158 Search Results for "Huang, Shang-En"


Document
Invited Paper
Invited Paper: On the Granularity of Bandwidth Regulation in FPGA-Based Heterogeneous Systems on Chip

Authors: Gianluca Brilli, Giacomo Valente, Alessandro Capotondi, Tania Di Mascio, and Andrea Marongiu

Published in: OASIcs, Volume 121, 22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024)


Abstract
Main memory sharing in commercial, FPGA-based Heterogeneous System on Chips (HeSoCs) can cause significant interference, and ultimately severe slowdown of the executing workload, which bars the adoption of such systems in the context of time-critical applications. Bandwidth regulation approaches based on monitoring and throttling are widely adopted also in commercial hardware to improve the system quality of service (QoS), and previous work has shown that the finer the granularity of the mechanism, the more effective the QoS control. Different mechanisms, however, might exploit more or less effectively the available residual memory bandwidth, provided that the QoS requirement is satisfied. In this paper we present an exhaustive experimental evaluation of how three bandwidth regulation mechanisms with coarse, fine and ultra-fine granularity compare in terms of exploitation of the system memory bandwidth. Our results show that a very fine-grained regulation mechanism might experience worse system-level memory bandwidth exploitation compared to a coarser-grained approach.

Cite as

Gianluca Brilli, Giacomo Valente, Alessandro Capotondi, Tania Di Mascio, and Andrea Marongiu. Invited Paper: On the Granularity of Bandwidth Regulation in FPGA-Based Heterogeneous Systems on Chip. In 22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024). Open Access Series in Informatics (OASIcs), Volume 121, pp. 5:1-5:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{brilli_et_al:OASIcs.WCET.2024.5,
  author =	{Brilli, Gianluca and Valente, Giacomo and Capotondi, Alessandro and Di Mascio, Tania and Marongiu, Andrea},
  title =	{{Invited Paper: On the Granularity of Bandwidth Regulation in FPGA-Based Heterogeneous Systems on Chip}},
  booktitle =	{22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024)},
  pages =	{5:1--5:11},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-346-1},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{121},
  editor =	{Carle, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2024.5},
  URN =		{urn:nbn:de:0030-drops-204732},
  doi =		{10.4230/OASIcs.WCET.2024.5},
  annote =	{Keywords: Bandwidth Regulation, System-on-Chip, FPGA}
}
Document
Galled Tree-Child Networks

Authors: Yu-Sheng Chang, Michael Fuchs, and Guan-Ru Yu

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
We propose the class of galled tree-child networks which is obtained as intersection of the classes of galled networks and tree-child networks. For the latter two classes, (asymptotic) counting results and stochastic results have been proved with very different methods. We show that a counting result for the class of galled tree-child networks follows with similar tools as used for galled networks, however, the result has a similar pattern as the one for tree-child networks. In addition, we also consider the (suitably scaled) numbers of reticulation nodes of random galled tree-child networks and show that they are asymptotically normal distributed. This is in contrast to the limit laws of the corresponding quantities for galled networks and tree-child networks which have been both shown to be discrete.

Cite as

Yu-Sheng Chang, Michael Fuchs, and Guan-Ru Yu. Galled Tree-Child Networks. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 8:1-8:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chang_et_al:LIPIcs.AofA.2024.8,
  author =	{Chang, Yu-Sheng and Fuchs, Michael and Yu, Guan-Ru},
  title =	{{Galled Tree-Child Networks}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{8:1--8:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.8},
  URN =		{urn:nbn:de:0030-drops-204439},
  doi =		{10.4230/LIPIcs.AofA.2024.8},
  annote =	{Keywords: Phylogenetic Network, galled Network, tree-child Network, asymptotic Enumeration, Limit Law, Lagrange Inversion}
}
Document
Matching Algorithms in the Sparse Stochastic Block Model

Authors: Anna Brandenberger, Byron Chin, Nathan S. Sheffield, and Divya Shyamal

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
In sparse Erdős-Rényi graphs, it is known that a linear-time algorithm of Karp and Sipser achieves near-optimal matching sizes asymptotically almost surely, giving a law-of-large numbers for the matching numbers of such graphs in terms of solutions to an ODE [Jonathan Aronson et al., 1998]. We provide an extension of this analysis, identifying broad ranges of stochastic block model parameters for which the Karp-Sipser algorithm achieves near-optimal matching sizes, but demonstrating that it cannot perform optimally on general stochastic block model instances. We also consider the problem of constructing a matching online, in which the vertices of one half of a bipartite stochastic block model arrive one-at-a-time, and must be matched as they arrive. We show that, when the expected degrees in all communities are equal, the competitive ratio lower bound of 0.837 found by Mastin and Jaillet for the Erdős-Rényi case [Andrew Mastin and Patrick Jaillet, 2013] is achieved by a simple greedy algorithm, and this competitive ratio is optimal. We then propose and analyze a linear-time online matching algorithm with better performance in general stochastic block models.

Cite as

Anna Brandenberger, Byron Chin, Nathan S. Sheffield, and Divya Shyamal. Matching Algorithms in the Sparse Stochastic Block Model. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 16:1-16:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{brandenberger_et_al:LIPIcs.AofA.2024.16,
  author =	{Brandenberger, Anna and Chin, Byron and Sheffield, Nathan S. and Shyamal, Divya},
  title =	{{Matching Algorithms in the Sparse Stochastic Block Model}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{16:1--16:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.16},
  URN =		{urn:nbn:de:0030-drops-204515},
  doi =		{10.4230/LIPIcs.AofA.2024.16},
  annote =	{Keywords: Matching Algorithms, Online Matching, Stochastic Block Model}
}
Document
The Recurrence/Transience of Random Walks on a Bounded Grid in an Increasing Dimension

Authors: Shuma Kumamoto, Shuji Kijima, and Tomoyuki Shirai

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
It is celebrated that a simple random walk on ℤ and ℤ² returns to the initial vertex v infinitely many times during infinitely many transitions, which is said recurrent, while it returns to v only finite times on ℤ^d for d ≥ 3, which is said transient. It is also known that a simple random walk on a growing region on ℤ^d can be recurrent depending on growing speed for any fixed d. This paper shows that a simple random walk on {0,1,…,N}ⁿ with an increasing n and a fixed N can be recurrent depending on the increasing speed of n. Precisely, we are concerned with a specific model of a random walk on a growing graph (RWoGG) and show a phase transition between the recurrence and transience of the random walk regarding the growth speed of the graph. For the proof, we develop a pausing coupling argument introducing the notion of weakly less homesick as graph growing (weakly LHaGG).

Cite as

Shuma Kumamoto, Shuji Kijima, and Tomoyuki Shirai. The Recurrence/Transience of Random Walks on a Bounded Grid in an Increasing Dimension. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 22:1-22:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kumamoto_et_al:LIPIcs.AofA.2024.22,
  author =	{Kumamoto, Shuma and Kijima, Shuji and Shirai, Tomoyuki},
  title =	{{The Recurrence/Transience of Random Walks on a Bounded Grid in an Increasing Dimension}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{22:1--22:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.22},
  URN =		{urn:nbn:de:0030-drops-204577},
  doi =		{10.4230/LIPIcs.AofA.2024.22},
  annote =	{Keywords: Random walk, dynamic graph, recurrence, transience, coupling}
}
Document
Asymptotic Enumeration of Rooted Binary Unlabeled Galled Trees with a Fixed Number of Galls

Authors: Lily Agranat-Tamir, Michael Fuchs, Bernhard Gittenberger, and Noah A. Rosenberg

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
Galled trees appear in problems concerning admixture, horizontal gene transfer, hybridization, and recombination. Building on a recursive enumerative construction, we study the asymptotic behavior of the number of rooted binary unlabeled (normal) galled trees as the number of leaves n increases, maintaining a fixed number of galls g. We find that the exponential growth with n of the number of rooted binary unlabeled normal galled trees with g galls has the same value irrespective of the value of g ≥ 0. The subexponential growth, however, depends on g; it follows c_g n^{2g-3/2}, where c_g is a constant dependent on g. Although for each g, the exponential growth is approximately 2.4833ⁿ, summing across all g, the exponential growth is instead approximated by the much larger 4.8230ⁿ.

Cite as

Lily Agranat-Tamir, Michael Fuchs, Bernhard Gittenberger, and Noah A. Rosenberg. Asymptotic Enumeration of Rooted Binary Unlabeled Galled Trees with a Fixed Number of Galls. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 27:1-27:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{agranattamir_et_al:LIPIcs.AofA.2024.27,
  author =	{Agranat-Tamir, Lily and Fuchs, Michael and Gittenberger, Bernhard and Rosenberg, Noah A.},
  title =	{{Asymptotic Enumeration of Rooted Binary Unlabeled Galled Trees with a Fixed Number of Galls}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{27:1--27:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.27},
  URN =		{urn:nbn:de:0030-drops-204626},
  doi =		{10.4230/LIPIcs.AofA.2024.27},
  annote =	{Keywords: galled trees, generating functions, phylogenetics, unlabeled trees}
}
Document
A Technique for Hardness Amplification Against AC⁰

Authors: William M. Hoza

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We study hardness amplification in the context of two well-known "moderate" average-case hardness results for AC⁰ circuits. First, we investigate the extent to which AC⁰ circuits of depth d can approximate AC⁰ circuits of some larger depth d + k. The case k = 1 is resolved by Håstad, Rossman, Servedio, and Tan’s celebrated average-case depth hierarchy theorem (JACM 2017). Our contribution is a significantly stronger correlation bound when k ≥ 3. Specifically, we show that there exists a linear-size AC⁰_{d + k} circuit h : {0, 1}ⁿ → {0, 1} such that for every AC⁰_d circuit g, either g has size exp(n^{Ω(1/d)}), or else g agrees with h on at most a (1/2 + ε)-fraction of inputs where ε = exp(-(1/d) ⋅ Ω(log n)^{k-1}). For comparison, Håstad, Rossman, Servedio, and Tan’s result has ε = n^{-Θ(1/d)}. Second, we consider the majority function. It is well known that the majority function is moderately hard for AC⁰ circuits (and stronger classes). Our contribution is a stronger correlation bound for the XOR of t copies of the n-bit majority function, denoted MAJ_n^{⊕ t}. We show that if g is an AC⁰_d circuit of size S, then g agrees with MAJ_n^{⊕ t} on at most a (1/2 + ε)-fraction of inputs, where ε = (O(log S)^{d - 1} / √n)^t. To prove these results, we develop a hardness amplification technique that is tailored to a specific type of circuit lower bound proof. In particular, one way to show that a function h is moderately hard for AC⁰ circuits is to (a) design some distribution over random restrictions or random projections, (b) show that AC⁰ circuits simplify to shallow decision trees under these restrictions/projections, and finally (c) show that after applying the restriction/projection, h is moderately hard for shallow decision trees with respect to an appropriate distribution. We show that (roughly speaking) if h can be proven to be moderately hard by a proof with that structure, then XORing multiple copies of h amplifies its hardness. Our analysis involves a new kind of XOR lemma for decision trees, which might be of independent interest.

Cite as

William M. Hoza. A Technique for Hardness Amplification Against AC⁰. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hoza:LIPIcs.CCC.2024.1,
  author =	{Hoza, William M.},
  title =	{{A Technique for Hardness Amplification Against AC⁰}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{1:1--1:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.1},
  URN =		{urn:nbn:de:0030-drops-203977},
  doi =		{10.4230/LIPIcs.CCC.2024.1},
  annote =	{Keywords: Bounded-depth circuits, average-case lower bounds, hardness amplification, XOR lemmas}
}
Document
Quantum Automating TC⁰-Frege Is LWE-Hard

Authors: Noel Arteche, Gaia Carenini, and Matthew Gray

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We prove the first hardness results against efficient proof search by quantum algorithms. We show that under Learning with Errors (LWE), the standard lattice-based cryptographic assumption, no quantum algorithm can weakly automate TC⁰-Frege. This extends the line of results of Krajíček and Pudlák (Information and Computation, 1998), Bonet, Pitassi, and Raz (FOCS, 1997), and Bonet, Domingo, Gavaldà, Maciel, and Pitassi (Computational Complexity, 2004), who showed that Extended Frege, TC⁰-Frege and AC⁰-Frege, respectively, cannot be weakly automated by classical algorithms if either the RSA cryptosystem or the Diffie-Hellman key exchange protocol are secure. To the best of our knowledge, this is the first interaction between quantum computation and propositional proof search.

Cite as

Noel Arteche, Gaia Carenini, and Matthew Gray. Quantum Automating TC⁰-Frege Is LWE-Hard. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 15:1-15:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arteche_et_al:LIPIcs.CCC.2024.15,
  author =	{Arteche, Noel and Carenini, Gaia and Gray, Matthew},
  title =	{{Quantum Automating TC⁰-Frege Is LWE-Hard}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{15:1--15:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.15},
  URN =		{urn:nbn:de:0030-drops-204117},
  doi =		{10.4230/LIPIcs.CCC.2024.15},
  annote =	{Keywords: automatability, post-quantum cryptography, feasible interpolation}
}
Document
Public-Key Pseudoentanglement and the Hardness of Learning Ground State Entanglement Structure

Authors: Adam Bouland, Bill Fefferman, Soumik Ghosh, Tony Metger, Umesh Vazirani, Chenyi Zhang, and Zixin Zhou

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Given a local Hamiltonian, how difficult is it to determine the entanglement structure of its ground state? We show that this problem is computationally intractable even if one is only trying to decide if the ground state is volume-law vs near area-law entangled. We prove this by constructing strong forms of pseudoentanglement in a public-key setting, where the circuits used to prepare the states are public knowledge. In particular, we construct two families of quantum circuits which produce volume-law vs near area-law entangled states, but nonetheless the classical descriptions of the circuits are indistinguishable under the Learning with Errors (LWE) assumption. Indistinguishability of the circuits then allows us to translate our construction to Hamiltonians. Our work opens new directions in Hamiltonian complexity, for example whether it is difficult to learn certain phases of matter.

Cite as

Adam Bouland, Bill Fefferman, Soumik Ghosh, Tony Metger, Umesh Vazirani, Chenyi Zhang, and Zixin Zhou. Public-Key Pseudoentanglement and the Hardness of Learning Ground State Entanglement Structure. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 21:1-21:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bouland_et_al:LIPIcs.CCC.2024.21,
  author =	{Bouland, Adam and Fefferman, Bill and Ghosh, Soumik and Metger, Tony and Vazirani, Umesh and Zhang, Chenyi and Zhou, Zixin},
  title =	{{Public-Key Pseudoentanglement and the Hardness of Learning Ground State Entanglement Structure}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{21:1--21:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.21},
  URN =		{urn:nbn:de:0030-drops-204175},
  doi =		{10.4230/LIPIcs.CCC.2024.21},
  annote =	{Keywords: Quantum computing, Quantum complexity theory, entanglement}
}
Document
The Computational Advantage of MIP^∗ Vanishes in the Presence of Noise

Authors: Yangjing Dong, Honghao Fu, Anand Natarajan, Minglong Qin, Haochen Xu, and Penghui Yao

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The class MIP^* of quantum multiprover interactive proof systems with entanglement is much more powerful than its classical counterpart MIP [Babai et al., 1991; Zhengfeng Ji et al., 2020; Zhengfeng Ji et al., 2020]: while MIP = NEXP, the quantum class MIP^* is equal to RE, a class including the halting problem. This is because the provers in MIP^* can share unbounded quantum entanglement. However, recent works [Qin and Yao, 2021; Qin and Yao, 2023] have shown that this advantage is significantly reduced if the provers' shared state contains noise. This paper attempts to exactly characterize the effect of noise on the computational power of quantum multiprover interactive proof systems. We investigate the quantum two-prover one-round interactive system MIP^*[poly,O(1)], where the verifier sends polynomially many bits to the provers and the provers send back constantly many bits. We show noise completely destroys the computational advantage given by shared entanglement in this model. Specifically, we show that if the provers are allowed to share arbitrarily many EPR states, where each EPR state is affected by an arbitrarily small constant amount of noise, the resulting complexity class is equivalent to NEXP = MIP. This improves significantly on the previous best-known bound of NEEEXP (nondeterministic triply exponential time) [Qin and Yao, 2021]. We also show that this collapse in power is due to the noise, rather than the O(1) answer size, by showing that allowing for noiseless EPR states gives the class the full power of RE = MIP^*[poly, poly]. Along the way, we develop two technical tools of independent interest. First, we give a new, deterministic tester for the positivity of an exponentially large matrix, provided it has a low-degree Fourier decomposition in terms of Pauli matrices. Secondly, we develop a new invariance principle for smooth matrix functions having bounded third-order Fréchet derivatives or which are Lipschitz continuous.

Cite as

Yangjing Dong, Honghao Fu, Anand Natarajan, Minglong Qin, Haochen Xu, and Penghui Yao. The Computational Advantage of MIP^∗ Vanishes in the Presence of Noise. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 30:1-30:71, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dong_et_al:LIPIcs.CCC.2024.30,
  author =	{Dong, Yangjing and Fu, Honghao and Natarajan, Anand and Qin, Minglong and Xu, Haochen and Yao, Penghui},
  title =	{{The Computational Advantage of MIP^∗ Vanishes in the Presence of Noise}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{30:1--30:71},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.30},
  URN =		{urn:nbn:de:0030-drops-204263},
  doi =		{10.4230/LIPIcs.CCC.2024.30},
  annote =	{Keywords: Interactive proofs, Quantum complexity theory, Quantum entanglement, Fourier analysis, Matrix analysis, Invariance principle, Derandomization, PCP, Locally testable code, Positivity testing}
}
Document
Gap MCSP Is Not (Levin) NP-Complete in Obfustopia

Authors: Noam Mazor and Rafael Pass

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We demonstrate that under believable cryptographic hardness assumptions, Gap versions of standard meta-complexity problems, such as the Minimum Circuit Size Problem (MCSP) and the Minimum Time-Bounded Kolmogorov Complexity problem (MKTP) are not NP-complete w.r.t. Levin (i.e., witness-preserving many-to-one) reductions. In more detail: - Assuming the existence of indistinguishability obfuscation, and subexponentially-secure one-way functions, an appropriate Gap version of MCSP is not NP-complete under randomized Levin-reductions. - Assuming the existence of subexponentially-secure indistinguishability obfuscation, subexponentially-secure one-way functions and injective PRGs, an appropriate Gap version of MKTP is not NP-complete under randomized Levin-reductions.

Cite as

Noam Mazor and Rafael Pass. Gap MCSP Is Not (Levin) NP-Complete in Obfustopia. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 36:1-36:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mazor_et_al:LIPIcs.CCC.2024.36,
  author =	{Mazor, Noam and Pass, Rafael},
  title =	{{Gap MCSP Is Not (Levin) NP-Complete in Obfustopia}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{36:1--36:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.36},
  URN =		{urn:nbn:de:0030-drops-204322},
  doi =		{10.4230/LIPIcs.CCC.2024.36},
  annote =	{Keywords: Kolmogorov complexity, MCSP, Levin Reduction}
}
Document
Practical Minimum Path Cover

Authors: Manuel Cáceres, Brendan Mumey, Santeri Toivonen, and Alexandru I. Tomescu

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Computing a minimum path cover (MPC) of a directed acyclic graph (DAG) is a fundamental problem with a myriad of applications, including reachability. Although it is known how to solve the problem by a simple reduction to minimum flow, recent theoretical advances exploit this idea to obtain algorithms parameterized by the number of paths of an MPC, known as the width. These results obtain fast [Mäkinen et al., TALG 2019] and even linear time [Cáceres et al., SODA 2022] algorithms in the small-width regime. In this paper, we present the first publicly available high-performance implementation of state-of-the-art MPC algorithms, including the parameterized approaches. Our experiments on random DAGs show that parameterized algorithms are orders-of-magnitude faster on dense graphs. Additionally, we present new fast pre-processing heuristics based on transitive edge sparsification. We show that our heuristics improve MPC-solvers by orders of magnitude.

Cite as

Manuel Cáceres, Brendan Mumey, Santeri Toivonen, and Alexandru I. Tomescu. Practical Minimum Path Cover. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 3:1-3:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{caceres_et_al:LIPIcs.SEA.2024.3,
  author =	{C\'{a}ceres, Manuel and Mumey, Brendan and Toivonen, Santeri and Tomescu, Alexandru I.},
  title =	{{Practical Minimum Path Cover}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{3:1--3:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.3},
  URN =		{urn:nbn:de:0030-drops-203687},
  doi =		{10.4230/LIPIcs.SEA.2024.3},
  annote =	{Keywords: minimum path cover, directed acyclic graph, maximum flow, parameterized algorithms, edge sparsification, algorithm engineering}
}
Document
Buffered Streaming Edge Partitioning

Authors: Adil Chhabra, Marcelo Fonseca Faraj, Christian Schulz, and Daniel Seemaier

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Addressing the challenges of processing massive graphs, which are prevalent in diverse fields such as social, biological, and technical networks, we introduce HeiStreamE and FreightE, two innovative (buffered) streaming algorithms designed for efficient edge partitioning of large-scale graphs. HeiStreamE utilizes an adapted Split-and-Connect graph model and a Fennel-based multilevel partitioning scheme, while FreightE partitions a hypergraph representation of the input graph. Besides ensuring superior solution quality, these approaches also overcome the limitations of existing algorithms by maintaining linear dependency on the graph size in both time and memory complexity with no dependence on the number of blocks of partition. Our comprehensive experimental analysis demonstrates that HeiStreamE outperforms current streaming algorithms and the re-streaming algorithm 2PS in partitioning quality (replication factor), and is more memory-efficient for real-world networks where the number of edges is far greater than the number of vertices. Further, FreightE is shown to produce fast and efficient partitions, particularly for higher numbers of partition blocks.

Cite as

Adil Chhabra, Marcelo Fonseca Faraj, Christian Schulz, and Daniel Seemaier. Buffered Streaming Edge Partitioning. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 5:1-5:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chhabra_et_al:LIPIcs.SEA.2024.5,
  author =	{Chhabra, Adil and Fonseca Faraj, Marcelo and Schulz, Christian and Seemaier, Daniel},
  title =	{{Buffered Streaming Edge Partitioning}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{5:1--5:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.5},
  URN =		{urn:nbn:de:0030-drops-203701},
  doi =		{10.4230/LIPIcs.SEA.2024.5},
  annote =	{Keywords: graph partitioning, edge partitioning, streaming, online, buffered partitioning}
}
Document
Top- k Frequent Patterns in Streams and Parameterized-Space LZ Compression

Authors: Patrick Dinklage, Johnnes Fischer, and Nicola Prezza

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
We present novel online approximations of the Lempel-Ziv 77 (LZ77) and Lempel-Ziv 78 (LZ78) compression schemes [Lempel & Ziv, 1977/1978] with parameterizable space usage based on estimating which k patterns occur the most frequently in the streamed input for parameter k. This new approach overcomes the issue of finding only local repetitions, which is a natural limitation of algorithms that compress using a sliding window or by partitioning the input into blocks. For this, we introduce the top-k trie, a summary for maintaining online the top-k frequent consecutive patterns in a stream of characters based on a combination of the Lempel-Ziv 78 compression scheme and the Misra-Gries algorithm for frequent item estimation in streams. Using straightforward encoding, our implementations yield compression ratios (output over input size) competitive with established general-purpose LZ-based compression utilities such as gzip or xz.

Cite as

Patrick Dinklage, Johnnes Fischer, and Nicola Prezza. Top- k Frequent Patterns in Streams and Parameterized-Space LZ Compression. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 9:1-9:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dinklage_et_al:LIPIcs.SEA.2024.9,
  author =	{Dinklage, Patrick and Fischer, Johnnes and Prezza, Nicola},
  title =	{{Top- k Frequent Patterns in Streams and Parameterized-Space LZ Compression}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{9:1--9:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.9},
  URN =		{urn:nbn:de:0030-drops-203748},
  doi =		{10.4230/LIPIcs.SEA.2024.9},
  annote =	{Keywords: compression, streaming, heavy hitters, algorithm engineering}
}
Document
Streaming Matching and Edge Cover in Practice

Authors: S M Ferdous, Alex Pothen, and Mahantesh Halappanavar

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Graph algorithms with polynomial space and time requirements often become infeasible for massive graphs with billions of edges or more. State-of-the-art approaches therefore employ approximate serial, parallel, and distributed algorithms to tackle these challenges. However, such approaches require storing the entire graph in memory and thus need access to costly computing resources such as clusters and supercomputers. In this paper, we present practical streaming approaches for solving massive graph problems using limited memory for two prototypical graph problems: maximum weighted matching and minimum weighted edge cover. For matching, we conduct a thorough computational study on two of the semi-streaming algorithms including a recent breakthrough result that achieves a 1/(2+ε)-approximation of the weight while using O(n log W /ε) memory (here n is the number of vertices and W is the maximum edge weight), designed by Paz and Schwartzman [SODA, 2017]. Empirically, we show that the semi-streaming algorithms produce matchings whose weight is close to the best 1/2-approximate offline algorithm while requiring less time and an order-of-magnitude less memory. For minimum weighted edge cover, we develop three novel semi-streaming algorithms. Two of these algorithms require a single pass through the input graph, require O(n log n) memory, and provide a 2-approximation guarantee on the objective. We also leverage a relationship between approximate maximum weighted matching and approximate minimum weighted edge cover to develop a two-pass 3/2+ε-approximate algorithm with the memory requirement of Paz and Schwartzman’s semi-streaming matching algorithm. These streaming approaches are compared against the state-of-the-art 3/2-approximate offline algorithm. The semi-streaming matching and the novel edge cover algorithms proposed in this paper can process graphs with several billions of edges in under 30 minutes using 6 GB of memory, which is at least an order of magnitude improvement from the offline (non-streaming) algorithms. For the largest graph, the best alternative offline parallel approximation algorithm (GPA+ROMA) could not finish in three hours even while employing hundreds of processors and 1 TB of memory. We also demonstrate an application of semi-streaming algorithm by computing a matching using linearly bounded memory on intersection graphs derived from three machine learning datasets, while the existing offline algorithms could not complete on one of these datasets since its memory requirement exceeded 1TB.

Cite as

S M Ferdous, Alex Pothen, and Mahantesh Halappanavar. Streaming Matching and Edge Cover in Practice. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 12:1-12:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ferdous_et_al:LIPIcs.SEA.2024.12,
  author =	{Ferdous, S M and Pothen, Alex and Halappanavar, Mahantesh},
  title =	{{Streaming Matching and Edge Cover in Practice}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{12:1--12:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.12},
  URN =		{urn:nbn:de:0030-drops-203773},
  doi =		{10.4230/LIPIcs.SEA.2024.12},
  annote =	{Keywords: Matching, Edge Cover, Semi-Streaming Algorithm, Parallel Algorithms, Algorithm Engineering}
}
Document
Barcode Selection and Layout Optimization in Spatial Transcriptomics

Authors: Frederik L. Jatzkowski, Antonia Schmidt, Robert Mank, Steffen Schüler, and Matthias Müller-Hannemann

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
An important special case of the quadratic assignment problem arises in the synthesis of DNA microarrays for high-resolution spatial transcriptomics. The task is to select a suitable subset from a set of barcodes, i. e. short DNA strings that serve as unique identifiers, and to assign the selected barcodes to positions on a two-dimensional array in such a way that a position-dependent cost function is minimized. A typical microarray with dimensions of 768×1024 requires 786,432 many barcodes to be placed, leading to very challenging large-scale combinatorial optimization problems. The general quadratic assignment problem is well-known for its hardness, both in theory and in practice. It turns out that this also holds for the special case of the barcode layout problem. We show that the problem is even hard to approximate: It is MaxSNP-hard. An ILP formulation theoretically allows the computation of optimal results, but it is only applicable for tiny instances. Therefore, we have developed layout constructing and improving heuristics with the aim of computing near-optimal solutions for instances of realistic size. These include a sorting-based algorithm, a greedy algorithm, 2-OPT-based local search and a genetic algorithm. To assess the quality of the results, we compare the generated solutions with the expected cost of a random layout and with lower bounds. A combination of the greedy algorithm and 2-OPT local search produces the most promising results in terms of both quality and runtime. Solutions to large-scale instances with arrays of dimension 768×1024 show a 37% reduction in cost over a random solution and can be computed in about 3 minutes. Since the universe of suitable barcodes is much larger than the number of barcodes needed, this can be exploited. Experiments with different surpluses of barcodes show that a significant improvement in layout quality can be achieved at the cost of a reasonable increase in runtime. Another interesting finding is that the restriction of the barcode design space by biochemical constraints is actually beneficial for the overall layout cost.

Cite as

Frederik L. Jatzkowski, Antonia Schmidt, Robert Mank, Steffen Schüler, and Matthias Müller-Hannemann. Barcode Selection and Layout Optimization in Spatial Transcriptomics. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 17:1-17:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jatzkowski_et_al:LIPIcs.SEA.2024.17,
  author =	{Jatzkowski, Frederik L. and Schmidt, Antonia and Mank, Robert and Sch\"{u}ler, Steffen and M\"{u}ller-Hannemann, Matthias},
  title =	{{Barcode Selection and Layout Optimization in Spatial Transcriptomics}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{17:1--17:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.17},
  URN =		{urn:nbn:de:0030-drops-203821},
  doi =		{10.4230/LIPIcs.SEA.2024.17},
  annote =	{Keywords: Spatial Transcriptomics, Array Layout, Optimization, Computational Complexity, GPU Computing, Integer Linear Programming, Metaheuristics}
}
  • Refine by Author
  • 12 Huang, Chien-Chung
  • 8 Huang, Xuejing
  • 8 Oliveira, Bruno C. d. S.
  • 6 Huang, Ziyun
  • 6 Xu, Jinhui
  • Show More...

  • Refine by Classification
  • 13 Theory of computation → Computational geometry
  • 9 Theory of computation → Graph algorithms analysis
  • 8 Theory of computation → Facility location and clustering
  • 8 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 8 Theory of computation → Type theory
  • Show More...

  • Refine by Keyword
  • 5 Approximation Algorithms
  • 5 approximation algorithms
  • 4 intersection types
  • 4 operational semantics
  • 4 streaming
  • Show More...

  • Refine by Type
  • 158 document

  • Refine by Publication Year
  • 50 2024
  • 18 2022
  • 14 2018
  • 14 2023
  • 13 2021
  • Show More...