10 Search Results for "Haverkort, Herman"


Document
Boundary Labeling in a Circular Orbit

Authors: Annika Bonerath, Martin Nöllenburg, Soeren Terziadis, Markus Wallinger, and Jules Wulms

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Boundary labeling is a well-known method for displaying short textual labels for a set of point features in a figure alongside the boundary of that figure. Labels and their corresponding points are connected via crossing-free leaders. We propose orbital boundary labeling as a new variant of the problem, in which (i) the figure is enclosed by a circular contour and (ii) the labels are placed as disjoint circular arcs in an annulus-shaped orbit around the contour. The algorithmic objective is to compute an orbital boundary labeling with the minimum total leader length. We identify several parameters that define the corresponding problem space: two leader types (straight or orbital-radial), label size and order, presence of candidate label positions, and constraints on where a leader attaches to its label. Our results provide polynomial-time algorithms for many variants and NP-hardness for others, using a variety of geometric and combinatorial insights.

Cite as

Annika Bonerath, Martin Nöllenburg, Soeren Terziadis, Markus Wallinger, and Jules Wulms. Boundary Labeling in a Circular Orbit. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 22:1-22:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bonerath_et_al:LIPIcs.GD.2024.22,
  author =	{Bonerath, Annika and N\"{o}llenburg, Martin and Terziadis, Soeren and Wallinger, Markus and Wulms, Jules},
  title =	{{Boundary Labeling in a Circular Orbit}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{22:1--22:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.22},
  URN =		{urn:nbn:de:0030-drops-213060},
  doi =		{10.4230/LIPIcs.GD.2024.22},
  annote =	{Keywords: External labeling, Orthoradial drawing, NP-hardness, Polynomial algorithms}
}
Document
Storylines with a Protagonist

Authors: Tim Hegemann and Alexander Wolff

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Storyline visualizations show interactions between a given set of characters over time. Each character is represented by an x-monotone curve. A meeting is represented by a vertical bar that is crossed by the curves of exactly those characters that participate in the meeting. Therefore, character curves may have to cross each other. In the context of publication networks, we consider storylines where the characters are authors and the meetings are joint publications. We are especially interested in visualizing a group of colleagues centered around an author, the protagonist, who participates in all selected publications. For such instances, we propose a drawing style where the protagonist’s curve is drawn at a prominent position and never crossed by any other author’s curve. We consider two variants of storylines with a protagonist. In the one-sided variant, the protagonist is required to be drawn at the top position. In this restricted setting, we can efficiently compute a drawing with the minimum number of pairwise crossings, whereas we show that it is NP-hard to minimize the number of block crossings (i.e., pairs of blocks of parallel curves that intersect each other). In the two-sided variant, the task is to split the set of co-authors of the protagonist into two groups, and to place the curves of one group above and the curves of the other group below the protagonist’s curve such that the total number of (block) crossings is minimized. As our main result, we present an algorithm for bundling a sequence of pairwise crossings into a sequence of few block crossings (in the absence of meetings). It exploits a connection to a rectangle dissection problem. In the presence of meetings, it yields results that are very close to a lower bound. Based on this bundling algorithm and our exact algorithm for the one-sided variant, we present a new heuristic for computing two-sided storylines with few block crossings. We perform an extensive experimental study using publication data of 81 protagonists from GD 2023 and their most frequent collaborators over the last ten years. Our study shows that, for two-sided storylines with a protagonist, our new heuristic uses fewer block crossings (and fewer pairwise crossings) than two heuristics for block crossing minimization in general storylines.

Cite as

Tim Hegemann and Alexander Wolff. Storylines with a Protagonist. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 26:1-26:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hegemann_et_al:LIPIcs.GD.2024.26,
  author =	{Hegemann, Tim and Wolff, Alexander},
  title =	{{Storylines with a Protagonist}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{26:1--26:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.26},
  URN =		{urn:nbn:de:0030-drops-213109},
  doi =		{10.4230/LIPIcs.GD.2024.26},
  annote =	{Keywords: Storyline visualization, storyline with a protagonist, crossing minimization, block crossings}
}
Document
Drawing Planar Graphs and 1-Planar Graphs Using Cubic Bézier Curves with Bounded Curvature

Authors: David Eppstein, Michael T. Goodrich, and Abraham M. Illickan

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
We study algorithms for drawing planar graphs and 1-planar graphs using cubic Bézier curves with bounded curvature. We show that any n-vertex 1-planar graph has a 1-planar RAC drawing using a single cubic Bézier curve per edge, and this drawing can be computed in O(n) time given a combinatorial 1-planar drawing. We also show that any n-vertex planar graph G can be drawn in O(n) time with a single cubic Bézier curve per edge, in an O(n)× O(n) bounding box, such that the edges have Θ(1/degree(v)) angular resolution, for each v ∈ G, and O(√n) curvature.

Cite as

David Eppstein, Michael T. Goodrich, and Abraham M. Illickan. Drawing Planar Graphs and 1-Planar Graphs Using Cubic Bézier Curves with Bounded Curvature. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 39:1-39:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{eppstein_et_al:LIPIcs.GD.2024.39,
  author =	{Eppstein, David and Goodrich, Michael T. and Illickan, Abraham M.},
  title =	{{Drawing Planar Graphs and 1-Planar Graphs Using Cubic B\'{e}zier Curves with Bounded Curvature}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{39:1--39:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.39},
  URN =		{urn:nbn:de:0030-drops-213237},
  doi =		{10.4230/LIPIcs.GD.2024.39},
  annote =	{Keywords: graph drawing, planar graphs, B\'{e}zier curves, and RAC drawings}
}
Document
Bicriteria Approximation for Minimum Dilation Graph Augmentation

Authors: Kevin Buchin, Maike Buchin, Joachim Gudmundsson, and Sampson Wong

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Spanner constructions focus on the initial design of the network. However, networks tend to improve over time. In this paper, we focus on the improvement step. Given a graph and a budget k, which k edges do we add to the graph to minimise its dilation? Gudmundsson and Wong [TALG'22] provided the first positive result for this problem, but their approximation factor is linear in k. Our main result is a (2 √[r]{2} k^{1/r},2r)-bicriteria approximation that runs in O(n³ log n) time, for all r ≥ 1. In other words, if t^* is the minimum dilation after adding any k edges to a graph, then our algorithm adds O(k^{1+1/r}) edges to the graph to obtain a dilation of 2rt^*. Moreover, our analysis of the algorithm is tight under the Erdős girth conjecture.

Cite as

Kevin Buchin, Maike Buchin, Joachim Gudmundsson, and Sampson Wong. Bicriteria Approximation for Minimum Dilation Graph Augmentation. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 36:1-36:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{buchin_et_al:LIPIcs.ESA.2024.36,
  author =	{Buchin, Kevin and Buchin, Maike and Gudmundsson, Joachim and Wong, Sampson},
  title =	{{Bicriteria Approximation for Minimum Dilation Graph Augmentation}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{36:1--36:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.36},
  URN =		{urn:nbn:de:0030-drops-211079},
  doi =		{10.4230/LIPIcs.ESA.2024.36},
  annote =	{Keywords: Greedy spanner, Graph augmentation}
}
Document
Engineering A* Search for the Flip Distance of Plane Triangulations

Authors: Philip Mayer and Petra Mutzel

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
The flip distance for two triangulations of a point set is defined as the smallest number of edge flips needed to transform one triangulation into another, where an edge flip is the act of replacing an edge of a triangulation by a different edge such that the result remains a triangulation. We adapt and engineer a sophisticated A* search algorithm acting on the so-called flip graph. In particular, we prove that previously proposed lower bounds for the flip distance form consistent heuristics for A* and show that they can be computed efficiently using dynamic algorithms. As an alternative approach, we present an integer linear program (ILP) for the flip distance problem. We experimentally evaluate our approaches on a new real-world benchmark data set based on an application in geodesy, namely sea surface reconstruction. Our evaluation reveals that A* search consistently outperforms our ILP formulation as well as a naive baseline, which is bidirectional breadth-first search. In particular, the runtime of our approach improves upon the baseline by more than two orders of magnitude. Furthermore, our A* search successfully solves most of the considered sea surface instances with up to 41 points. This is a substantial improvement compared to the baseline, which struggles with subsets of the real-world data of size 25. Lastly, to allow the consideration of global sea level data, we developed a decomposition-based heuristic for the flip distance. In our experiments it yields optimal flip distance values for most of the considered sea level data and it can be applied to large data sets due to its fast runtime.

Cite as

Philip Mayer and Petra Mutzel. Engineering A* Search for the Flip Distance of Plane Triangulations. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 23:1-23:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mayer_et_al:LIPIcs.SEA.2024.23,
  author =	{Mayer, Philip and Mutzel, Petra},
  title =	{{Engineering A* Search for the Flip Distance of Plane Triangulations}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{23:1--23:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.23},
  URN =		{urn:nbn:de:0030-drops-203887},
  doi =		{10.4230/LIPIcs.SEA.2024.23},
  annote =	{Keywords: Computational Geometry, Triangulations, Flip Distance, A-star Search, Integer Linear Programming}
}
Document
Minimum-Error Triangulations for Sea Surface Reconstruction

Authors: Anna Arutyunova, Anne Driemel, Jan-Henrik Haunert, Herman Haverkort, Jürgen Kusche, Elmar Langetepe, Philip Mayer, Petra Mutzel, and Heiko Röglin

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
We apply state-of-the-art computational geometry methods to the problem of reconstructing a time-varying sea surface from tide gauge records. Our work builds on a recent article by Nitzke et al. (Computers & Geosciences, 157:104920, 2021) who have suggested to learn a triangulation D of a given set of tide gauge stations. The objective is to minimize the misfit of the piecewise linear surface induced by D to a reference surface that has been acquired with satellite altimetry. The authors restricted their search to k-order Delaunay (k-OD) triangulations and used an integer linear program in order to solve the resulting optimization problem. In geometric terms, the input to our problem consists of two sets of points in ℝ² with elevations: a set 𝒮 that is to be triangulated, and a set ℛ of reference points. Intuitively, we define the error of a triangulation as the average vertical distance of a point in ℛ to the triangulated surface that is obtained by interpolating elevations of 𝒮 linearly in each triangle. Our goal is to find the triangulation of 𝒮 that has minimum error with respect to ℛ. In our work, we prove that the minimum-error triangulation problem is NP-hard and cannot be approximated within any multiplicative factor in polynomial time unless P = NP. At the same time we show that the problem instances that occur in our application (considering sea level data from several hundreds of tide gauge stations worldwide) can be solved relatively fast using dynamic programming when restricted to k-OD triangulations for k ≤ 7. In particular, instances for which the number of connected components of the so-called k-OD fixed-edge graph is small can be solved within few seconds.

Cite as

Anna Arutyunova, Anne Driemel, Jan-Henrik Haunert, Herman Haverkort, Jürgen Kusche, Elmar Langetepe, Philip Mayer, Petra Mutzel, and Heiko Röglin. Minimum-Error Triangulations for Sea Surface Reconstruction. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{arutyunova_et_al:LIPIcs.SoCG.2022.7,
  author =	{Arutyunova, Anna and Driemel, Anne and Haunert, Jan-Henrik and Haverkort, Herman and Kusche, J\"{u}rgen and Langetepe, Elmar and Mayer, Philip and Mutzel, Petra and R\"{o}glin, Heiko},
  title =	{{Minimum-Error Triangulations for Sea Surface Reconstruction}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.7},
  URN =		{urn:nbn:de:0030-drops-160155},
  doi =		{10.4230/LIPIcs.SoCG.2022.7},
  annote =	{Keywords: Minimum-Error Triangulation, k-Order Delaunay Triangulations, Data dependent Triangulations, Sea Surface Reconstruction, fixed-Edge Graph}
}
Document
Bicriteria Aggregation of Polygons via Graph Cuts

Authors: Peter Rottmann, Anne Driemel, Herman Haverkort, Heiko Röglin, and Jan-Henrik Haunert

Published in: LIPIcs, Volume 208, 11th International Conference on Geographic Information Science (GIScience 2021) - Part II


Abstract
We present a new method for the task of detecting groups of polygons in a given geographic data set and computing a representative polygon for each group. This task is relevant in map generalization where the aim is to derive a less detailed map from a given map. Following a classical approach, we define the output polygons by merging the input polygons with a set of triangles that we select from a constrained Delaunay triangulation of the input polygons' exterior. The innovation of our method is to compute the selection of triangles by solving a bicriteria optimization problem. While on the one hand we aim at minimizing the total area of the outputs polygons, we aim on the other hand at minimizing their total perimeter. We combine these two objectives in a weighted sum and study two computational problems that naturally arise. In the first problem, the parameter that balances the two objectives is fixed and the aim is to compute a single optimal solution. In the second problem, the aim is to compute a set containing an optimal solution for every possible value of the parameter. We present efficient algorithms for these problems based on computing a minimum cut in an appropriately defined graph. Moreover, we show how the result set of the second problem can be approximated with few solutions. In an experimental evaluation, we finally show that the method is able to derive settlement areas from building footprints that are similar to reference solutions.

Cite as

Peter Rottmann, Anne Driemel, Herman Haverkort, Heiko Röglin, and Jan-Henrik Haunert. Bicriteria Aggregation of Polygons via Graph Cuts. In 11th International Conference on Geographic Information Science (GIScience 2021) - Part II. Leibniz International Proceedings in Informatics (LIPIcs), Volume 208, pp. 6:1-6:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{rottmann_et_al:LIPIcs.GIScience.2021.II.6,
  author =	{Rottmann, Peter and Driemel, Anne and Haverkort, Herman and R\"{o}glin, Heiko and Haunert, Jan-Henrik},
  title =	{{Bicriteria Aggregation of Polygons via Graph Cuts}},
  booktitle =	{11th International Conference on Geographic Information Science (GIScience 2021) - Part II},
  pages =	{6:1--6:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-208-2},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{208},
  editor =	{Janowicz, Krzysztof and Verstegen, Judith A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2021.II.6},
  URN =		{urn:nbn:de:0030-drops-147658},
  doi =		{10.4230/LIPIcs.GIScience.2021.II.6},
  annote =	{Keywords: map generalization, aggregation, graph cuts, bicriteria optimization}
}
Document
Media Exposition
Plane-Filling Trails (Media Exposition)

Authors: Herman Haverkort

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
The order in which plane-filling curves visit points in the plane can be exploited to design efficient algorithms. Typically, the curves are useful because they preserve locality: points that are close to each other along the curve tend to be close to each other in the plane, and vice versa. However, sketches of plane-filling curves do not show this well: they are hard to read on different levels of detail and it is hard to see how far apart points are along the curve. This paper presents a software tool to produce compelling visualisations that may give more insight in the structure of the curves.

Cite as

Herman Haverkort. Plane-Filling Trails (Media Exposition). In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 81:1-81:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{haverkort:LIPIcs.SoCG.2020.81,
  author =	{Haverkort, Herman},
  title =	{{Plane-Filling Trails}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{81:1--81:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.81},
  URN =		{urn:nbn:de:0030-drops-122396},
  doi =		{10.4230/LIPIcs.SoCG.2020.81},
  annote =	{Keywords: space-filling curve, plane-filling curve, spatial indexing}
}
Document
Hyperorthogonal Well-Folded Hilbert Curves

Authors: Arie Bos and Herman J. Haverkort

Published in: LIPIcs, Volume 34, 31st International Symposium on Computational Geometry (SoCG 2015)


Abstract
R-trees can be used to store and query sets of point data in two or more dimensions. An easy way to construct and maintain R-trees for two-dimensional points, due to Kamel and Faloutsos, is to keep the points in the order in which they appear along the Hilbert curve. The R-tree will then store bounding boxes of points along contiguous sections of the curve, and the efficiency of the R-tree depends on the size of the bounding boxes - smaller is better. Since there are many different ways to generalize the Hilbert curve to higher dimensions, this raises the question which generalization results in the smallest bounding boxes. Familiar methods, such as the one by Butz, can result in curve sections whose bounding boxes are a factor Omega(2^{d/2}) larger than the volume traversed by that section of the curve. Most of the volume bounded by such bounding boxes would not contain any data points. In this paper we present a new way of generalizing Hilbert's curve to higher dimensions, which results in much tighter bounding boxes: they have at most 4 times the volume of the part of the curve covered, independent of the number of dimensions. Moreover, we prove that a factor 4 is asymptotically optimal.

Cite as

Arie Bos and Herman J. Haverkort. Hyperorthogonal Well-Folded Hilbert Curves. In 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 34, pp. 812-826, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{bos_et_al:LIPIcs.SOCG.2015.812,
  author =	{Bos, Arie and Haverkort, Herman J.},
  title =	{{Hyperorthogonal Well-Folded Hilbert Curves}},
  booktitle =	{31st International Symposium on Computational Geometry (SoCG 2015)},
  pages =	{812--826},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-83-5},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{34},
  editor =	{Arge, Lars and Pach, J\'{a}nos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SOCG.2015.812},
  URN =		{urn:nbn:de:0030-drops-50962},
  doi =		{10.4230/LIPIcs.SOCG.2015.812},
  annote =	{Keywords: space-filling curve, Hilbert curve, multi-dimensional, range query, R-tree}
}
Document
The Priority R-Tree: A Practically Efficient and Worst-Case-Optimal R-Tree

Authors: Lars Arge, Mark de Berg, Herman J. Haverkort, and Ke Yi

Published in: Dagstuhl Seminar Proceedings, Volume 4301, Cache-Oblivious and Cache-Aware Algorithms (2005)


Abstract
The query efficiency of a data structure that stores a set of objects, can normally be assessed by analysing the number of objects, pointers etc. looked at when answering a query. However, if the data structure is too big to fit in main memory, data may need to be fetched from disk. In that case, the query efficiency is easily dominated by moving the disk head to the correct locations, rather than by reading the data itself. To reduce the number of disk accesses, once can group the data into blocks, and strive to bound the number of different blocks accessed rather than the number of individual data objects read. An R-tree is a general-purpose data structur that stores a hierarchical grouping of geometric objects into blocks. Many heuristics have been designed to determine which objects should be grouped together, but none of these heuristics could give a guarantee on the resulting worst-case query time. We present the Priority R-tree, or PR-tree, which is the first R-tree variant that always answers a window query by accessing $O((N/B)^{1-1/d} + T/B)$ blocks, where $N$ is the number of $d$-dimensional objects stored, $B$ is the number of objects per block, and $T$ is the number of objects whose bounding boxes intersect the query window. This is provably asymptotically optimal. Experiments show that the PR-tree performs similar to the best known heuristics on real-life and relatively nicely distributed data, but outperforms them significantly on more extreme data.

Cite as

Lars Arge, Mark de Berg, Herman J. Haverkort, and Ke Yi. The Priority R-Tree: A Practically Efficient and Worst-Case-Optimal R-Tree. In Cache-Oblivious and Cache-Aware Algorithms. Dagstuhl Seminar Proceedings, Volume 4301, pp. 1-26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2005)


Copy BibTex To Clipboard

@InProceedings{arge_et_al:DagSemProc.04301.3,
  author =	{Arge, Lars and de Berg, Mark and Haverkort, Herman J. and Yi, Ke},
  title =	{{The Priority R-Tree: A Practically Efficient and Worst-Case-Optimal R-Tree}},
  booktitle =	{Cache-Oblivious and Cache-Aware Algorithms},
  pages =	{1--26},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2005},
  volume =	{4301},
  editor =	{Lars Arge and Michael A. Bender and Erik Demaine and Charles Leiserson and Kurt Mehlhorn},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.04301.3},
  URN =		{urn:nbn:de:0030-drops-1554},
  doi =		{10.4230/DagSemProc.04301.3},
  annote =	{Keywords: R-Trees}
}
  • Refine by Author
  • 3 Haverkort, Herman
  • 2 Driemel, Anne
  • 2 Haunert, Jan-Henrik
  • 2 Haverkort, Herman J.
  • 2 Mayer, Philip
  • Show More...

  • Refine by Classification
  • 6 Theory of computation → Computational geometry
  • 1 Human-centered computing → Graph drawings
  • 1 Human-centered computing → Visualization
  • 1 Information systems → Geographic information systems
  • 1 Theory of computation
  • Show More...

  • Refine by Keyword
  • 2 space-filling curve
  • 1 A-star Search
  • 1 Bézier curves
  • 1 Computational Geometry
  • 1 Data dependent Triangulations
  • Show More...

  • Refine by Type
  • 10 document

  • Refine by Publication Year
  • 5 2024
  • 1 2005
  • 1 2015
  • 1 2020
  • 1 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail