Symposium on Scaling AI Assessments (SAIA 2024). Open Access Series in Informatics (OASIcs), Volume 126, pp. 1-174, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@Proceedings{gorge_et_al:OASIcs.SAIA.2024, title = {{OASIcs, Volume 126, SAIA 2024, Complete Volume}}, booktitle = {Symposium on Scaling AI Assessments (SAIA 2024)}, pages = {1--174}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-357-7}, ISSN = {2190-6807}, year = {2025}, volume = {126}, editor = {G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SAIA.2024}, URN = {urn:nbn:de:0030-drops-228081}, doi = {10.4230/OASIcs.SAIA.2024}, annote = {Keywords: OASIcs, Volume 126, SAIA 2024, Complete Volume} }
Symposium on Scaling AI Assessments (SAIA 2024). Open Access Series in Informatics (OASIcs), Volume 126, pp. 0:i-0:xii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{gorge_et_al:OASIcs.SAIA.2024.0, author = {G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna}, title = {{Front Matter, Table of Contents, Preface, Conference Organization}}, booktitle = {Symposium on Scaling AI Assessments (SAIA 2024)}, pages = {0:i--0:xii}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-357-7}, ISSN = {2190-6807}, year = {2025}, volume = {126}, editor = {G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SAIA.2024.0}, URN = {urn:nbn:de:0030-drops-228072}, doi = {10.4230/OASIcs.SAIA.2024.0}, annote = {Keywords: Front Matter, Table of Contents, Preface, Conference Organization} }
Afef Awadid and Boris Robert. On Assessing ML Model Robustness: A Methodological Framework (Academic Track). In Symposium on Scaling AI Assessments (SAIA 2024). Open Access Series in Informatics (OASIcs), Volume 126, pp. 1:1-1:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{awadid_et_al:OASIcs.SAIA.2024.1, author = {Awadid, Afef and Robert, Boris}, title = {{On Assessing ML Model Robustness: A Methodological Framework}}, booktitle = {Symposium on Scaling AI Assessments (SAIA 2024)}, pages = {1:1--1:10}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-357-7}, ISSN = {2190-6807}, year = {2025}, volume = {126}, editor = {G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SAIA.2024.1}, URN = {urn:nbn:de:0030-drops-227410}, doi = {10.4230/OASIcs.SAIA.2024.1}, annote = {Keywords: ML model robustness, assessment, framework, methodological processes, tools} }
Marc-André Zöller, Anastasiia Iurshina, and Ines Röder. Trustworthy Generative AI for Financial Services (Practitioner Track). In Symposium on Scaling AI Assessments (SAIA 2024). Open Access Series in Informatics (OASIcs), Volume 126, pp. 2:1-2:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{zoller_et_al:OASIcs.SAIA.2024.2, author = {Z\"{o}ller, Marc-Andr\'{e} and Iurshina, Anastasiia and R\"{o}der, Ines}, title = {{Trustworthy Generative AI for Financial Services}}, booktitle = {Symposium on Scaling AI Assessments (SAIA 2024)}, pages = {2:1--2:5}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-357-7}, ISSN = {2190-6807}, year = {2025}, volume = {126}, editor = {G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SAIA.2024.2}, URN = {urn:nbn:de:0030-drops-227428}, doi = {10.4230/OASIcs.SAIA.2024.2}, annote = {Keywords: Generative AI, GenAI, Trustworthy AI, Finance, Guardrails, Grounding} }
Ronald Schnitzer, Andreas Hapfelmeier, and Sonja Zillner. EAM Diagrams - A Framework to Systematically Describe AI Systems for Effective AI Risk Assessment (Academic Track). In Symposium on Scaling AI Assessments (SAIA 2024). Open Access Series in Informatics (OASIcs), Volume 126, pp. 3:1-3:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{schnitzer_et_al:OASIcs.SAIA.2024.3, author = {Schnitzer, Ronald and Hapfelmeier, Andreas and Zillner, Sonja}, title = {{EAM Diagrams - A Framework to Systematically Describe AI Systems for Effective AI Risk Assessment}}, booktitle = {Symposium on Scaling AI Assessments (SAIA 2024)}, pages = {3:1--3:16}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-357-7}, ISSN = {2190-6807}, year = {2025}, volume = {126}, editor = {G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SAIA.2024.3}, URN = {urn:nbn:de:0030-drops-227432}, doi = {10.4230/OASIcs.SAIA.2024.3}, annote = {Keywords: AI system description, AI risk assessment, AI auditability} }
Daniel Weimer, Andreas Gensch, and Kilian Koller. Scaling of End-To-End Governance Risk Assessments for AI Systems (Practitioner Track). In Symposium on Scaling AI Assessments (SAIA 2024). Open Access Series in Informatics (OASIcs), Volume 126, pp. 4:1-4:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{weimer_et_al:OASIcs.SAIA.2024.4, author = {Weimer, Daniel and Gensch, Andreas and Koller, Kilian}, title = {{Scaling of End-To-End Governance Risk Assessments for AI Systems}}, booktitle = {Symposium on Scaling AI Assessments (SAIA 2024)}, pages = {4:1--4:5}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-357-7}, ISSN = {2190-6807}, year = {2025}, volume = {126}, editor = {G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SAIA.2024.4}, URN = {urn:nbn:de:0030-drops-227443}, doi = {10.4230/OASIcs.SAIA.2024.4}, annote = {Keywords: AI Governance, Risk Management, AI Assessment} }
Joachim Iden, Felix Zwarg, and Bouthaina Abdou. Risk Analysis Technique for the Evaluation of AI Technologies with Respect to Directly and Indirectly Affected Entities (Practitioner Track). In Symposium on Scaling AI Assessments (SAIA 2024). Open Access Series in Informatics (OASIcs), Volume 126, pp. 5:1-5:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{iden_et_al:OASIcs.SAIA.2024.5, author = {Iden, Joachim and Zwarg, Felix and Abdou, Bouthaina}, title = {{Risk Analysis Technique for the Evaluation of AI Technologies with Respect to Directly and Indirectly Affected Entities}}, booktitle = {Symposium on Scaling AI Assessments (SAIA 2024)}, pages = {5:1--5:6}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-357-7}, ISSN = {2190-6807}, year = {2025}, volume = {126}, editor = {G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SAIA.2024.5}, URN = {urn:nbn:de:0030-drops-227456}, doi = {10.4230/OASIcs.SAIA.2024.5}, annote = {Keywords: AI, Risk Analysis, Risk Management, AI assessment} }
Dominik Eisl, Bastian Bernhardt, Lukas Höhndorf, and Rafal Kulaga. SafeAI-Kit: A Software Toolbox to Evaluate AI Systems with a Focus on Uncertainty Quantification (Practitioner Track). In Symposium on Scaling AI Assessments (SAIA 2024). Open Access Series in Informatics (OASIcs), Volume 126, pp. 6:1-6:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{eisl_et_al:OASIcs.SAIA.2024.6, author = {Eisl, Dominik and Bernhardt, Bastian and H\"{o}hndorf, Lukas and Kulaga, Rafal}, title = {{SafeAI-Kit: A Software Toolbox to Evaluate AI Systems with a Focus on Uncertainty Quantification}}, booktitle = {Symposium on Scaling AI Assessments (SAIA 2024)}, pages = {6:1--6:3}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-357-7}, ISSN = {2190-6807}, year = {2025}, volume = {126}, editor = {G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SAIA.2024.6}, URN = {urn:nbn:de:0030-drops-227466}, doi = {10.4230/OASIcs.SAIA.2024.6}, annote = {Keywords: safeAI-kit, Evaluation of AI Systems, Uncertainty Quantification} }
Christoph Tobias Wirth, Mihai Maftei, Rosa Esther Martín-Peña, and Iris Merget. Towards Trusted AI: A Blueprint for Ethics Assessment in Practice (Academic Track). In Symposium on Scaling AI Assessments (SAIA 2024). Open Access Series in Informatics (OASIcs), Volume 126, pp. 7:1-7:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{wirth_et_al:OASIcs.SAIA.2024.7, author = {Wirth, Christoph Tobias and Maftei, Mihai and Mart{\'\i}n-Pe\~{n}a, Rosa Esther and Merget, Iris}, title = {{Towards Trusted AI: A Blueprint for Ethics Assessment in Practice}}, booktitle = {Symposium on Scaling AI Assessments (SAIA 2024)}, pages = {7:1--7:19}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-357-7}, ISSN = {2190-6807}, year = {2025}, volume = {126}, editor = {G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SAIA.2024.7}, URN = {urn:nbn:de:0030-drops-227478}, doi = {10.4230/OASIcs.SAIA.2024.7}, annote = {Keywords: Trusted AI, Trustworthy AI, AI Ethics Assessment Framework, AI Quality, AI Ethics, AI Ethics Assessment, AI Lifecycle, Responsible AI, Ethics-By-Design, AI Risk Management, Ethics Impact Assessment, AI Ethics KPIs, Human-Centric AI, Applied Ethics} }
Adrian Seeliger. AI Readiness of Standards: Bridging Traditional Norms with Modern Technologies (Practitioner Track). In Symposium on Scaling AI Assessments (SAIA 2024). Open Access Series in Informatics (OASIcs), Volume 126, pp. 8:1-8:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{seeliger:OASIcs.SAIA.2024.8, author = {Seeliger, Adrian}, title = {{AI Readiness of Standards: Bridging Traditional Norms with Modern Technologies}}, booktitle = {Symposium on Scaling AI Assessments (SAIA 2024)}, pages = {8:1--8:6}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-357-7}, ISSN = {2190-6807}, year = {2025}, volume = {126}, editor = {G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SAIA.2024.8}, URN = {urn:nbn:de:0030-drops-227486}, doi = {10.4230/OASIcs.SAIA.2024.8}, annote = {Keywords: Standardization, Norms and Standards, AI Readiness, Artificial Intelligence, Knowledge Automation} }
Sergio Genovesi. Introducing an AI Governance Framework in Financial Organizations. Best Practices in Implementing the EU AI Act (Practitioner Track). In Symposium on Scaling AI Assessments (SAIA 2024). Open Access Series in Informatics (OASIcs), Volume 126, pp. 9:1-9:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{genovesi:OASIcs.SAIA.2024.9, author = {Genovesi, Sergio}, title = {{Introducing an AI Governance Framework in Financial Organizations. Best Practices in Implementing the EU AI Act}}, booktitle = {Symposium on Scaling AI Assessments (SAIA 2024)}, pages = {9:1--9:7}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-357-7}, ISSN = {2190-6807}, year = {2025}, volume = {126}, editor = {G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SAIA.2024.9}, URN = {urn:nbn:de:0030-drops-227496}, doi = {10.4230/OASIcs.SAIA.2024.9}, annote = {Keywords: AI Governance, EU AI Act, Gap Analysis, Risk Management, AI Risk Assessment} }
Sergio Genovesi, Martin Haimerl, Iris Merget, Samantha Morgaine Prange, Otto Obert, Susanna Wolf, and Jens Ziehn. Evaluating Dimensions of AI Transparency: A Comparative Study of Standards, Guidelines, and the EU AI Act (Academic Track). In Symposium on Scaling AI Assessments (SAIA 2024). Open Access Series in Informatics (OASIcs), Volume 126, pp. 10:1-10:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{genovesi_et_al:OASIcs.SAIA.2024.10, author = {Genovesi, Sergio and Haimerl, Martin and Merget, Iris and Prange, Samantha Morgaine and Obert, Otto and Wolf, Susanna and Ziehn, Jens}, title = {{Evaluating Dimensions of AI Transparency: A Comparative Study of Standards, Guidelines, and the EU AI Act}}, booktitle = {Symposium on Scaling AI Assessments (SAIA 2024)}, pages = {10:1--10:17}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-357-7}, ISSN = {2190-6807}, year = {2025}, volume = {126}, editor = {G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SAIA.2024.10}, URN = {urn:nbn:de:0030-drops-227509}, doi = {10.4230/OASIcs.SAIA.2024.10}, annote = {Keywords: AI, transparency, regulation} }
Oliver Müller, Veronika Lazar, and Matthias Heck. Transparency of AI Systems (Practitioner Track). In Symposium on Scaling AI Assessments (SAIA 2024). Open Access Series in Informatics (OASIcs), Volume 126, pp. 11:1-11:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{muller_et_al:OASIcs.SAIA.2024.11, author = {M\"{u}ller, Oliver and Lazar, Veronika and Heck, Matthias}, title = {{Transparency of AI Systems}}, booktitle = {Symposium on Scaling AI Assessments (SAIA 2024)}, pages = {11:1--11:7}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-357-7}, ISSN = {2190-6807}, year = {2025}, volume = {126}, editor = {G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SAIA.2024.11}, URN = {urn:nbn:de:0030-drops-227512}, doi = {10.4230/OASIcs.SAIA.2024.11}, annote = {Keywords: transparency, artificial intelligence, black box, information, stakeholder, AI Act} }
Elisabeth Pachl, Fabian Langer, Thora Markert, and Jeanette Miriam Lorenz. A View on Vulnerabilites: The Security Challenges of XAI (Academic Track). In Symposium on Scaling AI Assessments (SAIA 2024). Open Access Series in Informatics (OASIcs), Volume 126, pp. 12:1-12:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{pachl_et_al:OASIcs.SAIA.2024.12, author = {Pachl, Elisabeth and Langer, Fabian and Markert, Thora and Lorenz, Jeanette Miriam}, title = {{A View on Vulnerabilites: The Security Challenges of XAI}}, booktitle = {Symposium on Scaling AI Assessments (SAIA 2024)}, pages = {12:1--12:23}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-357-7}, ISSN = {2190-6807}, year = {2025}, volume = {126}, editor = {G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SAIA.2024.12}, URN = {urn:nbn:de:0030-drops-227523}, doi = {10.4230/OASIcs.SAIA.2024.12}, annote = {Keywords: Explainability, XAI, Transparency, Adversarial Machine Learning, Security, Vulnerabilities} }
Benjamin Fresz, Danilo Brajovic, and Marco F. Huber. AI Certification: Empirical Investigations into Possible Cul-De-Sacs and Ways Forward (Practitioner Track). In Symposium on Scaling AI Assessments (SAIA 2024). Open Access Series in Informatics (OASIcs), Volume 126, pp. 13:1-13:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{fresz_et_al:OASIcs.SAIA.2024.13, author = {Fresz, Benjamin and Brajovic, Danilo and Huber, Marco F.}, title = {{AI Certification: Empirical Investigations into Possible Cul-De-Sacs and Ways Forward}}, booktitle = {Symposium on Scaling AI Assessments (SAIA 2024)}, pages = {13:1--13:4}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-357-7}, ISSN = {2190-6807}, year = {2025}, volume = {126}, editor = {G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SAIA.2024.13}, URN = {urn:nbn:de:0030-drops-227533}, doi = {10.4230/OASIcs.SAIA.2024.13}, annote = {Keywords: AI certification, eXplainable AI (XAI), safe AI, trustworthy AI, AI documentation} }
Susanne Kuch and Raoul Kirmes. AI Certification: An Accreditation Perspective (Practitioner Track). In Symposium on Scaling AI Assessments (SAIA 2024). Open Access Series in Informatics (OASIcs), Volume 126, pp. 14:1-14:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{kuch_et_al:OASIcs.SAIA.2024.14, author = {Kuch, Susanne and Kirmes, Raoul}, title = {{AI Certification: An Accreditation Perspective}}, booktitle = {Symposium on Scaling AI Assessments (SAIA 2024)}, pages = {14:1--14:7}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-357-7}, ISSN = {2190-6807}, year = {2025}, volume = {126}, editor = {G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SAIA.2024.14}, URN = {urn:nbn:de:0030-drops-227541}, doi = {10.4230/OASIcs.SAIA.2024.14}, annote = {Keywords: certification, conformity assessment, market entry, accreditation, artificial intelligence, standard} }
Carmen Frischknecht-Gruber, Philipp Denzel, Monika Reif, Yann Billeter, Stefan Brunner, Oliver Forster, Frank-Peter Schilling, Joanna Weng, and Ricardo Chavarriaga. AI Assessment in Practice: Implementing a Certification Scheme for AI Trustworthiness (Academic Track). In Symposium on Scaling AI Assessments (SAIA 2024). Open Access Series in Informatics (OASIcs), Volume 126, pp. 15:1-15:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{frischknechtgruber_et_al:OASIcs.SAIA.2024.15, author = {Frischknecht-Gruber, Carmen and Denzel, Philipp and Reif, Monika and Billeter, Yann and Brunner, Stefan and Forster, Oliver and Schilling, Frank-Peter and Weng, Joanna and Chavarriaga, Ricardo}, title = {{AI Assessment in Practice: Implementing a Certification Scheme for AI Trustworthiness}}, booktitle = {Symposium on Scaling AI Assessments (SAIA 2024)}, pages = {15:1--15:18}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-357-7}, ISSN = {2190-6807}, year = {2025}, volume = {126}, editor = {G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SAIA.2024.15}, URN = {urn:nbn:de:0030-drops-227554}, doi = {10.4230/OASIcs.SAIA.2024.15}, annote = {Keywords: AI Assessment, Certification Scheme, Artificial Intelligence, Trustworthiness of AI systems, AI Standards, AI Safety} }
Feedback for Dagstuhl Publishing