69 Search Results for "Vempala, Santosh S."


Volume

LIPIcs, Volume 81

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)

APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA

Editors: Klaus Jansen, José D. P. Rolim, David P. Williamson, and Santosh S. Vempala

Document
Solving Unique Games over Globally Hypercontractive Graphs

Authors: Mitali Bafna and Dor Minzer

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We study the complexity of affine Unique-Games (UG) over globally hypercontractive graphs, which are graphs that are not small set expanders but admit a useful and succinct characterization of all small sets that violate the small-set expansion property. This class of graphs includes the Johnson and Grassmann graphs, which have played a pivotal role in recent PCP constructions for UG, and their generalizations via high-dimensional expanders. We show new rounding techniques for higher degree sum-of-squares (SoS) relaxations for worst-case optimization. In particular, our algorithm shows how to round "low-entropy" pseudodistributions, broadly extending the algorithmic framework of [Mitali Bafna et al., 2021]. At a high level, [Mitali Bafna et al., 2021] showed how to round pseudodistributions for problems where there is a "unique" good solution. We extend their framework by exhibiting a rounding for problems where there might be "few good solutions". Our result suggests that UG is easy on globally hypercontractive graphs, and therefore highlights the importance of graphs that lack such a characterization in the context of PCP reductions for UG.

Cite as

Mitali Bafna and Dor Minzer. Solving Unique Games over Globally Hypercontractive Graphs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bafna_et_al:LIPIcs.CCC.2024.3,
  author =	{Bafna, Mitali and Minzer, Dor},
  title =	{{Solving Unique Games over Globally Hypercontractive Graphs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.3},
  URN =		{urn:nbn:de:0030-drops-203996},
  doi =		{10.4230/LIPIcs.CCC.2024.3},
  annote =	{Keywords: unique games, approximation algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces

Authors: Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the well-studied Robust (k,z)-Clustering problem, which generalizes the classic k-Median, k-Means, and k-Center problems and arises in the domains of robust optimization [Anthony, Goyal, Gupta, Nagarajan, Math. Oper. Res. 2010] and in algorithmic fairness [Abbasi, Bhaskara, Venkatasubramanian, 2021 & Ghadiri, Samadi, Vempala, 2022]. Given a constant z ≥ 1, the input to Robust (k,z)-Clustering is a set P of n points in a metric space (M,δ), a weight function w: P → ℝ_{≥ 0} and a positive integer k. Further, each point belongs to one (or more) of the m many different groups S_1,S_2,…,S_m ⊆ P. Our goal is to find a set X of k centers such that max_{i ∈ [m]} ∑_{p ∈ S_i} w(p) δ(p,X)^z is minimized. Complementing recent work on this problem, we give a comprehensive understanding of the parameterized approximability of the problem in geometric spaces where the parameter is the number k of centers. We prove the following results: [(i)] 1) For a universal constant η₀ > 0.0006, we devise a 3^z(1-η₀)-factor FPT approximation algorithm for Robust (k,z)-Clustering in discrete high-dimensional Euclidean spaces where the set of potential centers is finite. This shows that the lower bound of 3^z for general metrics [Goyal, Jaiswal, Inf. Proc. Letters, 2023] no longer holds when the metric has geometric structure. 2) We show that Robust (k,z)-Clustering in discrete Euclidean spaces is (√{3/2}- o(1))-hard to approximate for FPT algorithms, even if we consider the special case k-Center in logarithmic dimensions. This rules out a (1+ε)-approximation algorithm running in time f(k,ε)poly(m,n) (also called efficient parameterized approximation scheme or EPAS), giving a striking contrast with the recent EPAS for the continuous setting where centers can be placed anywhere in the space [Abbasi et al., FOCS'23]. 3) However, we obtain an EPAS for Robust (k,z)-Clustering in discrete Euclidean spaces when the dimension is sublogarithmic (for the discrete problem, earlier work [Abbasi et al., FOCS'23] provides an EPAS only in dimension o(log log n)). Our EPAS works also for metrics of sub-logarithmic doubling dimension.

Cite as

Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase. Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abbasi_et_al:LIPIcs.ICALP.2024.6,
  author =	{Abbasi, Fateme and Banerjee, Sandip and Byrka, Jaros{\l}aw and Chalermsook, Parinya and Gadekar, Ameet and Khodamoradi, Kamyar and Marx, D\'{a}niel and Sharma, Roohani and Spoerhase, Joachim},
  title =	{{Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.6},
  URN =		{urn:nbn:de:0030-drops-201494},
  doi =		{10.4230/LIPIcs.ICALP.2024.6},
  annote =	{Keywords: Clustering, approximation algorithms, parameterized complexity}
}
Document
Track A: Algorithms, Complexity and Games
The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants

Authors: Emile Anand, Jan van den Brand, Mehrdad Ghadiri, and Daniel J. Zhang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Many iterative algorithms in computer science require repeated computation of some algebraic expression whose input varies slightly from one iteration to the next. Although efficient data structures have been proposed for maintaining the solution of such algebraic expressions under low-rank updates, most of these results are only analyzed under exact arithmetic (real-RAM model and finite fields) which may not accurately reflect the more limited complexity guarantees of real computers. In this paper, we analyze the stability and bit complexity of such data structures for expressions that involve the inversion, multiplication, addition, and subtraction of matrices under the word-RAM model. We show that the bit complexity only increases linearly in the number of matrix operations in the expression. In addition, we consider the bit complexity of maintaining the determinant of a matrix expression. We show that the required bit complexity depends on the logarithm of the condition number of matrices instead of the logarithm of their determinant. Finally, we discuss rank maintenance and its connections to determinant maintenance. Our results have wide applications ranging from computational geometry (e.g., computing the volume of a polytope) to optimization (e.g., solving linear programs using the simplex algorithm).

Cite as

Emile Anand, Jan van den Brand, Mehrdad Ghadiri, and Daniel J. Zhang. The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{anand_et_al:LIPIcs.ICALP.2024.10,
  author =	{Anand, Emile and van den Brand, Jan and Ghadiri, Mehrdad and Zhang, Daniel J.},
  title =	{{The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.10},
  URN =		{urn:nbn:de:0030-drops-201538},
  doi =		{10.4230/LIPIcs.ICALP.2024.10},
  annote =	{Keywords: Data Structures, Online Algorithms, Bit Complexity}
}
Document
Track A: Algorithms, Complexity and Games
Approximate Counting for Spin Systems in Sub-Quadratic Time

Authors: Konrad Anand, Weiming Feng, Graham Freifeld, Heng Guo, and Jiaheng Wang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We present two randomised approximate counting algorithms with Õ(n^{2-c}/ε²) running time for some constant c > 0 and accuracy ε: 1) for the hard-core model with fugacity λ on graphs with maximum degree Δ when λ = O(Δ^{-1.5-c₁}) where c₁ = c/(2-2c); 2) for spin systems with strong spatial mixing (SSM) on planar graphs with quadratic growth, such as ℤ². For the hard-core model, Weitz’s algorithm (STOC, 2006) achieves sub-quadratic running time when correlation decays faster than the neighbourhood growth, namely when λ = o(Δ^{-2}). Our first algorithm does not require this property and extends the range where sub-quadratic algorithms exist. Our second algorithm appears to be the first to achieve sub-quadratic running time up to the SSM threshold, albeit on a restricted family of graphs. It also extends to (not necessarily planar) graphs with polynomial growth, such as ℤ^d, but with a running time of the form Õ(n²ε^{-2}/2^{c(log n)^{1/d}}) where d is the exponent of the polynomial growth and c > 0 is some constant.

Cite as

Konrad Anand, Weiming Feng, Graham Freifeld, Heng Guo, and Jiaheng Wang. Approximate Counting for Spin Systems in Sub-Quadratic Time. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{anand_et_al:LIPIcs.ICALP.2024.11,
  author =	{Anand, Konrad and Feng, Weiming and Freifeld, Graham and Guo, Heng and Wang, Jiaheng},
  title =	{{Approximate Counting for Spin Systems in Sub-Quadratic Time}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.11},
  URN =		{urn:nbn:de:0030-drops-201543},
  doi =		{10.4230/LIPIcs.ICALP.2024.11},
  annote =	{Keywords: Randomised algorithm, Approximate counting, Spin system, Sub-quadratic algorithm}
}
Document
Track A: Algorithms, Complexity and Games
High-Accuracy Multicommodity Flows via Iterative Refinement

Authors: Li Chen and Mingquan Ye

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The multicommodity flow problem is a classic problem in network flow and combinatorial optimization, with applications in transportation, communication, logistics, and supply chain management, etc. Existing algorithms often focus on low-accuracy approximate solutions, while high-accuracy algorithms typically rely on general linear program solvers. In this paper, we present efficient high-accuracy algorithms for a broad family of multicommodity flow problems on undirected graphs, demonstrating improved running times compared to general linear program solvers. Our main result shows that we can solve the 𝓁_{q, p}-norm multicommodity flow problem to a (1 + ε) approximation in time O_{q, p}(m^{1+o(1)} k² log(1/ε)), where k is the number of commodities, and O_{q, p}(⋅) hides constants depending only on q or p. As q and p approach to 1 and ∞ respectively, 𝓁_{q, p}-norm flow tends to maximum concurrent flow. We introduce the first iterative refinement framework for 𝓁_{q, p}-norm minimization problems, which reduces the problem to solving a series of decomposable residual problems. In the case of k-commodity flow, each residual problem can be decomposed into k single commodity convex flow problems, each of which can be solved in almost-linear time. As many classical variants of multicommodity flows were shown to be complete for linear programs in the high-accuracy regime [Ding-Kyng-Zhang, ICALP'22], our result provides new directions for studying more efficient high-accuracy multicommodity flow algorithms.

Cite as

Li Chen and Mingquan Ye. High-Accuracy Multicommodity Flows via Iterative Refinement. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 45:1-45:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2024.45,
  author =	{Chen, Li and Ye, Mingquan},
  title =	{{High-Accuracy Multicommodity Flows via Iterative Refinement}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{45:1--45:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.45},
  URN =		{urn:nbn:de:0030-drops-201887},
  doi =		{10.4230/LIPIcs.ICALP.2024.45},
  annote =	{Keywords: High-accuracy multicommodity flow, Iterative refinement framework, Convex flow solver}
}
Document
Track A: Algorithms, Complexity and Games
On the Streaming Complexity of Expander Decomposition

Authors: Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we study the problem of finding (ε, ϕ)-expander decompositions of a graph in the streaming model, in particular for dynamic streams of edge insertions and deletions. The goal is to partition the vertex set so that every component induces a ϕ-expander, while the number of inter-cluster edges is only an ε fraction of the total volume. It was recently shown that there exists a simple algorithm to construct a (O(ϕ log n), ϕ)-expander decomposition of an n-vertex graph using Õ(n/ϕ²) bits of space [Filtser, Kapralov, Makarov, ITCS'23]. This result calls for understanding the extent to which a dependence in space on the sparsity parameter ϕ is inherent. We move towards answering this question on two fronts. We prove that a (O(ϕ log n), ϕ)-expander decomposition can be found using Õ(n) space, for every ϕ. At the core of our result is the first streaming algorithm for computing boundary-linked expander decompositions, a recently introduced strengthening of the classical notion [Goranci et al., SODA'21]. The key advantage is that a classical sparsifier [Fung et al., STOC'11], with size independent of ϕ, preserves the cuts inside the clusters of a boundary-linked expander decomposition within a multiplicative error. Notable algorithmic applications use sequences of expander decompositions, in particular one often repeatedly computes a decomposition of the subgraph induced by the inter-cluster edges (e.g., the seminal work of Spielman and Teng on spectral sparsifiers [Spielman, Teng, SIAM Journal of Computing 40(4)], or the recent maximum flow breakthrough [Chen et al., FOCS'22], among others). We prove that any streaming algorithm that computes a sequence of (O(ϕ log n), ϕ)-expander decompositions requires Ω̃(n/ϕ) bits of space, even in insertion only streams.

Cite as

Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali. On the Streaming Complexity of Expander Decomposition. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 46:1-46:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2024.46,
  author =	{Chen, Yu and Kapralov, Michael and Makarov, Mikhail and Mazzali, Davide},
  title =	{{On the Streaming Complexity of Expander Decomposition}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{46:1--46:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.46},
  URN =		{urn:nbn:de:0030-drops-201890},
  doi =		{10.4230/LIPIcs.ICALP.2024.46},
  annote =	{Keywords: Graph Sketching, Dynamic Streaming, Expander Decomposition}
}
Document
Track A: Algorithms, Complexity and Games
Approximation Algorithms for 𝓁_p-Shortest Path and 𝓁_p-Group Steiner Tree

Authors: Yury Makarychev, Max Ovsiankin, and Erasmo Tani

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We present polylogarithmic approximation algorithms for variants of the Shortest Path, Group Steiner Tree, and Group ATSP problems with vector costs. In these problems, each edge e has a vector cost c_e ∈ ℝ_{≥0}^𝓁. For a feasible solution - a path, subtree, or tour (respectively) - we find the total vector cost of all the edges in the solution and then compute the 𝓁_p-norm of the obtained cost vector (we assume that p ≥ 1 is an integer). Our algorithms for series-parallel graphs run in polynomial time and those for arbitrary graphs run in quasi-polynomial time. To obtain our results, we introduce and use new flow-based Sum-of-Squares relaxations. We also obtain a number of hardness results.

Cite as

Yury Makarychev, Max Ovsiankin, and Erasmo Tani. Approximation Algorithms for 𝓁_p-Shortest Path and 𝓁_p-Group Steiner Tree. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 111:1-111:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{makarychev_et_al:LIPIcs.ICALP.2024.111,
  author =	{Makarychev, Yury and Ovsiankin, Max and Tani, Erasmo},
  title =	{{Approximation Algorithms for 𝓁\underlinep-Shortest Path and 𝓁\underlinep-Group Steiner Tree}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{111:1--111:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.111},
  URN =		{urn:nbn:de:0030-drops-202542},
  doi =		{10.4230/LIPIcs.ICALP.2024.111},
  annote =	{Keywords: Shortest Path, Asymmetric Group Steiner Tree, Sum-of-Squares}
}
Document
Efficient Algorithms for Certifying Lower Bounds on the Discrepancy of Random Matrices

Authors: Prayaag Venkat

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In this paper, we initiate the study of the algorithmic problem of certifying lower bounds on the discrepancy of random matrices: given an input matrix A ∈ ℝ^{m × n}, output a value that is a lower bound on disc(A) = min_{x ∈ {± 1}ⁿ} ‖Ax‖_∞ for every A, but is close to the typical value of disc(A) with high probability over the choice of a random A. This problem is important because of its connections to conjecturally-hard average-case problems such as negatively-spiked PCA [Afonso S. Bandeira et al., 2020], the number-balancing problem [Gamarnik and Kızıldağ, 2021] and refuting random constraint satisfaction problems [Prasad Raghavendra et al., 2017]. We give the first polynomial-time algorithms with non-trivial guarantees for two main settings. First, when the entries of A are i.i.d. standard Gaussians, it is known that disc(A) = Θ (√n2^{-n/m}) with high probability [Karthekeyan Chandrasekaran and Santosh S. Vempala, 2014; Aubin et al., 2019; Paxton Turner et al., 2020] and that super-constant levels of the Sum-of-Squares SDP hierarchy fail to certify anything better than disc(A) ≥ 0 when m < n - o(n) [Mrinalkanti Ghosh et al., 2020]. In contrast, our algorithm certifies that disc(A) ≥ exp(-O(n²/m)) with high probability. As an application, this formally refutes a conjecture of Bandeira, Kunisky, and Wein [Afonso S. Bandeira et al., 2020] on the computational hardness of the detection problem in the negatively-spiked Wishart model. Second, we consider the integer partitioning problem: given n uniformly random b-bit integers a₁, …, a_n, certify the non-existence of a perfect partition, i.e. certify that disc(A) ≥ 1 for A = (a₁, …, a_n). Under the scaling b = α n, it is known that the probability of the existence of a perfect partition undergoes a phase transition from 1 to 0 at α = 1 [Christian Borgs et al., 2001]; our algorithm certifies the non-existence of perfect partitions for some α = O(n). We also give efficient non-deterministic algorithms with significantly improved guarantees, raising the possibility that the landscape of these certification problems closely resembles that of e.g. the problem of refuting random 3SAT formulas in the unsatisfiable regime. Our algorithms involve a reduction to the Shortest Vector Problem and employ the Lenstra-Lenstra-Lovász algorithm.

Cite as

Prayaag Venkat. Efficient Algorithms for Certifying Lower Bounds on the Discrepancy of Random Matrices. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 98:1-98:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{venkat:LIPIcs.ITCS.2023.98,
  author =	{Venkat, Prayaag},
  title =	{{Efficient Algorithms for Certifying Lower Bounds on the Discrepancy of Random Matrices}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{98:1--98:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.98},
  URN =		{urn:nbn:de:0030-drops-176015},
  doi =		{10.4230/LIPIcs.ITCS.2023.98},
  annote =	{Keywords: Average-case discrepancy theory, lattices, shortest vector problem}
}
Document
Invited Talk
The Manifold Joys of Sampling (Invited Talk)

Authors: Yin Tat Lee and Santosh S. Vempala

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We survey recent progress and many open questions in the field of sampling high-dimensional distributions, with specific focus on sampling with non-Euclidean metrics.

Cite as

Yin Tat Lee and Santosh S. Vempala. The Manifold Joys of Sampling (Invited Talk). In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lee_et_al:LIPIcs.ICALP.2022.4,
  author =	{Lee, Yin Tat and Vempala, Santosh S.},
  title =	{{The Manifold Joys of Sampling}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.4},
  URN =		{urn:nbn:de:0030-drops-163459},
  doi =		{10.4230/LIPIcs.ICALP.2022.4},
  annote =	{Keywords: Sampling, Diffusion, Optimization, High Dimension}
}
Document
Convergence of Gibbs Sampling: Coordinate Hit-And-Run Mixes Fast

Authors: Aditi Laddha and Santosh S. Vempala

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
The Gibbs Sampler is a general method for sampling high-dimensional distributions, dating back to 1971. In each step of the Gibbs Sampler, we pick a random coordinate and re-sample that coordinate from the distribution induced by fixing all the other coordinates. While it has become widely used over the past half-century, guarantees of efficient convergence have been elusive. We show that for a convex body K in ℝⁿ with diameter D, the mixing time of the Coordinate Hit-and-Run (CHAR) algorithm on K is polynomial in n and D. We also give a lower bound on the mixing rate of CHAR, showing that it is strictly worse than hit-and-run and the ball walk in the worst case.

Cite as

Aditi Laddha and Santosh S. Vempala. Convergence of Gibbs Sampling: Coordinate Hit-And-Run Mixes Fast. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 51:1-51:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{laddha_et_al:LIPIcs.SoCG.2021.51,
  author =	{Laddha, Aditi and Vempala, Santosh S.},
  title =	{{Convergence of Gibbs Sampling: Coordinate Hit-And-Run Mixes Fast}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{51:1--51:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.51},
  URN =		{urn:nbn:de:0030-drops-138503},
  doi =		{10.4230/LIPIcs.SoCG.2021.51},
  annote =	{Keywords: Gibbs Sampler, Coordinate Hit and run, Mixing time of Markov Chain}
}
Document
How to Find a Point in the Convex Hull Privately

Authors: Haim Kaplan, Micha Sharir, and Uri Stemmer

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
We study the question of how to compute a point in the convex hull of an input set S of n points in ℝ^d in a differentially private manner. This question, which is trivial without privacy requirements, turns out to be quite deep when imposing differential privacy. In particular, it is known that the input points must reside on a fixed finite subset G ⊆ ℝ^d, and furthermore, the size of S must grow with the size of G. Previous works [Amos Beimel et al., 2010; Amos Beimel et al., 2019; Amos Beimel et al., 2013; Mark Bun et al., 2018; Mark Bun et al., 2015; Haim Kaplan et al., 2019] focused on understanding how n needs to grow with |G|, and showed that n=O(d^2.5 ⋅ 8^(log^*|G|)) suffices (so n does not have to grow significantly with |G|). However, the available constructions exhibit running time at least |G|^d², where typically |G|=X^d for some (large) discretization parameter X, so the running time is in fact Ω(X^d³). In this paper we give a differentially private algorithm that runs in O(n^d) time, assuming that n=Ω(d⁴ log X). To get this result we study and exploit some structural properties of the Tukey levels (the regions D_{≥ k} consisting of points whose Tukey depth is at least k, for k=0,1,…). In particular, we derive lower bounds on their volumes for point sets S in general position, and develop a rather subtle mechanism for handling point sets S in degenerate position (where the deep Tukey regions have zero volume). A naive approach to the construction of the Tukey regions requires n^O(d²) time. To reduce the cost to O(n^d), we use an approximation scheme for estimating the volumes of the Tukey regions (within their affine spans in case of degeneracy), and for sampling a point from such a region, a scheme that is based on the volume estimation framework of Lovász and Vempala [László Lovász and Santosh S. Vempala, 2006] and of Cousins and Vempala [Ben Cousins and Santosh S. Vempala, 2018]. Making this framework differentially private raises a set of technical challenges that we address.

Cite as

Haim Kaplan, Micha Sharir, and Uri Stemmer. How to Find a Point in the Convex Hull Privately. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 52:1-52:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kaplan_et_al:LIPIcs.SoCG.2020.52,
  author =	{Kaplan, Haim and Sharir, Micha and Stemmer, Uri},
  title =	{{How to Find a Point in the Convex Hull Privately}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{52:1--52:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.52},
  URN =		{urn:nbn:de:0030-drops-122107},
  doi =		{10.4230/LIPIcs.SoCG.2020.52},
  annote =	{Keywords: Differential privacy, Tukey depth, Convex hull}
}
Document
RANDOM
Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions

Authors: Zongchen Chen and Santosh S. Vempala

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
We study Hamiltonian Monte Carlo (HMC) for sampling from a strongly logconcave density proportional to e^{-f} where f:R^d -> R is mu-strongly convex and L-smooth (the condition number is kappa = L/mu). We show that the relaxation time (inverse of the spectral gap) of ideal HMC is O(kappa), improving on the previous best bound of O(kappa^{1.5}); we complement this with an example where the relaxation time is Omega(kappa). When implemented using a nearly optimal ODE solver, HMC returns an epsilon-approximate point in 2-Wasserstein distance using O~((kappa d)^{0.5} epsilon^{-1}) gradient evaluations per step and O~((kappa d)^{1.5}epsilon^{-1}) total time.

Cite as

Zongchen Chen and Santosh S. Vempala. Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 64:1-64:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.APPROX-RANDOM.2019.64,
  author =	{Chen, Zongchen and Vempala, Santosh S.},
  title =	{{Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{64:1--64:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.64},
  URN =		{urn:nbn:de:0030-drops-112790},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.64},
  annote =	{Keywords: logconcave distribution, sampling, Hamiltonian Monte Carlo, spectral gap, strong convexity}
}
Document
Random Projection in the Brain and Computation with Assemblies of Neurons

Authors: Christos H. Papadimitriou and Santosh S. Vempala

Published in: LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)


Abstract
It has been recently shown via simulations [Dasgupta et al., 2017] that random projection followed by a cap operation (setting to one the k largest elements of a vector and everything else to zero), a map believed to be an important part of the insect olfactory system, has strong locality sensitivity properties. We calculate the asymptotic law whereby the overlap in the input vectors is conserved, verifying mathematically this empirical finding. We then focus on the far more complex homologous operation in the mammalian brain, the creation through successive projections and caps of an assembly (roughly, a set of excitatory neurons representing a memory or concept) in the presence of recurrent synapses and plasticity. After providing a careful definition of assemblies, we prove that the operation of assembly projection converges with high probability, over the randomness of synaptic connectivity, even if plasticity is relatively small (previous proofs relied on high plasticity). We also show that assembly projection has itself some locality preservation properties. Finally, we propose a large repertoire of assembly operations, including associate, merge, reciprocal project, and append, each of them both biologically plausible and consistent with what we know from experiments, and show that this computational system is capable of simulating, again with high probability, arbitrary computation in a quite natural way. We hope that this novel way of looking at brain computation, open-ended and based on reasonably mainstream ideas in neuroscience, may prove an attractive entry point for computer scientists to work on understanding the brain.

Cite as

Christos H. Papadimitriou and Santosh S. Vempala. Random Projection in the Brain and Computation with Assemblies of Neurons. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 57:1-57:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{papadimitriou_et_al:LIPIcs.ITCS.2019.57,
  author =	{Papadimitriou, Christos H. and Vempala, Santosh S.},
  title =	{{Random Projection in the Brain and Computation with Assemblies of Neurons}},
  booktitle =	{10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
  pages =	{57:1--57:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-095-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{124},
  editor =	{Blum, Avrim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.57},
  URN =		{urn:nbn:de:0030-drops-101506},
  doi =		{10.4230/LIPIcs.ITCS.2019.57},
  annote =	{Keywords: Brain computation, random projection, assemblies, plasticity, memory, association}
}
Document
Long Term Memory and the Densest K-Subgraph Problem

Authors: Robert Legenstein, Wolfgang Maass, Christos H. Papadimitriou, and Santosh S. Vempala

Published in: LIPIcs, Volume 94, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018)


Abstract
In a recent experiment, a cell in the human medial temporal lobe (MTL) encoding one sensory stimulus starts to also respond to a second stimulus following a combined experience associating the two. We develop a theoretical model predicting that an assembly of cells with exceptionally high synaptic intraconnectivity can emerge, in response to a particular sensory experience, to encode and abstract that experience. We also show that two such assemblies are modified to increase their intersection after a sensory event that associates the two corresponding stimuli. The main technical tools employed are random graph theory, and Bernoulli approximations. Assembly creation must overcome a computational challenge akin to the Densest K-Subgraph problem, namely selecting, from a large population of randomly and sparsely interconnected cells, a subset with exceptionally high density of interconnections. We identify three mechanisms that help achieve this feat in our model: (1) a simple two-stage randomized algorithm, and (2) the "triangle completion bias" in synaptic connectivity and a "birthday paradox", while (3) the strength of these connections is enhanced through Hebbian plasticity.

Cite as

Robert Legenstein, Wolfgang Maass, Christos H. Papadimitriou, and Santosh S. Vempala. Long Term Memory and the Densest K-Subgraph Problem. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 94, pp. 57:1-57:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{legenstein_et_al:LIPIcs.ITCS.2018.57,
  author =	{Legenstein, Robert and Maass, Wolfgang and Papadimitriou, Christos H. and Vempala, Santosh S.},
  title =	{{Long Term Memory and the Densest K-Subgraph Problem}},
  booktitle =	{9th Innovations in Theoretical Computer Science Conference (ITCS 2018)},
  pages =	{57:1--57:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-060-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{94},
  editor =	{Karlin, Anna R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2018.57},
  URN =		{urn:nbn:de:0030-drops-83593},
  doi =		{10.4230/LIPIcs.ITCS.2018.57},
  annote =	{Keywords: Brain computation, long term memory, assemblies, association}
}
  • Refine by Author
  • 9 Vempala, Santosh S.
  • 5 Guruswami, Venkatesan
  • 3 Jansen, Klaus
  • 2 Brakensiek, Joshua
  • 2 Chandrasekaran, Karthekeyan
  • Show More...

  • Refine by Classification
  • 5 Theory of computation → Randomness, geometry and discrete structures
  • 3 Theory of computation → Approximation algorithms analysis
  • 2 Theory of computation → Design and analysis of algorithms
  • 1 Mathematics of computing → Markov processes
  • 1 Security and privacy → Formal methods and theory of security
  • Show More...

  • Refine by Keyword
  • 5 approximation algorithms
  • 3 Approximation Algorithms
  • 2 Brain computation
  • 2 Online Algorithms
  • 2 Property Testing
  • Show More...

  • Refine by Type
  • 68 document
  • 1 volume

  • Refine by Publication Year
  • 53 2017
  • 7 2024
  • 2 2019
  • 1 2010
  • 1 2012
  • Show More...