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We develop a framework for algorithms finding the diameter in graphs of bounded distance Vapnik-Chervonenkis dimension, in (parameterized) subquadratic time complexity. The class of bounded distance VC-dimension graphs is wide, including, e.g. all minor-free graphs. We build on the work of Ducoffe et al. [SODA'20, SIGCOMP'22], improving their technique. With our approach the algorithms become simpler and faster, working in 𝒪{(k ⋅ n^{1-1/d} ⋅ m ⋅ polylog(n))} time complexity for the graph on n vertices and m edges, where k is the diameter and d is the distance VC-dimension of the graph. Furthermore, it allows us to use the improved technique in more general setting. In particular, we use this framework for geometric intersection graphs, i.e. graphs where vertices are identical geometric objects on a plane and the adjacency is defined by intersection. Applying our approach for these graphs, we partially answer a question posed by Bringmann et al. [SoCG'22], finding an 𝒪{(n^{7/4} ⋅ polylog(n))} parameterized diameter algorithm for unit square intersection graph of size n, as well as a more general algorithm for convex polygon intersection graphs.

Cite as

Lech Duraj, Filip Konieczny, and Krzysztof Potępa. Better Diameter Algorithms for Bounded VC-Dimension Graphs and Geometric Intersection Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 51:1-51:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{duraj_et_al:LIPIcs.ESA.2024.51,
  author =	{Duraj, Lech and Konieczny, Filip and Pot\k{e}pa, Krzysztof},
  title =	{{Better Diameter Algorithms for Bounded VC-Dimension Graphs and Geometric Intersection Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{51:1--51:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.51},
  URN =		{urn:nbn:de:0030-drops-211229},
  doi =		{10.4230/LIPIcs.ESA.2024.51},
  annote =	{Keywords: Graph Diameter, Geometric Intersection Graphs, Vapnik-Chervonenkis Dimension}
}
Document
Finding Perfect Matchings in Bridgeless Cubic Multigraphs Without Dynamic (2-)connectivity

Authors: Paweł Gawrychowski and Mateusz Wasylkiewicz

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Petersen’s theorem, one of the earliest results in graph theory, states that every bridgeless cubic multigraph contains a perfect matching. While the original proof was neither constructive nor algorithmic, Biedl, Bose, Demaine, and Lubiw [J. Algorithms 38(1)] showed how to implement a later constructive proof by Frink in 𝒪(nlog⁴n) time using a fully dynamic 2-edge-connectivity structure. Then, Diks and Stańczyk [SOFSEM 2010] described a faster approach that only needs a fully dynamic connectivity structure and works in 𝒪(nlog²n) time. Both algorithms, while reasonable simple, utilize non-trivial (2-edge-)connectivity structures. We show that this is not necessary, and in fact a structure for maintaining a dynamic tree, e.g. link-cut trees, suffices to obtain a simple 𝒪(nlog n) time algorithm.

Cite as

Paweł Gawrychowski and Mateusz Wasylkiewicz. Finding Perfect Matchings in Bridgeless Cubic Multigraphs Without Dynamic (2-)connectivity. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 59:1-59:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gawrychowski_et_al:LIPIcs.ESA.2024.59,
  author =	{Gawrychowski, Pawe{\l} and Wasylkiewicz, Mateusz},
  title =	{{Finding Perfect Matchings in Bridgeless Cubic Multigraphs Without Dynamic (2-)connectivity}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{59:1--59:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.59},
  URN =		{urn:nbn:de:0030-drops-211301},
  doi =		{10.4230/LIPIcs.ESA.2024.59},
  annote =	{Keywords: perfect matching, cubic graphs, bridgeless graphs, link-cut tree}
}
Document
A Textbook Solution for Dynamic Strings

Authors: Zsuzsanna Lipták, Francesco Masillo, and Gonzalo Navarro

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We consider the problem of maintaining a collection of strings while efficiently supporting splits and concatenations on them, as well as comparing two substrings, and computing the longest common prefix between two suffixes. This problem can be solved in optimal time O(log N) whp for the updates and O(1) worst-case time for the queries, where N is the total collection size [Gawrychowski et al., SODA 2018]. We present here a much simpler solution based on a forest of enhanced splay trees (FeST), where both the updates and the substring comparison take O(log n) amortized time, n being the lengths of the strings involved. The longest common prefix of length 𝓁 is computed in O(log n + log²𝓁) amortized time. Our query results are correct whp. Our simpler solution enables other more general updates in O(log n) amortized time, such as reversing a substring and/or mapping its symbols. We can also regard substrings as circular or as their omega extension.

Cite as

Zsuzsanna Lipták, Francesco Masillo, and Gonzalo Navarro. A Textbook Solution for Dynamic Strings. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 86:1-86:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{liptak_et_al:LIPIcs.ESA.2024.86,
  author =	{Lipt\'{a}k, Zsuzsanna and Masillo, Francesco and Navarro, Gonzalo},
  title =	{{A Textbook Solution for Dynamic Strings}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{86:1--86:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.86},
  URN =		{urn:nbn:de:0030-drops-211576},
  doi =		{10.4230/LIPIcs.ESA.2024.86},
  annote =	{Keywords: dynamic strings, splay trees, dynamic data structures, LCP, circular strings}
}
Document
A Unifying Taxonomy of Pattern Matching in Degenerate Strings and Founder Graphs

Authors: Rocco Ascone, Giulia Bernardini, Alessio Conte, Massimo Equi, Esteban Gabory, Roberto Grossi, and Nadia Pisanti

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
Elastic Degenerate (ED) strings and Elastic Founder (EF) graphs are two versions of acyclic components of pangenomes. Both ED strings and EF graphs (which we collectively name variable strings) extend the well-known notion of indeterminate string. Recent work has extensively investigated algorithmic tasks over these structures, and over several other variable strings notions that they generalise. Among such tasks, the basic operation of matching a pattern into a text, which can serve as a toolkit for many pangenomic data analyses using these data structures, deserves special attention. In this paper we: (1) highlight a clear taxonomy within both ED strings and EF graphs ranging through variable strings of all types, from the linear string up to the most general one; (2) investigate the problem PvarT(X,Y) of matching a solid or variable pattern of type X into a variable text of type Y; (3) using as a reference the quadratic conditional lower bounds that are known for PvarT(solid,ED) and PvarT(solid,EF), for all possible types of variable strings X and Y we either prove the quadratic conditional lower bound for PvarT(X,Y), or provide non-trivial, often sub-quadratic, upper bounds, also exploiting the above-mentioned taxonomy.

Cite as

Rocco Ascone, Giulia Bernardini, Alessio Conte, Massimo Equi, Esteban Gabory, Roberto Grossi, and Nadia Pisanti. A Unifying Taxonomy of Pattern Matching in Degenerate Strings and Founder Graphs. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 14:1-14:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ascone_et_al:LIPIcs.WABI.2024.14,
  author =	{Ascone, Rocco and Bernardini, Giulia and Conte, Alessio and Equi, Massimo and Gabory, Esteban and Grossi, Roberto and Pisanti, Nadia},
  title =	{{A Unifying Taxonomy of Pattern Matching in Degenerate Strings and Founder Graphs}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{14:1--14:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.14},
  URN =		{urn:nbn:de:0030-drops-206586},
  doi =		{10.4230/LIPIcs.WABI.2024.14},
  annote =	{Keywords: Pangenomics, pattern matching, degenerate string, founder graph, fine-grained complexity}
}
Document
Approximate Suffix-Prefix Dictionary Queries

Authors: Wiktor Zuba, Grigorios Loukides, Solon P. Pissis, and Sharma V. Thankachan

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
In the all-pairs suffix-prefix (APSP) problem [Gusfield et al., Inf. Process. Lett. 1992], we are given a dictionary R of r strings, S₁,…,S_r, of total length n, and we are asked to find the length SPL_{i,j} of the longest string that is both a suffix of S_i and a prefix of S_j, for all i,j ∈ [1..r]. APSP is a classic problem in string algorithms with applications in bioinformatics, especially in sequence assembly. Since r = |R| is typically very large in real-world applications, considering all r² pairs of strings explicitly is prohibitive. This is when the data structure variant of APSP makes sense; in the same spirit as distance oracles computing shortest paths between any two vertices given online. We show how to quickly locate k-approximate matches (under the Hamming or the edit distance) in R using a version of the k-errata tree [Cole et al., STOC 2004] that we introduce. Let SPL^k_{i,j} be the length of the longest suffix of S_i that is at distance at most k from a prefix of S_j. In particular, for any k = 𝒪(1), we show an 𝒪(nlog^k n)-sized data structure to support the following queries: - One-to-One^k(i,j): output SPL^k_{i,j} in 𝒪(log^k nlog log n) time. - Report^k(i,d): output all j ∈ [1..r], such that SPL^k_{i,j} ≥ d, in 𝒪(log^{k}n(log n/log log n+output)) time, where output denotes the size of the output. In fact, our algorithms work for any value of k not just for k = 𝒪(1), but the formulas bounding the complexities get much more complicated for larger values of k.

Cite as

Wiktor Zuba, Grigorios Loukides, Solon P. Pissis, and Sharma V. Thankachan. Approximate Suffix-Prefix Dictionary Queries. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 85:1-85:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{zuba_et_al:LIPIcs.MFCS.2024.85,
  author =	{Zuba, Wiktor and Loukides, Grigorios and Pissis, Solon P. and Thankachan, Sharma V.},
  title =	{{Approximate Suffix-Prefix Dictionary Queries}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{85:1--85:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.85},
  URN =		{urn:nbn:de:0030-drops-206416},
  doi =		{10.4230/LIPIcs.MFCS.2024.85},
  annote =	{Keywords: all-pairs suffix-prefix, suffix-prefix queries, suffix tree, k-errata tree}
}
Document
Top-k Frequent Patterns in Streams and Parameterized-Space LZ Compression

Authors: Patrick Dinklage, Johannes Fischer, and Nicola Prezza

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
We present novel online approximations of the Lempel-Ziv 77 (LZ77) and Lempel-Ziv 78 (LZ78) compression schemes [Lempel & Ziv, 1977/1978] with parameterizable space usage based on estimating which k patterns occur the most frequently in the streamed input for parameter k. This new approach overcomes the issue of finding only local repetitions, which is a natural limitation of algorithms that compress using a sliding window or by partitioning the input into blocks. For this, we introduce the top-k trie, a summary for maintaining online the top-k frequent consecutive patterns in a stream of characters based on a combination of the Lempel-Ziv 78 compression scheme and the Misra-Gries algorithm for frequent item estimation in streams. Using straightforward encoding, our implementations yield compression ratios (output over input size) competitive with established general-purpose LZ-based compression utilities such as gzip or xz.

Cite as

Patrick Dinklage, Johannes Fischer, and Nicola Prezza. Top-k Frequent Patterns in Streams and Parameterized-Space LZ Compression. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 9:1-9:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dinklage_et_al:LIPIcs.SEA.2024.9,
  author =	{Dinklage, Patrick and Fischer, Johannes and Prezza, Nicola},
  title =	{{Top-k Frequent Patterns in Streams and Parameterized-Space LZ Compression}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{9:1--9:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.9},
  URN =		{urn:nbn:de:0030-drops-203748},
  doi =		{10.4230/LIPIcs.SEA.2024.9},
  annote =	{Keywords: compression, streaming, heavy hitters, algorithm engineering}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Bounds for Distinct Quartics

Authors: Panagiotis Charalampopoulos, Paweł Gawrychowski, and Samah Ghazawi

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A fundamental concept related to strings is that of repetitions. It has been extensively studied in many versions, from both purely combinatorial and algorithmic angles. One of the most basic questions is how many distinct squares, i.e., distinct strings of the form UU, a string of length n can contain as fragments. It turns out that this is always 𝒪(n), and the bound cannot be improved to sublinear in n [Fraenkel and Simpson, JCTA 1998]. Several similar questions about repetitions in strings have been considered, and by now we seem to have a good understanding of their repetitive structure. For higher-dimensional strings, the basic concept of periodicity has been successfully extended and applied to design efficient algorithms - it is inherently more complex than for regular strings. Extending the notion of repetitions and understanding the repetitive structure of higher-dimensional strings is however far from complete. Quartics were introduced by Apostolico and Brimkov [TCS 2000] as analogues of squares in two dimensions. Charalampopoulos, Radoszewski, Rytter, Waleń, and Zuba [ESA 2020] proved that the number of distinct quartics in an n×n 2D string is 𝒪(n²log²n) and that they can be computed in 𝒪(n²log²n) time. Gawrychowski, Ghazawi, and Landau [SPIRE 2021] constructed an infinite family of n×n 2D strings with Ω(n²log n) distinct quartics. This brings the challenge of determining asymptotically tight bounds. Here, we settle both the combinatorial and the algorithmic aspects of this question: the number of distinct quartics in an n×n 2D string is 𝒪(n²log n) and they can be computed in the worst-case optimal 𝒪(n²log n) time. As expected, our solution heavily exploits the periodic structure implied by occurrences of quartics. However, the two-dimensional nature of the problem introduces some technical challenges. Somewhat surprisingly, we overcome the final challenge for the combinatorial bound using a result of Marcus and Tardos [JCTA 2004] for permutation avoidance on matrices.

Cite as

Panagiotis Charalampopoulos, Paweł Gawrychowski, and Samah Ghazawi. Optimal Bounds for Distinct Quartics. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 39:1-39:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{charalampopoulos_et_al:LIPIcs.ICALP.2024.39,
  author =	{Charalampopoulos, Panagiotis and Gawrychowski, Pawe{\l} and Ghazawi, Samah},
  title =	{{Optimal Bounds for Distinct Quartics}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{39:1--39:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.39},
  URN =		{urn:nbn:de:0030-drops-201823},
  doi =		{10.4230/LIPIcs.ICALP.2024.39},
  annote =	{Keywords: 2D strings, quartics, repetitions, periodicity}
}
  • Refine by Author
  • 33 Gawrychowski, Paweł
  • 21 Gawrychowski, Pawel
  • 10 Starikovskaya, Tatiana
  • 9 Weimann, Oren
  • 8 Charalampopoulos, Panagiotis
  • Show More...

  • Refine by Classification
  • 29 Theory of computation → Pattern matching
  • 15 Theory of computation → Design and analysis of algorithms
  • 7 Theory of computation → Data structures design and analysis
  • 5 Theory of computation → Graph algorithms analysis
  • 4 Theory of computation → Data compression
  • Show More...

  • Refine by Keyword
  • 9 pattern matching
  • 8 Hamming distance
  • 4 Pattern matching
  • 4 data structures
  • 4 string algorithms
  • Show More...

  • Refine by Type
  • 80 document
  • 1 volume

  • Refine by Publication Year
  • 23 2024
  • 10 2019
  • 10 2020
  • 9 2018
  • 8 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail