11 Search Results for "Zhang, Tianyi"


Document
DeFiAligner: Leveraging Symbolic Analysis and Large Language Models for Inconsistency Detection in Decentralized Finance

Authors: Rundong Gan, Liyi Zhou, Le Wang, Kaihua Qin, and Xiaodong Lin

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
Decentralized Finance (DeFi) has witnessed a monumental surge, reaching 53.039 billion USD in total value locked. As this sector continues to expand, ensuring the reliability of DeFi smart contracts becomes increasingly crucial. While some users are adept at reading code or the compiled bytecode to understand smart contracts, many rely on documentation. Therefore, discrepancies between the documentation and the deployed code can pose significant risks, whether these discrepancies are due to errors or intentional fraud. To tackle these challenges, we developed DeFiAligner, an end-to-end system to identify inconsistencies between documentation and smart contracts. DeFiAligner incorporates a symbolic execution tool, SEVM, which explores execution paths of on-chain binary code, recording memory and stack states. It automatically generates symbolic expressions for token balance changes and branch conditions, which, along with related project documents, are processed by LLMs. Using structured prompts, the LLMs evaluate the alignment between the symbolic expressions and the documentation. Our tests across three distinct scenarios demonstrate DeFiAligner’s capability to automate inconsistency detection in DeFi, achieving recall rates of 92% and 90% on two public datasets respectively.

Cite as

Rundong Gan, Liyi Zhou, Le Wang, Kaihua Qin, and Xiaodong Lin. DeFiAligner: Leveraging Symbolic Analysis and Large Language Models for Inconsistency Detection in Decentralized Finance. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 7:1-7:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gan_et_al:LIPIcs.AFT.2024.7,
  author =	{Gan, Rundong and Zhou, Liyi and Wang, Le and Qin, Kaihua and Lin, Xiaodong},
  title =	{{DeFiAligner: Leveraging Symbolic Analysis and Large Language Models for Inconsistency Detection in Decentralized Finance}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{7:1--7:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.7},
  URN =		{urn:nbn:de:0030-drops-209431},
  doi =		{10.4230/LIPIcs.AFT.2024.7},
  annote =	{Keywords: Decentralized Finance Security, Large Language Models, Project Review, Symbolic Analysis, Smart Contracts}
}
Document
Constraint Modelling with LLMs Using In-Context Learning

Authors: Kostis Michailidis, Dimos Tsouros, and Tias Guns

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Constraint Programming (CP) allows for the modelling and solving of a wide range of combinatorial problems. However, modelling such problems using constraints over decision variables still requires significant expertise, both in conceptual thinking and syntactic use of modelling languages. In this work, we explore the potential of using pre-trained Large Language Models (LLMs) as coding assistants, to transform textual problem descriptions into concrete and executable CP specifications. We present different transformation pipelines with explicit intermediate representations, and we investigate the potential benefit of various retrieval-augmented example selection strategies for in-context learning. We evaluate our approach on 2 datasets from the literature, namely NL4Opt (optimisation) and Logic Grid Puzzles (satisfaction), and a heterogeneous set of exercises from a CP course. The results show that pre-trained LLMs have promising potential for initialising the modelling process, with retrieval-augmented in-context learning significantly enhancing their modelling capabilities.

Cite as

Kostis Michailidis, Dimos Tsouros, and Tias Guns. Constraint Modelling with LLMs Using In-Context Learning. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 20:1-20:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{michailidis_et_al:LIPIcs.CP.2024.20,
  author =	{Michailidis, Kostis and Tsouros, Dimos and Guns, Tias},
  title =	{{Constraint Modelling with LLMs Using In-Context Learning}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{20:1--20:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.20},
  URN =		{urn:nbn:de:0030-drops-207053},
  doi =		{10.4230/LIPIcs.CP.2024.20},
  annote =	{Keywords: Constraint Modelling, Constraint Acquisition, Constraint Programming, Large Language Models, In-Context Learning, Natural Language Processing, Named Entity Recognition, Retrieval-Augmented Generation, Optimisation}
}
Document
Track A: Algorithms, Complexity and Games
Streaming Edge Coloring with Subquadratic Palette Size

Authors: Shiri Chechik, Doron Mukhtar, and Tianyi Zhang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper, we study the problem of computing an edge-coloring in the (one-pass) W-streaming model. In this setting, the edges of an n-node graph arrive in an arbitrary order to a machine with a relatively small space, and the goal is to design an algorithm that outputs, as a stream, a proper coloring of the edges using the fewest possible number of colors. Behnezhad et al. [Behnezhad et al., 2019] devised the first non-trivial algorithm for this problem, which computes in Õ(n) space a proper O(Δ²)-coloring w.h.p. (here Δ is the maximum degree of the graph). Subsequent papers improved upon this result, where latest of them [Ansari et al., 2022] showed that it is possible to deterministically compute an O(Δ²/s)-coloring in O(ns) space. However, none of the improvements succeeded in reducing the number of colors to O(Δ^{2-ε}) while keeping the same space bound of Õ(n). In particular, no progress was made on the question of whether computing an O(Δ)-coloring is possible with roughly O(n) space, which was stated in [Behnezhad et al., 2019] to be an interesting open problem. In this paper we bypass the quadratic bound by presenting a new randomized Õ(n)-space algorithm that uses Õ(Δ^{1.5}) colors.

Cite as

Shiri Chechik, Doron Mukhtar, and Tianyi Zhang. Streaming Edge Coloring with Subquadratic Palette Size. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 40:1-40:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chechik_et_al:LIPIcs.ICALP.2024.40,
  author =	{Chechik, Shiri and Mukhtar, Doron and Zhang, Tianyi},
  title =	{{Streaming Edge Coloring with Subquadratic Palette Size}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{40:1--40:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.40},
  URN =		{urn:nbn:de:0030-drops-201831},
  doi =		{10.4230/LIPIcs.ICALP.2024.40},
  annote =	{Keywords: graph algorithms, streaming algorithms, edge coloring}
}
Document
Track A: Algorithms, Complexity and Games
Faster Algorithms for Dual-Failure Replacement Paths

Authors: Shiri Chechik and Tianyi Zhang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Given a simple weighted directed graph G = (V, E, ω) on n vertices as well as two designated terminals s, t ∈ V, our goal is to compute the shortest path from s to t avoiding any pair of presumably failed edges f₁, f₂ ∈ E, which is a natural generalization of the classical replacement path problem which considers single edge failures only. This dual failure replacement paths problem was recently studied by Vassilevska Williams, Woldeghebriel and Xu [FOCS 2022] who designed a cubic time algorithm for general weighted digraphs which is conditionally optimal; in the same paper, for unweighted graphs where ω ≡ 1, the authors presented an algebraic algorithm with runtime Õ(n^{2.9146}), as well as a conditional lower bound of n^{8/3-o(1)} against combinatorial algorithms. However, it was unknown in their work whether fast matrix multiplication is necessary for a subcubic runtime in unweighted digraphs. As our primary result, we present the first truly subcubic combinatorial algorithm for dual failure replacement paths in unweighted digraphs. Our runtime is Õ(n^{3-1/18}). Besides, we also study algebraic algorithms for digraphs with small integer edge weights from {-M, -M+1, ⋯, M-1, M}. As our secondary result, we obtained a runtime of Õ(Mn^{2.8716}), which is faster than the previous bound of Õ(M^{2/3}n^{2.9144} + Mn^{2.8716}) from [Vassilevska Williams, Woldeghebriela and Xu, 2022].

Cite as

Shiri Chechik and Tianyi Zhang. Faster Algorithms for Dual-Failure Replacement Paths. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 41:1-41:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chechik_et_al:LIPIcs.ICALP.2024.41,
  author =	{Chechik, Shiri and Zhang, Tianyi},
  title =	{{Faster Algorithms for Dual-Failure Replacement Paths}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{41:1--41:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.41},
  URN =		{urn:nbn:de:0030-drops-201849},
  doi =		{10.4230/LIPIcs.ICALP.2024.41},
  annote =	{Keywords: graph algorithms, shortest paths, replacement paths}
}
Document
Track A: Algorithms, Complexity and Games
Path-Reporting Distance Oracles with Logarithmic Stretch and Linear Size

Authors: Shiri Chechik and Tianyi Zhang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Given an undirected graph G = (V, E, 𝐰) on n vertices with positive edge weights, a distance oracle is a space-efficient data structure that answers pairwise distance queries in fast runtime. The quality of a distance oracle is measured by three parameters: space, query time, and stretch. In a landmark paper by [Thorup and Zwick, 2001], they showed that for any integer parameter k ≥ 1, there exists a distance oracle with size O(kn^{1+1/k}), O(k) query time, and (2k-1)-stretch error on the approximate distances. After that, there has been a line of subsequent improvements which culminated in the optimal trade-off of O(n^{1+1/k}) space, O(1) query time, and (2k-1)-stretch [Chechik, 2015]. However, these line of constructions did not require that the distance oracle is capable of printing an actual path besides an approximate distance estimate, and there has been a performance gap between path-reporting distance oracles and ones that are not path-reporting. It is known that the earliest construction by [Thorup and Zwick, 2001] is path-reporting, but the parameters are worse by a factor of k. In a later construction by [Wulff-Nilsen, 2013], the query time was improved from O(k) to O(log k). Better trade-offs were discovered in [Elkin and Pettie, 2015] where the authors broke the O(kn^{1+1/k}) space barrier and achieved O(n^{1+1/k}log k) space with O(log k) query time, but their stretch was blown up to a polynomial O(k^{log_{4/3}7}); they also gave an alternative choice of O(n^{1+1/k}) space which is optimal, and O(k)-stretch which is also optimal up to a constant factor, but their query time rose exponentially to O(n^ε). In a recent work [Elkin and Shabat, 2023], the authors obtained significant improvements of O(n^{1+1/k}log k) space, O(k)-stretch, and O(log log k) query time, or O(n^{1+1/k}) space, O(klog k)-stretch, and O(log log k) query time. All the above constructions of path-reporting distance oracles share a common barrier; that is, they could not achieve optimal space O(n^{1+1/k}) and stretch O(k) simultaneously within logarithmic query time; for example, in the natural regime where k = ⌈log n⌉, previous distance oracles had to pay an extra factor of log log n either in the space or stretch. As our result, we bypass this barrier by a new construction of path-reporting distance oracles with O(n^{1+1/k}) space and O(k)-stretch and O(log log k) query time.

Cite as

Shiri Chechik and Tianyi Zhang. Path-Reporting Distance Oracles with Logarithmic Stretch and Linear Size. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 42:1-42:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chechik_et_al:LIPIcs.ICALP.2024.42,
  author =	{Chechik, Shiri and Zhang, Tianyi},
  title =	{{Path-Reporting Distance Oracles with Logarithmic Stretch and Linear Size}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{42:1--42:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.42},
  URN =		{urn:nbn:de:0030-drops-201859},
  doi =		{10.4230/LIPIcs.ICALP.2024.42},
  annote =	{Keywords: graph algorithms, shortest paths, distance oracles}
}
Document
Track A: Algorithms, Complexity and Games
Space-Efficient Interior Point Method, with Applications to Linear Programming and Maximum Weight Bipartite Matching

Authors: S. Cliff Liu, Zhao Song, Hengjie Zhang, Lichen Zhang, and Tianyi Zhou

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We study the problem of solving linear program in the streaming model. Given a constraint matrix A ∈ ℝ^{m×n} and vectors b ∈ ℝ^m, c ∈ ℝ^n, we develop a space-efficient interior point method that optimizes solely on the dual program. To this end, we obtain efficient algorithms for various different problems: - For general linear programs, we can solve them in Õ(√n log(1/ε)) passes and Õ(n²) space for an ε-approximate solution. To the best of our knowledge, this is the most efficient LP solver in streaming with no polynomial dependence on m for both space and passes. - For bipartite graphs, we can solve the minimum vertex cover and maximum weight matching problem in Õ(√m) passes and Õ(n) space. In addition to our space-efficient IPM, we also give algorithms for solving SDD systems and isolation lemma in Õ(n) spaces, which are the cornerstones for our graph results.

Cite as

S. Cliff Liu, Zhao Song, Hengjie Zhang, Lichen Zhang, and Tianyi Zhou. Space-Efficient Interior Point Method, with Applications to Linear Programming and Maximum Weight Bipartite Matching. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 88:1-88:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{liu_et_al:LIPIcs.ICALP.2023.88,
  author =	{Liu, S. Cliff and Song, Zhao and Zhang, Hengjie and Zhang, Lichen and Zhou, Tianyi},
  title =	{{Space-Efficient Interior Point Method, with Applications to Linear Programming and Maximum Weight Bipartite Matching}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{88:1--88:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.88},
  URN =		{urn:nbn:de:0030-drops-181408},
  doi =		{10.4230/LIPIcs.ICALP.2023.88},
  annote =	{Keywords: Convex optimization, interior point method, streaming algorithm}
}
Document
Track A: Algorithms, Complexity and Games
Faster Cut-Equivalent Trees in Simple Graphs

Authors: Tianyi Zhang

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Let G = (V, E) be an undirected connected simple graph on n vertices. A cut-equivalent tree of G is an edge-weighted tree on the same vertex set V, such that for any pair of vertices s, t ∈ V, the minimum (s, t)-cut in the tree is also a minimum (s, t)-cut in G, and these two cuts have the same cut value. In a recent paper [Abboud, Krauthgamer and Trabelsi, STOC 2021], the authors propose the first subcubic time algorithm for constructing a cut-equivalent tree. More specifically, their algorithm has Õ(n^{2.5}) running time. Later on, this running time was significantly improved to n^{2+o(1)} by two independent works [Abboud, Krauthgamer and Trabelsi, FOCS 2021] and [Li, Panigrahi, Saranurak, FOCS 2021], and then to (m+n^{1.9})^{1+o(1)} by [Abboud, Krauthgamer and Trabelsi, SODA 2022]. In this paper, we improve the running time to Õ(n²) graphs if near-linear time max-flow algorithms exist, or Õ(n^{17/8}) using the currently fastest max-flow algorithm. Although our algorithm is slower than previous works, the runtime bound becomes better by a sub-polynomial factor in dense simple graphs when assuming near-linear time max-flow algorithms.

Cite as

Tianyi Zhang. Faster Cut-Equivalent Trees in Simple Graphs. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 109:1-109:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{zhang:LIPIcs.ICALP.2022.109,
  author =	{Zhang, Tianyi},
  title =	{{Faster Cut-Equivalent Trees in Simple Graphs}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{109:1--109:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.109},
  URN =		{urn:nbn:de:0030-drops-164507},
  doi =		{10.4230/LIPIcs.ICALP.2022.109},
  annote =	{Keywords: graph algorithms, minimum cuts, max-flow}
}
Document
Track A: Algorithms, Complexity and Games
Constructing a Distance Sensitivity Oracle in O(n^2.5794 M) Time

Authors: Yong Gu and Hanlin Ren

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We continue the study of distance sensitivity oracles (DSOs). Given a directed graph G with n vertices and edge weights in {1, 2, … , M}, we want to build a data structure such that given any source vertex u, any target vertex v, and any failure f (which is either a vertex or an edge), it outputs the length of the shortest path from u to v not going through f. Our main result is a DSO with preprocessing time O(n^2.5794 M) and constant query time. Previously, the best preprocessing time of DSOs for directed graphs is O(n^2.7233 M), and even in the easier case of undirected graphs, the best preprocessing time is O(n^2.6865 M) [Ren, ESA 2020]. One drawback of our DSOs, though, is that it only supports distance queries but not path queries. Our main technical ingredient is an algorithm that computes the inverse of a degree-d polynomial matrix (i.e. a matrix whose entries are degree-d univariate polynomials) modulo x^r. The algorithm is adapted from [Zhou, Labahn and Storjohann, Journal of Complexity, 2015], and we replace some of its intermediate steps with faster rectangular matrix multiplication algorithms. We also show how to compute unique shortest paths in a directed graph with edge weights in {1, 2, … , M}, in O(n^2.5286 M) time. This algorithm is crucial in the preprocessing algorithm of our DSO. Our solution improves the O(n^2.6865 M) time bound in [Ren, ESA 2020], and matches the current best time bound for computing all-pairs shortest paths.

Cite as

Yong Gu and Hanlin Ren. Constructing a Distance Sensitivity Oracle in O(n^2.5794 M) Time. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 76:1-76:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{gu_et_al:LIPIcs.ICALP.2021.76,
  author =	{Gu, Yong and Ren, Hanlin},
  title =	{{Constructing a Distance Sensitivity Oracle in O(n^2.5794 M) Time}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{76:1--76:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.76},
  URN =		{urn:nbn:de:0030-drops-141450},
  doi =		{10.4230/LIPIcs.ICALP.2021.76},
  annote =	{Keywords: graph theory, shortest paths, distance sensitivity oracles}
}
Document
Track A: Algorithms, Complexity and Games
Deterministic Maximum Flows in Simple Graphs

Authors: Tianyi Zhang

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
In this paper we are interested in deterministically computing maximum flows in undirected simple graphs where edges have unit capacities. When the input graph has n vertices and m edges, and the maximum flow is known to be upper bounded by τ as prior knowledge, our algorithm has running time Õ(m + n^{5/3}τ^{1/2}); in the extreme case where τ = Θ(n), our algorithm has running time Õ(n^{2.17}). This always improves upon the previous best deterministic upper bound Õ(n^{9/4}τ^{1/8}) by [Duan, 2013]. Furthermore, when τ ≥ n^{0.67} our algorithm is faster than a classical upper bound of O(m + nτ^{3/2}) by [Karger and Levin, 1998].

Cite as

Tianyi Zhang. Deterministic Maximum Flows in Simple Graphs. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 114:1-114:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{zhang:LIPIcs.ICALP.2021.114,
  author =	{Zhang, Tianyi},
  title =	{{Deterministic Maximum Flows in Simple Graphs}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{114:1--114:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.114},
  URN =		{urn:nbn:de:0030-drops-141832},
  doi =		{10.4230/LIPIcs.ICALP.2021.114},
  annote =	{Keywords: graph algorithms, maximum flows, dynamic data structures}
}
Document
Track A: Algorithms, Complexity and Games
A Scaling Algorithm for Weighted f-Factors in General Graphs

Authors: Ran Duan, Haoqing He, and Tianyi Zhang

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We study the maximum weight perfect f-factor problem on any general simple graph G = (V,E,ω) with positive integral edge weights w, and n = |V|, m = |E|. When we have a function f:V → ℕ_+ on vertices, a perfect f-factor is a generalized matching so that every vertex u is matched to exactly f(u) different edges. The previous best results on this problem have running time O(m f(V)) [Gabow 2018] or Õ(W(f(V))^2.373)) [Gabow and Sankowski 2013], where W is the maximum edge weight, and f(V) = ∑_{u ∈ V}f(u). In this paper, we present a scaling algorithm for this problem with running time Õ(mn^{2/3} log W). Previously this bound is only known for bipartite graphs [Gabow and Tarjan 1989]. The advantage is that the running time is independent of f(V), and consequently it breaks the Ω(mn) barrier for large f(V) even for the unweighted f-factor problem in general graphs.

Cite as

Ran Duan, Haoqing He, and Tianyi Zhang. A Scaling Algorithm for Weighted f-Factors in General Graphs. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 41:1-41:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{duan_et_al:LIPIcs.ICALP.2020.41,
  author =	{Duan, Ran and He, Haoqing and Zhang, Tianyi},
  title =	{{A Scaling Algorithm for Weighted f-Factors in General Graphs}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{41:1--41:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.41},
  URN =		{urn:nbn:de:0030-drops-124487},
  doi =		{10.4230/LIPIcs.ICALP.2020.41},
  annote =	{Keywords: Scaling Algorithm, f-Factors, General Graphs}
}
Document
An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

Authors: Lijie Chen, Ran Duan, Ruosong Wang, Hanrui Zhang, and Tianyi Zhang

Published in: LIPIcs, Volume 101, 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)


Abstract
Depth first search (DFS) tree is one of the most well-known data structures for designing efficient graph algorithms. Given an undirected graph G=(V,E) with n vertices and m edges, the textbook algorithm takes O(n+m) time to construct a DFS tree. In this paper, we study the problem of maintaining a DFS tree when the graph is undergoing incremental updates. Formally, we show: Given an arbitrary online sequence of edge or vertex insertions, there is an algorithm that reports a DFS tree in O(n) worst case time per operation, and requires O (min {m log n, n^2}) preprocessing time. Our result improves the previous O(n log^3 n) worst case update time algorithm by Baswana et al. [Baswana et al., 2016] and the O(n log n) time by Nakamura and Sadakane [Nakamura and Sadakane, 2017], and matches the trivial Omega(n) lower bound when it is required to explicitly output a DFS tree. Our result builds on the framework introduced in the breakthrough work by Baswana et al. [Baswana et al., 2016], together with a novel use of a tree-partition lemma by Duan and Zhang [Duan and Zhang, 2016], and the celebrated fractional cascading technique by Chazelle and Guibas [Chazelle and Guibas, 1986a; Chazelle and Guibas, 1986b].

Cite as

Lijie Chen, Ran Duan, Ruosong Wang, Hanrui Zhang, and Tianyi Zhang. An Improved Algorithm for Incremental DFS Tree in Undirected Graphs. In 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 101, pp. 16:1-16:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.SWAT.2018.16,
  author =	{Chen, Lijie and Duan, Ran and Wang, Ruosong and Zhang, Hanrui and Zhang, Tianyi},
  title =	{{An Improved Algorithm for Incremental DFS Tree in Undirected Graphs}},
  booktitle =	{16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)},
  pages =	{16:1--16:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-068-2},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{101},
  editor =	{Eppstein, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2018.16},
  URN =		{urn:nbn:de:0030-drops-88427},
  doi =		{10.4230/LIPIcs.SWAT.2018.16},
  annote =	{Keywords: DFS tree, fractional cascading, fully dynamic algorithm}
}
  • Refine by Author
  • 7 Zhang, Tianyi
  • 3 Chechik, Shiri
  • 2 Duan, Ran
  • 1 Chen, Lijie
  • 1 Gan, Rundong
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 5 graph algorithms
  • 3 shortest paths
  • 2 Large Language Models
  • 1 Constraint Acquisition
  • 1 Constraint Modelling
  • Show More...

  • Refine by Type
  • 11 document

  • Refine by Publication Year
  • 5 2024
  • 2 2021
  • 1 2018
  • 1 2020
  • 1 2022
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail