14 Search Results for "Rao, Satish"


Document
Track A: Algorithms, Complexity and Games
An O(loglog n)-Approximation for Submodular Facility Location

Authors: Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka, Fabrizio Grandoni, Krzysztof Sornat, and Antoine Tinguely

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the Submodular Facility Location problem (SFL) we are given a collection of n clients and m facilities in a metric space. A feasible solution consists of an assignment of each client to some facility. For each client, one has to pay the distance to the associated facility. Furthermore, for each facility f to which we assign the subset of clients S^f, one has to pay the opening cost g(S^f), where g() is a monotone submodular function with g(emptyset)=0. SFL is APX-hard since it includes the classical (metric uncapacitated) Facility Location problem (with uniform facility costs) as a special case. Svitkina and Tardos [SODA'06] gave the current-best O(log n) approximation algorithm for SFL. The same authors pose the open problem whether SFL admits a constant approximation and provide such an approximation for a very restricted special case of the problem. We make some progress towards the solution of the above open problem by presenting an O(loglog n) approximation. Our approach is rather flexible and can be easily extended to generalizations and variants of SFL. In more detail, we achieve the same approximation factor for the natural generalizations of SFL where the opening cost of each facility f is of the form p_f + g(S^f) or w_f * g(S^f), where p_f, w_f >= 0 are input values. We also obtain an improved approximation algorithm for the related Universal Stochastic Facility Location problem. In this problem one is given a classical (metric) facility location instance and has to a priori assign each client to some facility. Then a subset of active clients is sampled from some given distribution, and one has to pay (a posteriori) only the connection and opening costs induced by the active clients. The expected opening cost of each facility f can be modelled with a submodular function of the set of clients assigned to f.

Cite as

Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka, Fabrizio Grandoni, Krzysztof Sornat, and Antoine Tinguely. An O(loglog n)-Approximation for Submodular Facility Location. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 5:1-5:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abbasi_et_al:LIPIcs.ICALP.2024.5,
  author =	{Abbasi, Fateme and Adamczyk, Marek and Bosch-Calvo, Miguel and Byrka, Jaros{\l}aw and Grandoni, Fabrizio and Sornat, Krzysztof and Tinguely, Antoine},
  title =	{{An O(loglog n)-Approximation for Submodular Facility Location}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{5:1--5:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.5},
  URN =		{urn:nbn:de:0030-drops-201488},
  doi =		{10.4230/LIPIcs.ICALP.2024.5},
  annote =	{Keywords: approximation algorithms, facility location, submodular facility location, universal stochastic facility location}
}
Document
Track A: Algorithms, Complexity and Games
Lower Bounds on 0-Extension with Steiner Nodes

Authors: Yu Chen and Zihan Tan

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the 0-Extension problem, we are given an edge-weighted graph G = (V,E,c), a set T ⊆ V of its vertices called terminals, and a semi-metric D over T, and the goal is to find an assignment f of each non-terminal vertex to a terminal, minimizing the sum, over all edges (u,v) ∈ E, the product of the edge weight c(u,v) and the distance D(f(u),f(v)) between the terminals that u,v are mapped to. Current best approximation algorithms on 0-Extension are based on rounding a linear programming relaxation called the semi-metric LP relaxation. The integrality gap of this LP, is upper bounded by O(log|T|/log log|T|) and lower bounded by Ω((log|T|)^{2/3}), has been shown to be closely related to the quality of cut and flow vertex sparsifiers. We study a variant of the 0-Extension problem where Steiner vertices are allowed. Specifically, we focus on the integrality gap of the same semi-metric LP relaxation to this new problem. Following from previous work, this new integrality gap turns out to be closely related to the quality achievable by cut/flow vertex sparsifiers with Steiner nodes, a major open problem in graph compression. We show that the new integrality gap stays superconstant Ω(log log |T|) even if we allow a super-linear O(|T|log^{1-ε}|T|) number of Steiner nodes.

Cite as

Yu Chen and Zihan Tan. Lower Bounds on 0-Extension with Steiner Nodes. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 47:1-47:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2024.47,
  author =	{Chen, Yu and Tan, Zihan},
  title =	{{Lower Bounds on 0-Extension with Steiner Nodes}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{47:1--47:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.47},
  URN =		{urn:nbn:de:0030-drops-201905},
  doi =		{10.4230/LIPIcs.ICALP.2024.47},
  annote =	{Keywords: Graph Algorithms, Zero Extension, Integrality Gap}
}
Document
Track A: Algorithms, Complexity and Games
The Discrepancy of Shortest Paths

Authors: Greg Bodwin, Chengyuan Deng, Jie Gao, Gary Hoppenworth, Jalaj Upadhyay, and Chen Wang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The hereditary discrepancy of a set system is a quantitative measure of the pseudorandom properties of the system. Roughly speaking, hereditary discrepancy measures how well one can 2-color the elements of the system so that each set contains approximately the same number of elements of each color. Hereditary discrepancy has numerous applications in computational geometry, communication complexity and derandomization. More recently, the hereditary discrepancy of the set system of shortest paths has found applications in differential privacy [Chen et al. SODA 23]. The contribution of this paper is to improve the upper and lower bounds on the hereditary discrepancy of set systems of unique shortest paths in graphs. In particular, we show that any system of unique shortest paths in an undirected weighted graph has hereditary discrepancy O(n^{1/4}), and we construct lower bound examples demonstrating that this bound is tight up to polylog n factors. Our lower bounds hold even for planar graphs and bipartite graphs, and improve a previous lower bound of Ω(n^{1/6}) obtained by applying the trace bound of Chazelle and Lvov [SoCG'00] to a classical point-line system of Erdős. As applications, we improve the lower bound on the additive error for differentially-private all pairs shortest distances from Ω(n^{1/6}) [Chen et al. SODA 23] to Ω̃(n^{1/4}), and we improve the lower bound on additive error for the differentially-private all sets range queries problem to Ω̃(n^{1/4}), which is tight up to polylog n factors [Deng et al. WADS 23].

Cite as

Greg Bodwin, Chengyuan Deng, Jie Gao, Gary Hoppenworth, Jalaj Upadhyay, and Chen Wang. The Discrepancy of Shortest Paths. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 27:1-27:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bodwin_et_al:LIPIcs.ICALP.2024.27,
  author =	{Bodwin, Greg and Deng, Chengyuan and Gao, Jie and Hoppenworth, Gary and Upadhyay, Jalaj and Wang, Chen},
  title =	{{The Discrepancy of Shortest Paths}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{27:1--27:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.27},
  URN =		{urn:nbn:de:0030-drops-201705},
  doi =		{10.4230/LIPIcs.ICALP.2024.27},
  annote =	{Keywords: Discrepancy, hereditary discrepancy, shortest paths, differential privacy}
}
Document
Track A: Algorithms, Complexity and Games
Parameterized Algorithms for Steiner Forest in Bounded Width Graphs

Authors: Andreas Emil Feldmann and Michael Lampis

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we reassess the parameterized complexity and approximability of the well-studied Steiner Forest problem in several graph classes of bounded width. The problem takes an edge-weighted graph and pairs of vertices as input, and the aim is to find a minimum cost subgraph in which each given vertex pair lies in the same connected component. It is known that this problem is APX-hard in general, and NP-hard on graphs of treewidth 3, treedepth 4, and feedback vertex set size 2. However, Bateni, Hajiaghayi and Marx [JACM, 2011] gave an approximation scheme with a runtime of n^O(k²/ε) on graphs of treewidth k. Our main result is a much faster efficient parameterized approximation scheme (EPAS) with a runtime of 2^O(k²/ε log k/ε)⋅n^O(1). If k instead is the vertex cover number of the input graph, we show how to compute the optimum solution in 2^O(k log k)⋅n^O(1) time, and we also prove that this runtime dependence on k is asymptotically best possible, under ETH. Furthermore, if k is the size of a feedback edge set, then we obtain a faster 2^O(k)⋅n^O(1) time algorithm, which again cannot be improved under ETH.

Cite as

Andreas Emil Feldmann and Michael Lampis. Parameterized Algorithms for Steiner Forest in Bounded Width Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 61:1-61:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{feldmann_et_al:LIPIcs.ICALP.2024.61,
  author =	{Feldmann, Andreas Emil and Lampis, Michael},
  title =	{{Parameterized Algorithms for Steiner Forest in Bounded Width Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{61:1--61:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.61},
  URN =		{urn:nbn:de:0030-drops-202048},
  doi =		{10.4230/LIPIcs.ICALP.2024.61},
  annote =	{Keywords: Steiner Forest, Approximation Algorithms, FPT algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Electrical Oblivious Routing on Expanders

Authors: Cella Florescu, Rasmus Kyng, Maximilian Probst Gutenberg, and Sushant Sachdeva

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper, we investigate the question of whether the electrical flow routing is a good oblivious routing scheme on an m-edge graph G = (V, E) that is a Φ-expander, i.e. where |∂ S| ≥ Φ ⋅ vol(S) for every S ⊆ V, vol(S) ≤ vol(V)/2. Beyond its simplicity and structural importance, this question is well-motivated by the current state-of-the-art of fast algorithms for 𝓁_∞ oblivious routings that reduce to the expander-case which is in turn solved by electrical flow routing. Our main result proves that the electrical routing is an O(Φ^{-1} log m)-competitive oblivious routing in the 𝓁₁- and 𝓁_∞-norms. We further observe that the oblivious routing is O(log² m)-competitive in the 𝓁₂-norm and, in fact, O(log m)-competitive if 𝓁₂-localization is O(log m) which is widely believed. Using these three upper bounds, we can smoothly interpolate to obtain upper bounds for every p ∈ [2, ∞] and q given by 1/p + 1/q = 1. Assuming 𝓁₂-localization in O(log m), we obtain that in 𝓁_p and 𝓁_q, the electrical oblivious routing is O(Φ^{-(1-2/p)}log m) competitive. Using the currently known result for 𝓁₂-localization, this ratio deteriorates by at most a sublogarithmic factor for every p, q ≠ 2. We complement our upper bounds with lower bounds that show that the electrical routing for any such p and q is Ω(Φ^{-(1-2/p)} log m)-competitive. This renders our results in 𝓁₁ and 𝓁_∞ unconditionally tight up to constants, and the result in any 𝓁_p- and 𝓁_q-norm to be tight in case of 𝓁₂-localization in O(log m).

Cite as

Cella Florescu, Rasmus Kyng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Optimal Electrical Oblivious Routing on Expanders. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 65:1-65:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{florescu_et_al:LIPIcs.ICALP.2024.65,
  author =	{Florescu, Cella and Kyng, Rasmus and Gutenberg, Maximilian Probst and Sachdeva, Sushant},
  title =	{{Optimal Electrical Oblivious Routing on Expanders}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{65:1--65:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.65},
  URN =		{urn:nbn:de:0030-drops-202083},
  doi =		{10.4230/LIPIcs.ICALP.2024.65},
  annote =	{Keywords: Expanders, Oblivious routing for 𝓁\underlinep, Electrical flow routing}
}
Document
Track A: Algorithms, Complexity and Games
Fully Dynamic Strongly Connected Components in Planar Digraphs

Authors: Adam Karczmarz and Marcin Smulewicz

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we consider maintaining strongly connected components (SCCs) of a directed planar graph subject to edge insertions and deletions. We show a data structure maintaining an implicit representation of the SCCs within Õ(n^{6/7}) worst-case time per update. The data structure supports, in O(log²{n}) time, reporting vertices of any specified SCC (with constant overhead per reported vertex) and aggregating vertex information (e.g., computing the maximum label) over all the vertices of that SCC. Furthermore, it can maintain global information about the structure of SCCs, such as the number of SCCs, or the size of the largest SCC. To the best of our knowledge, no fully dynamic SCCs data structures with sublinear update time have been previously known for any major subclass of digraphs. Our result should be contrasted with the n^{1-o(1)} amortized update time lower bound conditional on SETH, which holds even for dynamically maintaining whether a general digraph has more than two SCCs.

Cite as

Adam Karczmarz and Marcin Smulewicz. Fully Dynamic Strongly Connected Components in Planar Digraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 95:1-95:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{karczmarz_et_al:LIPIcs.ICALP.2024.95,
  author =	{Karczmarz, Adam and Smulewicz, Marcin},
  title =	{{Fully Dynamic Strongly Connected Components in Planar Digraphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{95:1--95:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.95},
  URN =		{urn:nbn:de:0030-drops-202388},
  doi =		{10.4230/LIPIcs.ICALP.2024.95},
  annote =	{Keywords: dynamic strongly connected components, dynamic strong connectivity, dynamic reachability, planar graphs}
}
Document
Track A: Algorithms, Complexity and Games
Finding Most-Shattering Minimum Vertex Cuts of Polylogarithmic Size in Near-Linear Time

Authors: Kevin Hua, Daniel Li, Jaewoo Park, and Thatchaphol Saranurak

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We show the first near-linear time randomized algorithms for listing all minimum vertex cuts of polylogarithmic size that separate the graph into at least three connected components (also known as shredders) and for finding the most shattering one, i.e., the one maximizing the number of connected components. Our algorithms break the quadratic time bound by Cheriyan and Thurimella (STOC'96) for both problems that has been unimproved for more than two decades. Our work also removes an important bottleneck to near-linear time algorithms for the vertex connectivity augmentation problem (Jordan '95) and finding an even-length directed cycle in a graph, a problem shown to be equivalent to many other fundamental problems (Vazirani and Yannakakis '90, Robertson et al. '99). Note that it is necessary to list only minimum vertex cuts that separate the graph into at least three components because there can be an exponential number of minimum vertex cuts in general. To obtain a near-linear time algorithm, we have extended techniques in local flow algorithms developed by Forster et al. (SODA'20) to list shredders on a local scale. We also exploit fast queries to a pairwise vertex connectivity oracle subject to vertex failures (Long and Saranurak FOCS'22, Kosinas ESA'23). This is the first application of using connectivity oracles subject to vertex failures to speed up a static graph algorithm.

Cite as

Kevin Hua, Daniel Li, Jaewoo Park, and Thatchaphol Saranurak. Finding Most-Shattering Minimum Vertex Cuts of Polylogarithmic Size in Near-Linear Time. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 87:1-87:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hua_et_al:LIPIcs.ICALP.2024.87,
  author =	{Hua, Kevin and Li, Daniel and Park, Jaewoo and Saranurak, Thatchaphol},
  title =	{{Finding Most-Shattering Minimum Vertex Cuts of Polylogarithmic Size in Near-Linear Time}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{87:1--87:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.87},
  URN =		{urn:nbn:de:0030-drops-202302},
  doi =		{10.4230/LIPIcs.ICALP.2024.87},
  annote =	{Keywords: Graphs, Flows, Randomized Algorithms, Vertex Connectivity}
}
Document
Track A: Algorithms, Complexity and Games
Better Decremental and Fully Dynamic Sensitivity Oracles for Subgraph Connectivity

Authors: Yaowei Long and Yunfan Wang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study the sensitivity oracles problem for subgraph connectivity in the decremental and fully dynamic settings. In the fully dynamic setting, we preprocess an n-vertices m-edges undirected graph G with n_{off} deactivated vertices initially and the others are activated. Then we receive a single update D ⊆ V(G) of size |D| = d ≤ d_{⋆}, representing vertices whose states will be switched. Finally, we get a sequence of queries, each of which asks the connectivity of two given vertices u and v in the activated subgraph. The decremental setting is a special case when there is no deactivated vertex initially, and it is also known as the vertex-failure connectivity oracles problem. We present a better deterministic vertex-failure connectivity oracle with Ô(d_{⋆}m) preprocessing time, Õ(m) space, Õ(d²) update time and O(d) query time, which improves the update time of the previous almost-optimal oracle [Long and Saranurak, 2022] from Ô(d²) to Õ(d²). We also present a better deterministic fully dynamic sensitivity oracle for subgraph connectivity with Ô(min{m(n_{off} + d_{⋆}),n^{ω}}) preprocessing time, Õ(min{m(n_{off} + d_{⋆}),n²}) space, Õ(d²) update time and O(d) query time, which significantly improves the update time of the state of the art [Bingbing Hu et al., 2023] from Õ(d⁴) to Õ(d²). Furthermore, our solution is even almost-optimal assuming popular fine-grained complexity conjectures.

Cite as

Yaowei Long and Yunfan Wang. Better Decremental and Fully Dynamic Sensitivity Oracles for Subgraph Connectivity. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 109:1-109:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{long_et_al:LIPIcs.ICALP.2024.109,
  author =	{Long, Yaowei and Wang, Yunfan},
  title =	{{Better Decremental and Fully Dynamic Sensitivity Oracles for Subgraph Connectivity}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{109:1--109:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.109},
  URN =		{urn:nbn:de:0030-drops-202523},
  doi =		{10.4230/LIPIcs.ICALP.2024.109},
  annote =	{Keywords: connectivity, sensitivity}
}
Document
Track A: Algorithms, Complexity and Games
Approximation Algorithms for 𝓁_p-Shortest Path and 𝓁_p-Group Steiner Tree

Authors: Yury Makarychev, Max Ovsiankin, and Erasmo Tani

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We present polylogarithmic approximation algorithms for variants of the Shortest Path, Group Steiner Tree, and Group ATSP problems with vector costs. In these problems, each edge e has a vector cost c_e ∈ ℝ_{≥0}^𝓁. For a feasible solution - a path, subtree, or tour (respectively) - we find the total vector cost of all the edges in the solution and then compute the 𝓁_p-norm of the obtained cost vector (we assume that p ≥ 1 is an integer). Our algorithms for series-parallel graphs run in polynomial time and those for arbitrary graphs run in quasi-polynomial time. To obtain our results, we introduce and use new flow-based Sum-of-Squares relaxations. We also obtain a number of hardness results.

Cite as

Yury Makarychev, Max Ovsiankin, and Erasmo Tani. Approximation Algorithms for 𝓁_p-Shortest Path and 𝓁_p-Group Steiner Tree. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 111:1-111:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{makarychev_et_al:LIPIcs.ICALP.2024.111,
  author =	{Makarychev, Yury and Ovsiankin, Max and Tani, Erasmo},
  title =	{{Approximation Algorithms for 𝓁\underlinep-Shortest Path and 𝓁\underlinep-Group Steiner Tree}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{111:1--111:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.111},
  URN =		{urn:nbn:de:0030-drops-202542},
  doi =		{10.4230/LIPIcs.ICALP.2024.111},
  annote =	{Keywords: Shortest Path, Asymmetric Group Steiner Tree, Sum-of-Squares}
}
Document
Track A: Algorithms, Complexity and Games
Testing Spreading Behavior in Networks with Arbitrary Topologies

Authors: Augusto Modanese and Yuichi Yoshida

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Given the full topology of a network, how hard is it to test if it is evolving according to a local rule or is far from doing so? Inspired by the works of Goldreich and Ron (J. ACM, 2017) and Nakar and Ron (ICALP, 2021), we initiate the study of property testing in dynamic environments with arbitrary topologies. Our focus is on the simplest non-trivial rule that can be tested, which corresponds to the 1-BP rule of bootstrap percolation and models a simple spreading behavior: Every "infected" node stays infected forever, and each "healthy" node becomes infected if and only if it has at least one infected neighbor. Our results are subdivided into two main groups: - If we are testing a single time step of evolution, then the query complexity is O(Δ/ε) or Õ(√n/ε) (whichever is smaller), where Δ and n are the maximum degree of a node and the number of vertices in the underlying graph, respectively. We also give lower bounds for both one- and two-sided error testers that match our upper bounds up to Δ = o(√n) and Δ = O(n^{1/3}), respectively. If ε is constant, then the first of these also holds against adaptive testers. - When testing the environment over T time steps, we have two algorithms that need O(Δ^{T-1}/εT) and Õ(|E|/εT) queries, respectively, where E is the set of edges of the underlying graph. All of our algorithms are one-sided error, and all of them are also non-adaptive, with the single exception of the more complex Õ(√n/ε)-query tester for the case T = 2.

Cite as

Augusto Modanese and Yuichi Yoshida. Testing Spreading Behavior in Networks with Arbitrary Topologies. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 112:1-112:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{modanese_et_al:LIPIcs.ICALP.2024.112,
  author =	{Modanese, Augusto and Yoshida, Yuichi},
  title =	{{Testing Spreading Behavior in Networks with Arbitrary Topologies}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{112:1--112:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.112},
  URN =		{urn:nbn:de:0030-drops-202554},
  doi =		{10.4230/LIPIcs.ICALP.2024.112},
  annote =	{Keywords: Property testing, bootstrap percolation, local phenomena, expander graphs}
}
Document
Near-Linear Time Edit Distance for Indel Channels

Authors: Arun Ganesh and Aaron Sy

Published in: LIPIcs, Volume 172, 20th International Workshop on Algorithms in Bioinformatics (WABI 2020)


Abstract
We consider the following model for sampling pairs of strings: s₁ is a uniformly random bitstring of length n, and s₂ is the bitstring arrived at by applying substitutions, insertions, and deletions to each bit of s₁ with some probability. We show that the edit distance between s₁ and s₂ can be computed in O(n ln n) time with high probability, as long as each bit of s₁ has a mutation applied to it with probability at most a small constant. The algorithm is simple and only uses the textbook dynamic programming algorithm as a primitive, first computing an approximate alignment between the two strings, and then running the dynamic programming algorithm restricted to entries close to the approximate alignment. The analysis of our algorithm provides theoretical justification for alignment heuristics used in practice such as BLAST, FASTA, and MAFFT, which also start by computing approximate alignments quickly and then find the best alignment near the approximate alignment. Our main technical contribution is a partitioning of alignments such that the number of the subsets in the partition is not too large and every alignment in one subset is worse than an alignment considered by our algorithm with high probability. Similar techniques may be of interest in the average-case analysis of other problems commonly solved via dynamic programming.

Cite as

Arun Ganesh and Aaron Sy. Near-Linear Time Edit Distance for Indel Channels. In 20th International Workshop on Algorithms in Bioinformatics (WABI 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 172, pp. 17:1-17:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{ganesh_et_al:LIPIcs.WABI.2020.17,
  author =	{Ganesh, Arun and Sy, Aaron},
  title =	{{Near-Linear Time Edit Distance for Indel Channels}},
  booktitle =	{20th International Workshop on Algorithms in Bioinformatics (WABI 2020)},
  pages =	{17:1--17:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-161-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{172},
  editor =	{Kingsford, Carl and Pisanti, Nadia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2020.17},
  URN =		{urn:nbn:de:0030-drops-128061},
  doi =		{10.4230/LIPIcs.WABI.2020.17},
  annote =	{Keywords: edit distance, average-case analysis, dynamic programming, sequence alignment}
}
Document
New Absolute Fast Converging Phylogeny Estimation Methods with Improved Scalability and Accuracy

Authors: Qiuyi (Richard) Zhang, Satish Rao, and Tandy Warnow

Published in: LIPIcs, Volume 113, 18th International Workshop on Algorithms in Bioinformatics (WABI 2018)


Abstract
Absolute fast converging (AFC) phylogeny estimation methods are ones that have been proven to recover the true tree with high probability given sequences whose lengths are polynomial in the number of number of leaves in the tree (once the shortest and longest branch lengths are fixed). While there has been a large literature on AFC methods, the best in terms of empirical performance was DCM_NJ, published in SODA 2001. The main empirical advantage of DCM_NJ over other AFC methods is its use of neighbor joining (NJ) to construct trees on smaller taxon subsets, which are then combined into a tree on the full set of species using a supertree method; in contrast, the other AFC methods in essence depend on quartet trees that are computed independently of each other, which reduces accuracy compared to neighbor joining. However, DCM_NJ is unlikely to scale to large datasets due to its reliance on supertree methods, as no current supertree methods are able to scale to large datasets with high accuracy. In this study we present a new approach to large-scale phylogeny estimation that shares some of the features of DCM_NJ but bypasses the use of supertree methods. We prove that this new approach is AFC and uses polynomial time. Furthermore, we describe variations on this basic approach that can be used with leaf-disjoint constraint trees (computed using methods such as maximum likelihood) to produce other AFC methods that are likely to provide even better accuracy. Thus, we present a new generalizable technique for large-scale tree estimation that is designed to improve scalability for phylogeny estimation methods to ultra-large datasets, and that can be used in a variety of settings (including tree estimation from unaligned sequences, and species tree estimation from gene trees).

Cite as

Qiuyi (Richard) Zhang, Satish Rao, and Tandy Warnow. New Absolute Fast Converging Phylogeny Estimation Methods with Improved Scalability and Accuracy. In 18th International Workshop on Algorithms in Bioinformatics (WABI 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 113, pp. 8:1-8:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{zhang_et_al:LIPIcs.WABI.2018.8,
  author =	{Zhang, Qiuyi (Richard) and Rao, Satish and Warnow, Tandy},
  title =	{{New Absolute Fast Converging Phylogeny Estimation Methods with Improved Scalability and Accuracy}},
  booktitle =	{18th International Workshop on Algorithms in Bioinformatics (WABI 2018)},
  pages =	{8:1--8:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-082-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{113},
  editor =	{Parida, Laxmi and Ukkonen, Esko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2018.8},
  URN =		{urn:nbn:de:0030-drops-93108},
  doi =		{10.4230/LIPIcs.WABI.2018.8},
  annote =	{Keywords: phylogeny estimation, short quartets, sample complexity, absolute fast converging methods, neighbor joining, maximum likelihood}
}
Document
Unified Acceleration Method for Packing and Covering Problems via Diameter Reduction

Authors: Di Wang, Satish Rao, and Michael W. Mahoney

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
In a series of recent breakthroughs, Allen-Zhu and Orecchia [Allen-Zhu/Orecchia, STOC 2015; Allen-Zhu/Orecchia, SODA 2015] leveraged insights from the linear coupling method [Allen-Zhu/Oreccia, arXiv 2014], which is a first-order optimization scheme, to provide improved algorithms for packing and covering linear programs. The result in [Allen-Zhu/Orecchia, STOC 2015] is particularly interesting, as the algorithm for packing LP achieves both width-independence and Nesterov-like acceleration, which was not known to be possible before. Somewhat surprisingly, however, while the dependence of the convergence rate on the error parameter epsilon for packing problems was improved to O(1/epsilon), which corresponds to what accelerated gradient methods are designed to achieve, the dependence for covering problems was only improved to O(1/epsilon^{1.5}), and even that required a different more complicated algorithm, rather than from Nesterov-like acceleration. Given the primal-dual connection between packing and covering problems and since previous algorithms for these very related problems have led to the same epsilon dependence, this discrepancy is surprising, and it leaves open the question of the exact role that the linear coupling is playing in coordinating the complementary gradient and mirror descent step of the algorithm. In this paper, we clarify these issues, illustrating that the linear coupling method can lead to improved O(1/epsilon) dependence for both packing and covering problems in a unified manner, i.e., with the same algorithm and almost identical analysis. Our main technical result is a novel dimension lifting method that reduces the coordinate-wise diameters of the feasible region for covering LPs, which is the key structural property to enable the same Nesterov-like acceleration as in the case of packing LPs. The technique is of independent interest and that may be useful in applying the accelerated linear coupling method to other combinatorial problems.

Cite as

Di Wang, Satish Rao, and Michael W. Mahoney. Unified Acceleration Method for Packing and Covering Problems via Diameter Reduction. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 50:1-50:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{wang_et_al:LIPIcs.ICALP.2016.50,
  author =	{Wang, Di and Rao, Satish and Mahoney, Michael W.},
  title =	{{Unified Acceleration Method for Packing and Covering Problems via Diameter Reduction}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{50:1--50:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.50},
  URN =		{urn:nbn:de:0030-drops-63308},
  doi =		{10.4230/LIPIcs.ICALP.2016.50},
  annote =	{Keywords: Convex optimization, Accelerated gradient descent, Linear program, Approximation algorithm, Packing and covering}
}
Document
Approximating the Solution to Mixed Packing and Covering LPs in Parallel O˜(epsilon^{-3}) Time

Authors: Michael W. Mahoney, Satish Rao, Di Wang, and Peng Zhang

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
We study the problem of approximately solving positive linear programs (LPs). This class of LPs models a wide range of fundamental problems in combinatorial optimization and operations research, such as many resource allocation problems, solving non-negative linear systems, computing tomography, single/multi commodity flows on graphs, etc. For the special cases of pure packing or pure covering LPs, recent result by Allen-Zhu and Orecchia [Allen/Zhu/Orecchia, SODA'15] gives O˜(1/(epsilon^3))-time parallel algorithm, which breaks the longstanding O˜(1/(epsilon^4)) running time bound by the seminal work of Luby and Nisan [Luby/Nisan, STOC'93]. We present new parallel algorithm with running time O˜(1/(epsilon^3)) for the more general mixed packing and covering LPs, which improves upon the O˜(1/(epsilon^4))-time algorithm of Young [Young, FOCS'01; Young, arXiv 2014]. Our work leverages the ideas from both the optimization oriented approach [Allen/Zhu/Orecchia, SODA'15; Wang/Mahoney/Mohan/Rao, arXiv 2015], as well as the more combinatorial approach with phases [Young, FOCS'01; Young, arXiv 2014]. In addition, our algorithm, when directly applied to pure packing or pure covering LPs, gives a improved running time of O˜(1/(epsilon^2)).

Cite as

Michael W. Mahoney, Satish Rao, Di Wang, and Peng Zhang. Approximating the Solution to Mixed Packing and Covering LPs in Parallel O˜(epsilon^{-3}) Time. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 52:1-52:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{mahoney_et_al:LIPIcs.ICALP.2016.52,
  author =	{Mahoney, Michael W. and Rao, Satish and Wang, Di and Zhang, Peng},
  title =	{{Approximating the Solution to Mixed Packing and Covering LPs in Parallel O˜(epsilon^\{-3\}) Time}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{52:1--52:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.52},
  URN =		{urn:nbn:de:0030-drops-63335},
  doi =		{10.4230/LIPIcs.ICALP.2016.52},
  annote =	{Keywords: Mixed packing and covering, Linear program, Approximation algorithm, Parallel algorithm}
}
  • Refine by Author
  • 3 Rao, Satish
  • 2 Mahoney, Michael W.
  • 2 Wang, Di
  • 1 Abbasi, Fateme
  • 1 Adamczyk, Marek
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Approximation algorithms analysis
  • 3 Theory of computation → Graph algorithms analysis
  • 2 Theory of computation → Routing and network design problems
  • 2 Theory of computation → Shortest paths
  • 1 Applied computing → Molecular evolution
  • Show More...

  • Refine by Keyword
  • 2 Approximation algorithm
  • 2 Linear program
  • 1 Accelerated gradient descent
  • 1 Approximation Algorithms
  • 1 Asymmetric Group Steiner Tree
  • Show More...

  • Refine by Type
  • 14 document

  • Refine by Publication Year
  • 10 2024
  • 2 2016
  • 1 2018
  • 1 2020