98 Search Results for "Lombardy, Sylvain"


Volume

LIPIcs, Volume 272

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)

MFCS 2023, August 28 to September 1, 2023, Bordeaux, France

Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg

Document
Track A: Algorithms, Complexity and Games
Parameterized Algorithms for Steiner Forest in Bounded Width Graphs

Authors: Andreas Emil Feldmann and Michael Lampis

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we reassess the parameterized complexity and approximability of the well-studied Steiner Forest problem in several graph classes of bounded width. The problem takes an edge-weighted graph and pairs of vertices as input, and the aim is to find a minimum cost subgraph in which each given vertex pair lies in the same connected component. It is known that this problem is APX-hard in general, and NP-hard on graphs of treewidth 3, treedepth 4, and feedback vertex set size 2. However, Bateni, Hajiaghayi and Marx [JACM, 2011] gave an approximation scheme with a runtime of n^O(k²/ε) on graphs of treewidth k. Our main result is a much faster efficient parameterized approximation scheme (EPAS) with a runtime of 2^O(k²/ε log k/ε)⋅n^O(1). If k instead is the vertex cover number of the input graph, we show how to compute the optimum solution in 2^O(k log k)⋅n^O(1) time, and we also prove that this runtime dependence on k is asymptotically best possible, under ETH. Furthermore, if k is the size of a feedback edge set, then we obtain a faster 2^O(k)⋅n^O(1) time algorithm, which again cannot be improved under ETH.

Cite as

Andreas Emil Feldmann and Michael Lampis. Parameterized Algorithms for Steiner Forest in Bounded Width Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 61:1-61:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{feldmann_et_al:LIPIcs.ICALP.2024.61,
  author =	{Feldmann, Andreas Emil and Lampis, Michael},
  title =	{{Parameterized Algorithms for Steiner Forest in Bounded Width Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{61:1--61:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.61},
  URN =		{urn:nbn:de:0030-drops-202048},
  doi =		{10.4230/LIPIcs.ICALP.2024.61},
  annote =	{Keywords: Steiner Forest, Approximation Algorithms, FPT algorithms}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
The Complexity of Computing in Continuous Time: Space Complexity Is Precision

Authors: Manon Blanc and Olivier Bournez

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Models of computations over the integers are equivalent from a computability and complexity theory point of view by the (effective) Church-Turing thesis. It is not possible to unify discrete-time models over the reals. The situation is unclear but simpler for continuous-time models, as there is a unifying mathematical model, provided by ordinary differential equations (ODEs). Each model corresponds to a particular class of ODEs. For example, the General Purpose Analog Computer model of Claude Shannon, introduced as a mathematical model of analogue machines (Differential Analyzers), is known to correspond to polynomial ODEs. However, the question of a robust complexity theory for such models and its relations to classical (discrete) computation theory is an old problem. There was some recent significant progress: it has been proved that (classical) time complexity corresponds to the length of the involved curves, i.e. to the length of the solutions of the corresponding polynomial ODEs. The question of whether there is a simple and robust way to measure space complexity remains. We argue that space complexity corresponds to precision and conversely. Concretely, we propose and prove an algebraic characterisation of FPSPACE, using continuous ODEs. Recent papers proposed algebraic characterisations of polynomial-time and polynomial-space complexity classes over the reals, but with a discrete-time: those algebras rely on discrete ODE schemes. Here, we use classical (continuous) ODEs, with the classic definition of derivation and hence with the more natural context of continuous-time associated with ODEs. We characterise both the case of polynomial space functions over the integers and the reals. This is done by proving two inclusions. The first is obtained using some original polynomial space method for solving ODEs. For the other, we prove that Turing machines, with a proper representation of real numbers, can be simulated by continuous ODEs and not just discrete ODEs. A major consequence is that the associated space complexity is provably related to the numerical stability of involved schemas and the associated required precision. We obtain that a problem can be solved in polynomial space if and only if it can be simulated by some numerically stable ODE, using a polynomial precision.

Cite as

Manon Blanc and Olivier Bournez. The Complexity of Computing in Continuous Time: Space Complexity Is Precision. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 129:1-129:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{blanc_et_al:LIPIcs.ICALP.2024.129,
  author =	{Blanc, Manon and Bournez, Olivier},
  title =	{{The Complexity of Computing in Continuous Time: Space Complexity Is Precision}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{129:1--129:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.129},
  URN =		{urn:nbn:de:0030-drops-202722},
  doi =		{10.4230/LIPIcs.ICALP.2024.129},
  annote =	{Keywords: Models of computation, Ordinary differential equations, Real computations, Analog computations, Complexity theory, Implicit complexity, Recursion scheme}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Functional Closure Properties of Finite ℕ-Weighted Automata

Authors: Julian Dörfler and Christian Ikenmeyer

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We determine all functional closure properties of finite ℕ-weighted automata, even all multivariate ones, and in particular all multivariate polynomials. We also determine all univariate closure properties in the promise setting, and all multivariate closure properties under certain assumptions on the promise, in particular we determine all multivariate closure properties where the output vector lies on a monotone algebraic graph variety.

Cite as

Julian Dörfler and Christian Ikenmeyer. Functional Closure Properties of Finite ℕ-Weighted Automata. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 134:1-134:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dorfler_et_al:LIPIcs.ICALP.2024.134,
  author =	{D\"{o}rfler, Julian and Ikenmeyer, Christian},
  title =	{{Functional Closure Properties of Finite \mathbb{N}-Weighted Automata}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{134:1--134:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.134},
  URN =		{urn:nbn:de:0030-drops-202777},
  doi =		{10.4230/LIPIcs.ICALP.2024.134},
  annote =	{Keywords: Finite automata, weighted automata, counting, closure properties, algebraic varieties}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
On Homomorphism Indistinguishability and Hypertree Depth

Authors: Benjamin Scheidt

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
GC^k is a logic introduced by Scheidt and Schweikardt (2023) to express properties of hypergraphs. It is similar to first-order logic with counting quantifiers (C) adapted to the hypergraph setting. It has distinct sets of variables for vertices and for hyperedges and requires vertex variables to be guarded by hyperedge variables on every quantification. We prove that two hypergraphs G, H satisfy the same sentences in the logic GC^k with guard depth at most k if, and only if, they are homomorphism indistinguishable over the class of hypergraphs of strict hypertree depth at most k. This lifts the analogous result for tree depth ≤ k and sentences of first-order logic with counting quantifiers of quantifier rank at most k due to Grohe (2020) from graphs to hypergraphs. The guard depth of a formula is the quantifier rank with respect to hyperedge variables, and strict hypertree depth is a restriction of hypertree depth as defined by Adler, Gavenčiak and Klimošová (2012). To justify this restriction, we show that for every H, the strict hypertree depth of H is at most 1 larger than its hypertree depth, and we give additional evidence that strict hypertree depth can be viewed as a reasonable generalisation of tree depth for hypergraphs.

Cite as

Benjamin Scheidt. On Homomorphism Indistinguishability and Hypertree Depth. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 152:1-152:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{scheidt:LIPIcs.ICALP.2024.152,
  author =	{Scheidt, Benjamin},
  title =	{{On Homomorphism Indistinguishability and Hypertree Depth}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{152:1--152:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.152},
  URN =		{urn:nbn:de:0030-drops-202958},
  doi =		{10.4230/LIPIcs.ICALP.2024.152},
  annote =	{Keywords: homomorphism indistinguishability, counting logics, guarded logics, hypergraphs, incidence graphs, tree depth, elimination forest, hypertree width}
}
Document
Complete Volume
LIPIcs, Volume 272, MFCS 2023, Complete Volume

Authors: Jérôme Leroux, Sylvain Lombardy, and David Peleg

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
LIPIcs, Volume 272, MFCS 2023, Complete Volume

Cite as

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 1-1302, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Proceedings{leroux_et_al:LIPIcs.MFCS.2023,
  title =	{{LIPIcs, Volume 272, MFCS 2023, Complete Volume}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{1--1302},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023},
  URN =		{urn:nbn:de:0030-drops-185332},
  doi =		{10.4230/LIPIcs.MFCS.2023},
  annote =	{Keywords: LIPIcs, Volume 272, MFCS 2023, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Jérôme Leroux, Sylvain Lombardy, and David Peleg

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 0:i-0:xviii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{leroux_et_al:LIPIcs.MFCS.2023.0,
  author =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{0:i--0:xviii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.0},
  URN =		{urn:nbn:de:0030-drops-185349},
  doi =		{10.4230/LIPIcs.MFCS.2023.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Talk
Exploring the Space of Colourings with Kempe Changes (Invited Talk)

Authors: Marthe Bonamy

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
Kempe changes were introduced in 1879 in an attempt to prove the 4-colour theorem. They are a convenient if not crucial tool to prove various colouring theorems. Here, we consider how to navigate from a colouring to another through Kempe changes. When is it possible? How fast?

Cite as

Marthe Bonamy. Exploring the Space of Colourings with Kempe Changes (Invited Talk). In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 1:1-1:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bonamy:LIPIcs.MFCS.2023.1,
  author =	{Bonamy, Marthe},
  title =	{{Exploring the Space of Colourings with Kempe Changes}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{1:1--1:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.1},
  URN =		{urn:nbn:de:0030-drops-185350},
  doi =		{10.4230/LIPIcs.MFCS.2023.1},
  annote =	{Keywords: Graph theory, graph coloring, reconfiguration}
}
Document
Invited Talk
Online Algorithms with Predictions (Invited Talk)

Authors: Joan Boyar

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
We give an introduction to online algorithms with predictions, from an algorithms researcher’s perspective, concentrating on minimization problems.

Cite as

Joan Boyar. Online Algorithms with Predictions (Invited Talk). In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 2:1-2:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{boyar:LIPIcs.MFCS.2023.2,
  author =	{Boyar, Joan},
  title =	{{Online Algorithms with Predictions}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{2:1--2:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.2},
  URN =		{urn:nbn:de:0030-drops-185368},
  doi =		{10.4230/LIPIcs.MFCS.2023.2},
  annote =	{Keywords: Online algorithms with predictions, online algorithms with advice, random order analysis}
}
Document
Invited Talk
Modern Parallel Algorithms (Invited Talk)

Authors: Artur Czumaj

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
Recent advances in the design of efficient parallel algorithms have been largely focusing on the nowadays classical model of parallel computing called Massive Parallel Computation (MPC), which follows the framework of MapReduce systems. In this talk we will survey recent advances in the design of algorithms for graph problems for the MPC model and will mention some interesting open questions in this area.

Cite as

Artur Czumaj. Modern Parallel Algorithms (Invited Talk). In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 3:1-3:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{czumaj:LIPIcs.MFCS.2023.3,
  author =	{Czumaj, Artur},
  title =	{{Modern Parallel Algorithms}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{3:1--3:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.3},
  URN =		{urn:nbn:de:0030-drops-185378},
  doi =		{10.4230/LIPIcs.MFCS.2023.3},
  annote =	{Keywords: Distributed computing, parallel computing}
}
Document
Invited Talk
Algebraic Reasoning for (Un)Solvable Loops (Invited Talk)

Authors: Laura Kovács

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
Loop invariants describe valid program properties that hold before and after every loop iteration. As such, loop invariants are the workhorses in formalizing loop semantics and automating the formal analysis and verification of programs with loops. While automatically synthesizing loop invariants is, in general, an uncomputable problem, when considering only single-path loops with linear updates (linear loops), the strongest polynomial invariant is in fact computable [Michael Karr, 1976; Markus Müller-Olm and Helmut Seidl, 2004; Laura Kovács, 2008; Ehud Hrushovski et al., 2018]. Yet, already for loops with "only" polynomial updates, computing the strongest invariant has been an open challenge since 2004 [Markus Müller-Olm and Helmut Seidl, 2004]. In this invited talk, we first present computability results on polynomial invariant synthesis for restricted polynomial loops, called solvable loops [Rodríguez-Carbonell and Kapur, 2004]. Key to solvable loops is that one can automatically compute invariants from closed-form solutions of algebraic recurrence equations that model the loop behaviour [Laura Kovács, 2008; Andreas Humenberger et al., 2017]. We also establish a technique for invariant synthesis for classes of loops that are not solvable, termed unsolvable loops [Daneshvar Amrollahi et al., 2022]. We next study the limits of computability in deriving the (strongest) polynomial invariants for arbitrary polynomial loops. We prove that computing the strongest polynomial invariant of arbitrary, single-path polynomial loops is very hard [Julian Müllner, 2023] - namely, it is at least as hard as the Skolem problem [Graham Everest et al., 2003; Terrence Tao, 2008], a prominent algebraic problem in the theory of linear recurrences. Going beyond single-path loops, we show that the strongest polynomial invariant is uncomputable already for multi-path polynomial loops with arbitrary quadratic polynomial updates [Laura Kovács and Anton Varonka, 2023].

Cite as

Laura Kovács. Algebraic Reasoning for (Un)Solvable Loops (Invited Talk). In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 4:1-4:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kovacs:LIPIcs.MFCS.2023.4,
  author =	{Kov\'{a}cs, Laura},
  title =	{{Algebraic Reasoning for (Un)Solvable Loops}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{4:1--4:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.4},
  URN =		{urn:nbn:de:0030-drops-185385},
  doi =		{10.4230/LIPIcs.MFCS.2023.4},
  annote =	{Keywords: Symbolic Computation, Formal Methods, Loop Analysis, Polynomial Invariants}
}
Document
Invited Talk
Sliding into the Future: Investigating Sliding Windows in Temporal Graphs (Invited Talk)

Authors: Nina Klobas, George B. Mertzios, and Paul G. Spirakis

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
Graphs are fundamental tools for modelling relations among objects in various scientific fields. However, traditional static graphs have limitations when it comes to capturing the dynamic nature of real-world systems. To overcome this limitation, temporal graphs have been introduced as a framework to model graphs that change over time. In temporal graphs the edges among vertices appear and disappear at specific time steps, reflecting the temporal dynamics of the observed system, which allows us to analyse time dependent patterns and processes. In this paper we focus on the research related to sliding time windows in temporal graphs. Sliding time windows offer a way to analyse specific time intervals within the lifespan of a temporal graph. By sliding the window along the timeline, we can examine the graph’s characteristics and properties within different time periods. This paper provides an overview of the research on sliding time windows in temporal graphs. Although progress has been made in this field, there are still many interesting questions and challenges to be explored. We discuss some of the open problems and highlight their potential for future research.

Cite as

Nina Klobas, George B. Mertzios, and Paul G. Spirakis. Sliding into the Future: Investigating Sliding Windows in Temporal Graphs (Invited Talk). In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 5:1-5:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{klobas_et_al:LIPIcs.MFCS.2023.5,
  author =	{Klobas, Nina and Mertzios, George B. and Spirakis, Paul G.},
  title =	{{Sliding into the Future: Investigating Sliding Windows in Temporal Graphs}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{5:1--5:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.5},
  URN =		{urn:nbn:de:0030-drops-185397},
  doi =		{10.4230/LIPIcs.MFCS.2023.5},
  annote =	{Keywords: Temporal Graphs, Sliding Time Windows}
}
Document
Roman Census: Enumerating and Counting Roman Dominating Functions on Graph Classes

Authors: Faisal N. Abu-Khzam, Henning Fernau, and Kevin Mann

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
The concept of Roman domination has recently been studied concerning enumerating and counting in F. N. Abu-Khzam et al. (WG 2022). More technically speaking, a function that assigns 0,1,2 to the vertices of an undirected graph is called a Roman dominating function if each vertex assigned zero has a neighbor assigned two. Such a function is called minimal if decreasing any assignment to any vertex would yield a function that is no longer a Roman dominating function. It has been shown that minimal Roman dominating functions can be enumerated with polynomial delay, i.e., between any two outputs of a solution, no more than polynomial time will elapse. This contrasts what is known about minimal dominating sets, where the question whether or not these can be enumerated with polynomial delay is open for more than 40 years. This makes the concept of Roman domination rather special and interesting among the many variants of domination problems studied in the literature, as it has been shown for several of these variants that the question of enumerating minimal solutions is tightly linked to that of enumerating minimal dominating sets, see M. Kanté et al. in SIAM J. Disc. Math., 2014. The running time of the mentioned enumeration algorithm for minimal Roman dominating functions (Abu-Khzam et al., WG 2022) could be estimated as 𝒪(1.9332ⁿ) on general graphs of order n. Here, we focus on special graph classes, as has been also done for enumerating minimal dominating sets before. More specifically, for chordal graphs, we present an enumeration algorithm running in time 𝒪(1.8940ⁿ). It is unknown if this gives a tight bound on the maximum number of minimal Roman dominating functions in chordal graphs. For interval graphs, we can lower this time bound further to 𝒪(1.7321ⁿ), which also matches the known lower bound concerning the maximum number of minimal Roman dominating functions. We can also provide a matching lower and upper bound for forests, which is (incidentally) the same, namely 𝒪^*(√3ⁿ). Furthermore, we present an optimal enumeration algorithm running in time 𝒪^*(∛3ⁿ) for split graphs and for cobipartite graphs, i.e., we can also give a matching lower bound example for these graph classes. Hence, our enumeration algorithms for interval graphs, forests, split graphs and cobipartite graphs are all optimal. The importance of our results stems from the fact that, for other types of domination problems, optimal enumeration algorithms are not always found. Interestingly, we use a different form of analysis for the running times of our different algorithms, and the branchings had to be tailored and tweaked to obtain the intended optimality results. Our Roman dominating functions enumeration algorithm for trees and forests is distinctively different from the one for minimal dominating sets by Rote (SODA 2019).Our approach also allows to give concrete formulas for counting minimal Roman dominating functions on more concrete graph families like paths.

Cite as

Faisal N. Abu-Khzam, Henning Fernau, and Kevin Mann. Roman Census: Enumerating and Counting Roman Dominating Functions on Graph Classes. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 6:1-6:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{abukhzam_et_al:LIPIcs.MFCS.2023.6,
  author =	{Abu-Khzam, Faisal N. and Fernau, Henning and Mann, Kevin},
  title =	{{Roman Census: Enumerating and Counting Roman Dominating Functions on Graph Classes}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{6:1--6:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.6},
  URN =		{urn:nbn:de:0030-drops-185400},
  doi =		{10.4230/LIPIcs.MFCS.2023.6},
  annote =	{Keywords: special graph classes, counting problems, enumeration problems, domination problems, Roman domination}
}
Document
Counting Computations with Formulae: Logical Characterisations of Counting Complexity Classes

Authors: Antonis Achilleos and Aggeliki Chalki

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
We present quantitative logics with two-step semantics based on the framework of quantitative logics introduced by Arenas et al. (2020) and the two-step semantics defined in the context of weighted logics by Gastin & Monmege (2018). We show that some of the fragments of our logics augmented with a least fixed point operator capture interesting classes of counting problems. Specifically, we answer an open question in the area of descriptive complexity of counting problems by providing logical characterisations of two subclasses of #P, namely SpanL and TotP, that play a significant role in the study of approximable counting problems. Moreover, we define logics that capture FPSPACE and SpanPSPACE, which are counting versions of PSPACE.

Cite as

Antonis Achilleos and Aggeliki Chalki. Counting Computations with Formulae: Logical Characterisations of Counting Complexity Classes. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{achilleos_et_al:LIPIcs.MFCS.2023.7,
  author =	{Achilleos, Antonis and Chalki, Aggeliki},
  title =	{{Counting Computations with Formulae: Logical Characterisations of Counting Complexity Classes}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.7},
  URN =		{urn:nbn:de:0030-drops-185412},
  doi =		{10.4230/LIPIcs.MFCS.2023.7},
  annote =	{Keywords: descriptive complexity, quantitative logics, counting problems, #P}
}
Document
Recognizing H-Graphs - Beyond Circular-Arc Graphs

Authors: Deniz Ağaoğlu Çağırıcı, Onur Çağırıcı, Jan Derbisz, Tim A. Hartmann, Petr Hliněný, Jan Kratochvíl, Tomasz Krawczyk, and Peter Zeman

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
In 1992 Biró, Hujter and Tuza introduced, for every fixed connected graph H, the class of H-graphs, defined as the intersection graphs of connected subgraphs of some subdivision of H. Such classes of graphs are related to many known graph classes: for example, K₂-graphs coincide with interval graphs, K₃-graphs with circular-arc graphs, the union of T-graphs, where T ranges over all trees, coincides with chordal graphs. Recently, quite a lot of research has been devoted to understanding the tractability border for various computational problems, such as recognition or isomorphism testing, in classes of H-graphs for different graphs H. In this work we undertake this research topic, focusing on the recognition problem. Chaplick, Töpfer, Voborník, and Zeman showed an XP-algorithm testing whether a given graph is a T-graph, where the parameter is the size of the tree T. In particular, for every fixed tree T the recognition of T-graphs can be solved in polynomial time. Tucker showed a polynomial time algorithm recognizing K₃-graphs (circular-arc graphs). On the other hand, Chaplick et al. showed also that for every fixed graph H containing two distinct cycles sharing an edge, the recognition of H-graphs is NP-hard. The main two results of this work narrow the gap between the NP-hard and 𝖯 cases of H-graph recognition. First, we show that the recognition of H-graphs is NP-hard when H contains two distinct cycles. On the other hand, we show a polynomial-time algorithm recognizing L-graphs, where L is a graph containing a cycle and an edge attached to it (which we call lollipop graphs). Our work leaves open the recognition problems of M-graphs for every unicyclic graph M different from a cycle and a lollipop.

Cite as

Deniz Ağaoğlu Çağırıcı, Onur Çağırıcı, Jan Derbisz, Tim A. Hartmann, Petr Hliněný, Jan Kratochvíl, Tomasz Krawczyk, and Peter Zeman. Recognizing H-Graphs - Beyond Circular-Arc Graphs. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 8:1-8:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{agaoglucagirici_et_al:LIPIcs.MFCS.2023.8,
  author =	{A\u{g}ao\u{g}lu \c{C}a\u{g}{\i}r{\i}c{\i}, Deniz and \c{C}a\u{g}{\i}r{\i}c{\i}, Onur and Derbisz, Jan and Hartmann, Tim A. and Hlin\v{e}n\'{y}, Petr and Kratochv{\'\i}l, Jan and Krawczyk, Tomasz and Zeman, Peter},
  title =	{{Recognizing H-Graphs - Beyond Circular-Arc Graphs}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{8:1--8:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.8},
  URN =		{urn:nbn:de:0030-drops-185420},
  doi =		{10.4230/LIPIcs.MFCS.2023.8},
  annote =	{Keywords: H-graphs, Intersection Graphs, Helly Property}
}
  • Refine by Author
  • 5 Lombardy, Sylvain
  • 2 Angelopoulos, Spyros
  • 2 Blanc, Manon
  • 2 Bournez, Olivier
  • 2 Gahlawat, Harmender
  • Show More...

  • Refine by Classification
  • 9 Theory of computation → Parameterized complexity and exact algorithms
  • 7 Theory of computation → Formal languages and automata theory
  • 7 Theory of computation → Logic and verification
  • 6 Theory of computation → Finite Model Theory
  • 6 Theory of computation → Graph algorithms analysis
  • Show More...

  • Refine by Keyword
  • 3 Finite automata
  • 2 Approximation Algorithms
  • 2 Circuit complexity
  • 2 ETH
  • 2 First-order logic
  • Show More...

  • Refine by Type
  • 97 document
  • 1 volume

  • Refine by Publication Year
  • 91 2023
  • 4 2024
  • 1 2009
  • 1 2018
  • 1 2020