16 Search Results for "Alstrup, Stephen"


Document
Safe Sequences via Dominators in DAGs for Path-Covering Problems

Authors: Francisco Sena, Romeo Rizzi, and Alexandru I. Tomescu

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A path-covering problem on a directed acyclic graph (DAG) requires finding a set of source-to-sink paths that cover all the nodes, all the arcs, or subsets thereof, and additionally they are optimal with respect to some function. In this paper we study safe sequences of nodes or arcs, namely sequences that appear in some path of every path cover of a DAG. We show that safe sequences admit a simple characterization via cutnodes. Moreover, we establish a connection between maximal safe sequences and leaf-to-root paths in the source- and sink-dominator trees of the DAG, which may be of independent interest in the extensive literature on dominators. With dominator trees, safe sequences admit an O(n)-size representation and a linear-time output-sensitive enumeration algorithm running in time O(m + o), where n and m are the number of nodes and arcs, respectively, and o is the total length of the maximal safe sequences. We then apply maximal safe sequences to simplify Integer Linear Programs (ILPs) for two path-covering problems, LeastSquares and MinPathError, which are at the core of RNA transcript assembly problems from bioinformatics. On various datasets, maximal safe sequences can be computed in under 0.1 seconds per graph, on average, and ILP solvers whose search space is reduced in this manner exhibit significant speed-ups. For example on graphs with a large width, average speed-ups are in the range 50-250× for MinPathError and in the range 80-350× for LeastSquares. Optimizing ILPs using safe sequences can thus become a fast building block of practical RNA transcript assembly tools, and more generally, of path-covering problems.

Cite as

Francisco Sena, Romeo Rizzi, and Alexandru I. Tomescu. Safe Sequences via Dominators in DAGs for Path-Covering Problems. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 55:1-55:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{sena_et_al:LIPIcs.ESA.2025.55,
  author =	{Sena, Francisco and Rizzi, Romeo and Tomescu, Alexandru I.},
  title =	{{Safe Sequences via Dominators in DAGs for Path-Covering Problems}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{55:1--55:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.55},
  URN =		{urn:nbn:de:0030-drops-245230},
  doi =		{10.4230/LIPIcs.ESA.2025.55},
  annote =	{Keywords: directed acyclic graph, path cover, dominator tree, integer linear programming, least squares, minimum path error}
}
Document
Faster Dynamic 2-Edge Connectivity in Directed Graphs

Authors: Loukas Georgiadis, Konstantinos Giannis, and Giuseppe F. Italiano

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Let G be a directed graph with n vertices and m edges. We present a deterministic algorithm that maintains the 2-edge-connected components of G under a sequence of m edge insertions, with a total running time of O(n² log n). This significantly improves upon the previous best bound of O(mn) for graphs that are not very sparse. After each insertion, our algorithm supports the following queries with asymptotically optimal efficiency: - Test in constant time whether two query vertices v and w are 2-edge-connected in G. - Report in O(n) time all the 2-edge-connected components of G. Our approach builds on the recent framework of Georgiadis, Italiano, and Kosinas [FOCS 2024] for computing the 3-edge-connected components of a directed graph in linear time, which leverages the minset-poset technique of Gabow [TALG 2016]. Additionally, we provide a deterministic decremental algorithm for maintaining 2-edge-connectivity in strongly connected directed graphs. Given a sequence of m edge deletions, our algorithm maintains the 2-edge-connected components in total time n^(2+o(1)), while supporting the same queries as the incremental algorithm. This result assumes that the edges of a fixed spanning tree of G and of its reverse graph G^R are not deleted. Previously, the best known bound for the decremental problem was O(mn log n), obtained by a randomized algorithm without restrictions on the deletions. In contrast to prior dynamic algorithms for 2-edge-connectivity in directed graphs, our method avoids the incremental computation of dominator trees, thereby circumventing the known conditional lower bound of Ω(mn).

Cite as

Loukas Georgiadis, Konstantinos Giannis, and Giuseppe F. Italiano. Faster Dynamic 2-Edge Connectivity in Directed Graphs. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 26:1-26:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{georgiadis_et_al:LIPIcs.ESA.2025.26,
  author =	{Georgiadis, Loukas and Giannis, Konstantinos and Italiano, Giuseppe F.},
  title =	{{Faster Dynamic 2-Edge Connectivity in Directed Graphs}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{26:1--26:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.26},
  URN =		{urn:nbn:de:0030-drops-244945},
  doi =		{10.4230/LIPIcs.ESA.2025.26},
  annote =	{Keywords: Connectivity, dynamic algorithms, directed graphs}
}
Document
Near-Optimal Vertex Fault-Tolerant Labels for Steiner Connectivity

Authors: Koustav Bhanja and Asaf Petruschka

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We present a compact labeling scheme for determining whether a designated set of terminals in a graph remains connected after any f (or less) vertex failures occur. An f-FT Steiner connectivity labeling scheme for an n-vertex graph G = (V,E) with terminal set U ⊆ V provides labels to the vertices of G, such that given only the labels of any subset F ⊆ V with |F| ≤ f, one can determine if U remains connected in G-F. The main complexity measure is the maximum label length. The special case U = V of global connectivity has been recently studied by Jiang, Parter, and Petruschka [Yonggang Jiang et al., 2025], who provided labels of n^{1-1/f} ⋅ poly(f,log n) bits. This is near-optimal (up to poly(f,log n) factors) by a lower bound of Long, Pettie and Saranurak [Yaowei Long et al., 2025]. Our scheme achieves labels of |U|^{1-1/f} ⋅ poly(f, log n) for general U ⊆ V, which is near-optimal for any given size |U| of the terminal set. To handle terminal sets, our approach differs from [Yonggang Jiang et al., 2025]. We use a well-structured Steiner tree for U produced by a decomposition theorem of Duan and Pettie [Ran Duan and Seth Pettie, 2020], and bypass the need for Nagamochi-Ibaraki sparsification [Hiroshi Nagamochi and Toshihide Ibaraki, 1992].

Cite as

Koustav Bhanja and Asaf Petruschka. Near-Optimal Vertex Fault-Tolerant Labels for Steiner Connectivity. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 44:1-44:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bhanja_et_al:LIPIcs.ESA.2025.44,
  author =	{Bhanja, Koustav and Petruschka, Asaf},
  title =	{{Near-Optimal Vertex Fault-Tolerant Labels for Steiner Connectivity}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{44:1--44:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.44},
  URN =		{urn:nbn:de:0030-drops-245123},
  doi =		{10.4230/LIPIcs.ESA.2025.44},
  annote =	{Keywords: Fault Tolerance, Labeling Schemes, Steiner Connectivity}
}
Document
Bounded Weighted Edit Distance: Dynamic Algorithms and Matching Lower Bounds

Authors: Itai Boneh, Egor Gorbachev, and Tomasz Kociumaka

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The edit distance ed(X,Y) of two strings X,Y ∈ Σ^* is the minimum number of character edits (insertions, deletions, and substitutions) needed to transform X into Y. Its weighted counterpart ed^w(X,Y) minimizes the total cost of edits, where the costs of individual edits, depending on the edit type and the characters involved, are specified using a function w, normalized so that each edit costs at least one. The textbook dynamic-programming procedure, given strings X,Y ∈ Σ^{≤ n} and oracle access to w, computes ed^w(X,Y) in 𝒪(n²) time. Nevertheless, one can achieve better running times if the computed distance, denoted k, is small: 𝒪(n+k²) for unit weights [Landau and Vishkin; JCSS'88] and Õ(n+√{nk³}) for arbitrary weights [Cassis, Kociumaka, Wellnitz; FOCS'23]. In this paper, we study the dynamic version of the weighted edit distance problem, where the goal is to maintain ed^w(X,Y) for strings X,Y ∈ Σ^{≤ n} that change over time, with each update specified as an edit in X or Y. Very recently, Gorbachev and Kociumaka [STOC'25] showed that the unweighted distance ed(X,Y) can be maintained in Õ(k) time per update after Õ(n+k²)-time preprocessing; here, k denotes the current value of ed(X,Y). Their algorithm generalizes to small integer weights, but the underlying approach is incompatible with large weights. Our main result is a dynamic algorithm that maintains ed^w(X,Y) in Õ(k^{3-γ}) time per update after Õ(nk^γ)-time preprocessing. Here, γ ∈ [0,1] is a real trade-off parameter and k ≥ 1 is an integer threshold fixed at preprocessing time, with ∞ returned whenever ed^w(X,Y) > k. We complement our algorithm with conditional lower bounds showing fine-grained optimality of our trade-off for γ ∈ [0.5,1) and justifying our choice to fix k. We also generalize our solution to a much more robust setting while preserving the fine-grained optimal trade-off. Our full algorithm maintains X ∈ Σ^{≤ n} subject not only to character edits but also substring deletions and copy-pastes, each supported in Õ(k²) time. Instead of dynamically maintaining Y, it answers queries that, given any string Y specified through a sequence of 𝒪(k) arbitrary edits transforming X into Y, in Õ(k^{3-γ}) time compute ed^w(X,Y) or report that ed^w(X,Y) > k.

Cite as

Itai Boneh, Egor Gorbachev, and Tomasz Kociumaka. Bounded Weighted Edit Distance: Dynamic Algorithms and Matching Lower Bounds. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 45:1-45:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{boneh_et_al:LIPIcs.ESA.2025.45,
  author =	{Boneh, Itai and Gorbachev, Egor and Kociumaka, Tomasz},
  title =	{{Bounded Weighted Edit Distance: Dynamic Algorithms and Matching Lower Bounds}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{45:1--45:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.45},
  URN =		{urn:nbn:de:0030-drops-245139},
  doi =		{10.4230/LIPIcs.ESA.2025.45},
  annote =	{Keywords: Edit distance, dynamic algorithms, conditional lower bounds}
}
Document
Testing Whether a Subgraph Is Convex or Isometric

Authors: Sergio Cabello

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We consider the following two algorithmic problems: given a graph G and a subgraph H ⊆ G, decide whether H is an isometric or a geodesically convex subgraph of G. It is relatively easy to see that the problems can be solved by computing the distances between all pairs of vertices. We provide a conditional lower bound showing that, for sparse graphs with n vertices and Θ(n) edges, we cannot expect to solve the problem in O(n^{2-ε}) time for any constant ε > 0. We also show that the problem can be solved in subquadratic time for planar graphs and in near-linear time for graphs of bounded treewidth. Finally, we provide a near-linear time algorithm for the setting where G is a plane graph and H is defined by a few cycles in G.

Cite as

Sergio Cabello. Testing Whether a Subgraph Is Convex or Isometric. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 12:1-12:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cabello:LIPIcs.WADS.2025.12,
  author =	{Cabello, Sergio},
  title =	{{Testing Whether a Subgraph Is Convex or Isometric}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{12:1--12:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.12},
  URN =		{urn:nbn:de:0030-drops-242439},
  doi =		{10.4230/LIPIcs.WADS.2025.12},
  annote =	{Keywords: convex subgraph, isometric subgraph, plane graph}
}
Document
Dynamic Membership for Regular Tree Languages

Authors: Antoine Amarilli, Corentin Barloy, Louis Jachiet, and Charles Paperman

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
We study the dynamic membership problem for regular tree languages under relabeling updates: we fix an alphabet Σ and a regular tree language L over Σ (expressed, e.g., as a tree automaton), we are given a tree T with labels in Σ, and we must maintain the information of whether the tree T belongs to L while handling relabeling updates that change the labels of individual nodes in T. Our first contribution is to show that this problem admits an O(log n / log log n) algorithm for any fixed regular tree language, improving over known O(log n) algorithms. This generalizes the known O(log n / log log n) upper bound over words, and it matches the lower bound of Ω(log n / log log n) from dynamic membership to some word languages and from the existential marked ancestor problem. Our second contribution is to introduce a class of regular languages, dubbed almost-commutative tree languages, and show that dynamic membership to such languages under relabeling updates can be decided in constant time per update. Almost-commutative languages generalize both commutative languages and finite languages: they are the analogue for trees of the ZG languages enjoying constant-time dynamic membership over words. Our main technical contribution is to show that this class is conditionally optimal when we assume that the alphabet features a neutral letter, i.e., a letter that has no effect on membership to the language. More precisely, we show that any regular tree language with a neutral letter which is not almost-commutative cannot be maintained in constant time under the assumption that the prefix-U1 problem from [Antoine Amarilli et al., 2021] also does not admit a constant-time algorithm.

Cite as

Antoine Amarilli, Corentin Barloy, Louis Jachiet, and Charles Paperman. Dynamic Membership for Regular Tree Languages. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{amarilli_et_al:LIPIcs.MFCS.2025.8,
  author =	{Amarilli, Antoine and Barloy, Corentin and Jachiet, Louis and Paperman, Charles},
  title =	{{Dynamic Membership for Regular Tree Languages}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.8},
  URN =		{urn:nbn:de:0030-drops-241155},
  doi =		{10.4230/LIPIcs.MFCS.2025.8},
  annote =	{Keywords: automaton, dynamic membership, incremental maintenance, forest algebra}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Distance Labeling for Permutation Graphs

Authors: Paweł Gawrychowski and Wojciech Janczewski

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
A permutation graph is the intersection graph of a set of segments between two parallel lines. In other words, they are defined by a permutation π on n elements, such that u and v are adjacent if an only if u < v but π(u) > π(v). We consider the problem of computing the distances in such a graph in the setting of informative labeling schemes. The goal of such a scheme is to assign a short bitstring 𝓁(u) to every vertex u, such that the distance between u and v can be computed using only 𝓁(u) and 𝓁(v), and no further knowledge about the whole graph (other than that it is a permutation graph). This elegantly captures the intuition that we would like our data structure to be distributed, and often leads to interesting combinatorial challenges while trying to obtain lower and upper bounds that match up to the lower-order terms. For distance labeling of permutation graphs on n vertices, Katz, Katz, and Peleg [STACS 2000] showed how to construct labels consisting of 𝒪(log² n) bits. Later, Bazzaro and Gavoille [Discret. Math. 309(11)] obtained an asymptotically optimal bound by showing how to construct labels consisting of 9log{n}+𝒪(1) bits, and proving that 3log{n}-𝒪(log{log{n}}) bits are necessary. This however leaves a quite large gap between the known lower and upper bounds. We close this gap by showing how to construct labels consisting of 3log{n}+𝒪(1) bits.

Cite as

Paweł Gawrychowski and Wojciech Janczewski. Optimal Distance Labeling for Permutation Graphs. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 86:1-86:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gawrychowski_et_al:LIPIcs.ICALP.2025.86,
  author =	{Gawrychowski, Pawe{\l} and Janczewski, Wojciech},
  title =	{{Optimal Distance Labeling for Permutation Graphs}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{86:1--86:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.86},
  URN =		{urn:nbn:de:0030-drops-234632},
  doi =		{10.4230/LIPIcs.ICALP.2025.86},
  annote =	{Keywords: informative labeling, permutation graph, distance labeling}
}
Document
Compressed Dictionary Matching on Run-Length Encoded Strings

Authors: Philip Bille, Inge Li Gørtz, Simon J. Puglisi, and Simon R. Tarnow

Published in: LIPIcs, Volume 331, 36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025)


Abstract
Given a set of pattern strings 𝒫 = {P₁, P₂,… P_k} and a text string S, the classic dictionary matching problem is to report all occurrences of each pattern in S. We study the dictionary problem in the compressed setting, where the pattern strings and the text string are compressed using run-length encoding, and the goal is to solve the problem without decompression and achieve efficient time and space in the size of the compressed strings. Let m and n be the total length of the patterns 𝒫 and the length of the text string S, respectively, and let ̅m and ̅n be the total number of runs in the run-length encoding of the patterns in 𝒫 and S, respectively. Our main result is an algorithm that achieves O(( ̅m + ̅n)log log m + occ) expected time, and O( ̅m) space, where occ is the total number of occurrences of patterns in S. This is the first non-trivial solution to the problem. Since any solution must read the input, our time bound is optimal within an log log m factor. We introduce several new techniques to achieve our bounds, including a new compressed representation of the classic Aho-Corasick automaton and a new efficient string index that supports fast queries in run-length encoded strings.

Cite as

Philip Bille, Inge Li Gørtz, Simon J. Puglisi, and Simon R. Tarnow. Compressed Dictionary Matching on Run-Length Encoded Strings. In 36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 331, pp. 21:1-21:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bille_et_al:LIPIcs.CPM.2025.21,
  author =	{Bille, Philip and G{\o}rtz, Inge Li and Puglisi, Simon J. and Tarnow, Simon R.},
  title =	{{Compressed Dictionary Matching on Run-Length Encoded Strings}},
  booktitle =	{36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025)},
  pages =	{21:1--21:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-369-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{331},
  editor =	{Bonizzoni, Paola and M\"{a}kinen, Veli},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2025.21},
  URN =		{urn:nbn:de:0030-drops-231158},
  doi =		{10.4230/LIPIcs.CPM.2025.21},
  annote =	{Keywords: Dictionary matching, run-length encoding, compressed pattern matching}
}
Document
Dismountability in Temporal Cliques Revisited

Authors: Daniele Carnevale, Arnaud Casteigts, and Timothée Corsini

Published in: LIPIcs, Volume 330, 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)


Abstract
A temporal graph is a graph whose edges are available only at certain points in time. It is temporally connected if the nodes can reach each other by paths that traverse the edges chronologically (temporal paths). Unlike static graphs, temporal graphs do not always admit small subsets of edges that preserve connectivity (temporal spanners) - there exist temporal graphs with Θ(n²) edges, all of which are critical. In the case of temporal cliques (the underlying graph is complete), spanners of size O(nlog n) are guaranteed. The original proof of this result by Casteigts et al. [ICALP 2019] combines a number of techniques, one of which is called dismountability. In a recent work, Angrick et al. [ESA 2024] simplified the proof and showed, among other things, that a one-sided version of dismountability can replace elegantly the second part of the proof. In this paper, we revisit methodically the dismountability principle. We start by characterizing the structure that a temporal clique must have if it is non 1-hop dismountable, then neither 1-hop nor 2-hop (i.e. non {1,2}-hop) dismountable, and finally non {1,2,3}-hop dismountable. It turns out that if a clique is k-hop dismountable for any other k, then it must also be {1,2,3}-hop dismountable, thus no additional structure can be obtained beyond this point. Interestingly, excluding 1-hop and 2-hop dismountability is already sufficient for reducing the spanner problem from cliques to extremally matched bicliques, where the O(nlog n) result is subsequently obtained. Put together with the strategy of Angrick et al., this entire result can now be recovered using only dismountability. An interesting by-product of our analysis is that any minimal counter-example to the existence of 4n spanners must satisfy the properties of non {1,2,3}-hop dismountable cliques. In the second part, we discuss further connections between dismountability and another technique called pivotability. In particular, we show that if a temporal clique is recursively k-hop dismountable, then it is also pivotable (and thus admits a 2n spanner, whatever k). We also study a family of labelings called full-range that forces both dismountability and pivotability. The latter gives some evidence that large lifetimes could be exploited more generally for the construction of spanners.

Cite as

Daniele Carnevale, Arnaud Casteigts, and Timothée Corsini. Dismountability in Temporal Cliques Revisited. In 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 330, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{carnevale_et_al:LIPIcs.SAND.2025.6,
  author =	{Carnevale, Daniele and Casteigts, Arnaud and Corsini, Timoth\'{e}e},
  title =	{{Dismountability in Temporal Cliques Revisited}},
  booktitle =	{4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)},
  pages =	{6:1--6:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-368-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{330},
  editor =	{Meeks, Kitty and Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2025.6},
  URN =		{urn:nbn:de:0030-drops-230591},
  doi =		{10.4230/LIPIcs.SAND.2025.6},
  annote =	{Keywords: Dynamic networks, Temporal graphs, Reachability, Dismountability, Pivotability, Temporal spanners, Full-range graphs}
}
Document
Adjacency Labeling Schemes for Small Classes

Authors: Édouard Bonnet, Julien Duron, John Sylvester, and Viktor Zamaraev

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
A graph class admits an implicit representation if, for every positive integer n, its n-vertex graphs have a O(log n)-bit (adjacency) labeling scheme, i.e., their vertices can be labeled by binary strings of length O(log n) such that the presence of an edge between any pair of vertices can be deduced solely from their labels. The famous Implicit Graph Conjecture posited that every hereditary (i.e., closed under taking induced subgraphs) factorial (i.e., containing 2^O(n log n) n-vertex graphs) class admits an implicit representation. The conjecture was recently refuted [Hatami and Hatami, FOCS '22], and does not even hold among monotone (i.e., closed under taking subgraphs) factorial classes [Bonnet et al., ICALP '24]. However, monotone small (i.e., containing at most n! cⁿ many n-vertex graphs for some constant c) classes do admit implicit representations. This motivates the Small Implicit Graph Conjecture: Every hereditary small class admits an O(log n)-bit labeling scheme. We provide evidence supporting the Small Implicit Graph Conjecture. First, we show that every small weakly sparse (i.e., excluding some fixed bipartite complete graph as a subgraph) class has an implicit representation. This is a consequence of the following fact of independent interest proved in the paper: Every weakly sparse small class has bounded expansion (hence, in particular, bounded degeneracy). Second, we show that every hereditary small class admits an O(log³ n)-bit labeling scheme, which provides a substantial improvement of the best-known polynomial upper bound of n^(1-ε) on the size of adjacency labeling schemes for such classes. This is a consequence of another fact of independent interest proved in the paper: Every small class has neighborhood complexity O(n log n).

Cite as

Édouard Bonnet, Julien Duron, John Sylvester, and Viktor Zamaraev. Adjacency Labeling Schemes for Small Classes. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 21:1-21:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ITCS.2025.21,
  author =	{Bonnet, \'{E}douard and Duron, Julien and Sylvester, John and Zamaraev, Viktor},
  title =	{{Adjacency Labeling Schemes for Small Classes}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{21:1--21:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.21},
  URN =		{urn:nbn:de:0030-drops-226493},
  doi =		{10.4230/LIPIcs.ITCS.2025.21},
  annote =	{Keywords: Adjacency labeling, degeneracy, weakly sparse classes, small classes, implicit graph conjecture}
}
Document
Near-Optimal Resilient Labeling Schemes

Authors: Keren Censor-Hillel and Einav Huberman

Published in: LIPIcs, Volume 324, 28th International Conference on Principles of Distributed Systems (OPODIS 2024)


Abstract
Labeling schemes are a prevalent paradigm in various computing settings. In such schemes, an oracle is given an input graph and produces a label for each of its nodes, enabling the labels to be used for various tasks. Fundamental examples in distributed settings include distance labeling schemes, proof labeling schemes, advice schemes, and more. This paper addresses the question of what happens in a labeling scheme if some labels are erased, e.g., due to communication loss with the oracle or hardware errors. We adapt the notion of resilient proof-labeling schemes of Fischer, Oshman, Shamir [OPODIS 2021] and consider resiliency in general labeling schemes. A resilient labeling scheme consists of two parts - a transformation of any given labeling to a new one, executed by the oracle, and a distributed algorithm in which the nodes can restore their original labels given the new ones, despite some label erasures. Our contribution is a resilient labeling scheme that can handle F such erasures. Given a labeling of 𝓁 bits per node, it produces new labels with multiplicative and additive overheads of O(1) and O(log(F)), respectively. The running time of the distributed reconstruction algorithm is O(F+(𝓁⋅F)/log n) in the Congest model. This improves upon what can be deduced from the work of Bick, Kol, and Oshman [SODA 2022], for non-constant values of F. It is not hard to show that the running time of our distributed algorithm is optimal, making our construction near-optimal, up to the additive overhead in the label size.

Cite as

Keren Censor-Hillel and Einav Huberman. Near-Optimal Resilient Labeling Schemes. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 35:1-35:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{censorhillel_et_al:LIPIcs.OPODIS.2024.35,
  author =	{Censor-Hillel, Keren and Huberman, Einav},
  title =	{{Near-Optimal Resilient Labeling Schemes}},
  booktitle =	{28th International Conference on Principles of Distributed Systems (OPODIS 2024)},
  pages =	{35:1--35:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-360-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{324},
  editor =	{Bonomi, Silvia and Galletta, Letterio and Rivi\`{e}re, Etienne and Schiavoni, Valerio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2024.35},
  URN =		{urn:nbn:de:0030-drops-225713},
  doi =		{10.4230/LIPIcs.OPODIS.2024.35},
  annote =	{Keywords: Labeling schemes, Erasures}
}
Document
Track A: Algorithms, Complexity and Games
Faster Submodular Maximization for Several Classes of Matroids

Authors: Monika Henzinger, Paul Liu, Jan Vondrák, and Da Wei Zheng

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
The maximization of submodular functions have found widespread application in areas such as machine learning, combinatorial optimization, and economics, where practitioners often wish to enforce various constraints; the matroid constraint has been investigated extensively due to its algorithmic properties and expressive power. Though tight approximation algorithms for general matroid constraints exist in theory, the running times of such algorithms typically scale quadratically, and are not practical for truly large scale settings. Recent progress has focused on fast algorithms for important classes of matroids given in explicit form. Currently, nearly-linear time algorithms only exist for graphic and partition matroids [Alina Ene and Huy L. Nguyen, 2019]. In this work, we develop algorithms for monotone submodular maximization constrained by graphic, transversal matroids, or laminar matroids in time near-linear in the size of their representation. Our algorithms achieve an optimal approximation of 1-1/e-ε and both generalize and accelerate the results of Ene and Nguyen [Alina Ene and Huy L. Nguyen, 2019]. In fact, the running time of our algorithm cannot be improved within the fast continuous greedy framework of Badanidiyuru and Vondrák [Ashwinkumar Badanidiyuru and Jan Vondrák, 2014]. To achieve near-linear running time, we make use of dynamic data structures that maintain bases with approximate maximum cardinality and weight under certain element updates. These data structures need to support a weight decrease operation and a novel Freeze operation that allows the algorithm to freeze elements (i.e. force to be contained) in its basis regardless of future data structure operations. For the laminar matroid, we present a new dynamic data structure using the top tree interface of Alstrup, Holm, de Lichtenberg, and Thorup [Stephen Alstrup et al., 2005] that maintains the maximum weight basis under insertions and deletions of elements in O(log n) time. This data structure needs to support certain subtree query and path update operations that are performed every insertion and deletion that are non-trivial to handle in conjunction. For the transversal matroid the Freeze operation corresponds to requiring the data structure to keep a certain set S of vertices matched, a property that we call S-stability. While there is a large body of work on dynamic matching algorithms, none are S-stable and maintain an approximate maximum weight matching under vertex updates. We give the first such algorithm for bipartite graphs with total running time linear (up to log factors) in the number of edges.

Cite as

Monika Henzinger, Paul Liu, Jan Vondrák, and Da Wei Zheng. Faster Submodular Maximization for Several Classes of Matroids. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 74:1-74:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.ICALP.2023.74,
  author =	{Henzinger, Monika and Liu, Paul and Vondr\'{a}k, Jan and Zheng, Da Wei},
  title =	{{Faster Submodular Maximization for Several Classes of Matroids}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{74:1--74:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.74},
  URN =		{urn:nbn:de:0030-drops-181267},
  doi =		{10.4230/LIPIcs.ICALP.2023.74},
  annote =	{Keywords: submodular optimization, dynamic data structures, matching algorithms}
}
Document
Constructing Light Spanners Deterministically in Near-Linear Time

Authors: Stephen Alstrup, Søren Dahlgaard, Arnold Filtser, Morten Stöckel, and Christian Wulff-Nilsen

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
Graph spanners are well-studied and widely used both in theory and practice. In a recent breakthrough, Chechik and Wulff-Nilsen [Shiri Chechik and Christian Wulff-Nilsen, 2018] improved the state-of-the-art for light spanners by constructing a (2k-1)(1+epsilon)-spanner with O(n^(1+1/k)) edges and O_epsilon(n^(1/k)) lightness. Soon after, Filtser and Solomon [Arnold Filtser and Shay Solomon, 2016] showed that the classic greedy spanner construction achieves the same bounds. The major drawback of the greedy spanner is its running time of O(mn^(1+1/k)) (which is faster than [Shiri Chechik and Christian Wulff-Nilsen, 2018]). This makes the construction impractical even for graphs of moderate size. Much faster spanner constructions do exist but they only achieve lightness Omega_epsilon(kn^(1/k)), even when randomization is used. The contribution of this paper is deterministic spanner constructions that are fast, and achieve similar bounds as the state-of-the-art slower constructions. Our first result is an O_epsilon(n^(2+1/k+epsilon')) time spanner construction which achieves the state-of-the-art bounds. Our second result is an O_epsilon(m + n log n) time construction of a spanner with (2k-1)(1+epsilon) stretch, O(log k * n^(1+1/k) edges and O_epsilon(log k * n^(1/k)) lightness. This is an exponential improvement in the dependence on k compared to the previous result with such running time. Finally, for the important special case where k=log n, for every constant epsilon>0, we provide an O(m+n^(1+epsilon)) time construction that produces an O(log n)-spanner with O(n) edges and O(1) lightness which is asymptotically optimal. This is the first known sub-quadratic construction of such a spanner for any k = omega(1). To achieve our constructions, we show a novel deterministic incremental approximate distance oracle. Our new oracle is crucial in our construction, as known randomized dynamic oracles require the assumption of a non-adaptive adversary. This is a strong assumption, which has seen recent attention in prolific venues. Our new oracle allows the order of the edge insertions to not be fixed in advance, which is critical as our spanner algorithm chooses which edges to insert based on the answers to distance queries. We believe our new oracle is of independent interest.

Cite as

Stephen Alstrup, Søren Dahlgaard, Arnold Filtser, Morten Stöckel, and Christian Wulff-Nilsen. Constructing Light Spanners Deterministically in Near-Linear Time. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 4:1-4:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{alstrup_et_al:LIPIcs.ESA.2019.4,
  author =	{Alstrup, Stephen and Dahlgaard, S{\o}ren and Filtser, Arnold and St\"{o}ckel, Morten and Wulff-Nilsen, Christian},
  title =	{{Constructing Light Spanners Deterministically in Near-Linear Time}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{4:1--4:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.4},
  URN =		{urn:nbn:de:0030-drops-111255},
  doi =		{10.4230/LIPIcs.ESA.2019.4},
  annote =	{Keywords: Spanners, Light Spanners, Efficient Construction, Deterministic Dynamic Distance Oracle}
}
Document
Near-Optimal Induced Universal Graphs for Bounded Degree Graphs

Authors: Mikkel Abrahamsen, Stephen Alstrup, Jacob Holm, Mathias Bæk Tejs Knudsen, and Morten Stöckel

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
A graph U is an induced universal graph for a family F of graphs if every graph in F is a vertex-induced subgraph of U. We give upper and lower bounds for the size of induced universal graphs for the family of graphs with n vertices of maximum degree D. Our new bounds improve several previous results except for the special cases where D is either near-constant or almost n/2. For constant even D Butler [Graphs and Combinatorics 2009] has shown O(n^(D/2)) and recently Alon and Nenadov [SODA 2017] showed the same bound for constant odd D. For constant D Butler also gave a matching lower bound. For generals graphs, which corresponds to D = n, Alon [Geometric and Functional Analysis, to appear] proved the existence of an induced universal graph with (1+o(1)) \cdot 2^((n-1)/2) vertices, leading to a smaller constant than in the previously best known bound of 16 * 2^(n/2) by Alstrup, Kaplan, Thorup, and Zwick [STOC 2015]. In this paper we give the following lower and upper bound of binom(floor(n/2))(floor(D/2)) * n^(-O(1)) and binom(floor(n/2))(floor(D/2)) * 2^(O(sqrt(D log D) * log(n/D))), respectively, where the upper bound is the main contribution. The proof that it is an induced universal graph relies on a randomized argument. We also give a deterministic upper bound of O(n^k / (k-1)!). These upper bounds are the best known when D <= n/2 - tilde-Omega(n^(3/4)) and either D is even and D = omega(1) or D is odd and D = omega(log n/log log n). In this range we improve asymptotically on the previous best known results by Butler [Graphs and Combinatorics 2009], Esperet, Arnaud and Ochem [IPL 2008], Adjiashvili and Rotbart [ICALP 2014], Alon and Nenadov [SODA 2017], and Alon [Geometric and Functional Analysis, to appear].

Cite as

Mikkel Abrahamsen, Stephen Alstrup, Jacob Holm, Mathias Bæk Tejs Knudsen, and Morten Stöckel. Near-Optimal Induced Universal Graphs for Bounded Degree Graphs. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 128:1-128:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{abrahamsen_et_al:LIPIcs.ICALP.2017.128,
  author =	{Abrahamsen, Mikkel and Alstrup, Stephen and Holm, Jacob and Knudsen, Mathias B{\ae}k Tejs and St\"{o}ckel, Morten},
  title =	{{Near-Optimal Induced Universal Graphs for Bounded Degree Graphs}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{128:1--128:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.128},
  URN =		{urn:nbn:de:0030-drops-74114},
  doi =		{10.4230/LIPIcs.ICALP.2017.128},
  annote =	{Keywords: Adjacency labeling schemes, Bounded degree graphs, Induced universal graphs, Distributed computing}
}
Document
Distance Labeling Schemes for Trees

Authors: Stephen Alstrup, Inge Li Gørtz, Esben Bistrup Halvorsen, and Ely Porat

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
We consider distance labeling schemes for trees: given a tree with n nodes, label the nodes with binary strings such that, given the labels of any two nodes, one can determine, by looking only at the labels, the distance in the tree between the two nodes. A lower bound by Gavoille et al. [Gavoille et al., J. Alg., 2004] and an upper bound by Peleg [Peleg, J. Graph Theory, 2000] establish that labels must use Theta(log^2(n)) bits. Gavoille et al. [Gavoille et al., ESA, 2001] show that for very small approximate stretch, labels use Theta(log(n) log(log(n))) bits. Several other papers investigate various variants such as, for example, small distances in trees [Alstrup et al., SODA, 2003]. We improve the known upper and lower bounds of exact distance labeling by showing that 1/4*log^2(n) bits are needed and that 1/2*log^2(n) bits are sufficient. We also give (1 + epsilon)-stretch labeling schemes using Theta(log(n)) bits for constant epsilon > 0. (1 + epsilon)-stretch labeling schemes with polylogarithmic label size have previously been established for doubling dimension graphs by Talwar [Talwar, STOC, 2004]. In addition, we present matching upper and lower bounds for distance labeling for caterpillars, showing that labels must have size 2*log(n) - Theta(log(log(n))). For simple paths with k nodes and edge weights in [1,n], we show that labels must have size (k - 1)/k*log(n) + Theta(log(k)).

Cite as

Stephen Alstrup, Inge Li Gørtz, Esben Bistrup Halvorsen, and Ely Porat. Distance Labeling Schemes for Trees. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 132:1-132:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{alstrup_et_al:LIPIcs.ICALP.2016.132,
  author =	{Alstrup, Stephen and G{\o}rtz, Inge Li and Halvorsen, Esben Bistrup and Porat, Ely},
  title =	{{Distance Labeling Schemes for Trees}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{132:1--132:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.132},
  URN =		{urn:nbn:de:0030-drops-62661},
  doi =		{10.4230/LIPIcs.ICALP.2016.132},
  annote =	{Keywords: Distributed computing, Distance labeling, Graph theory, Routing, Trees}
}
  • Refine by Type
  • 16 Document/PDF
  • 11 Document/HTML

  • Refine by Publication Year
  • 11 2025
  • 1 2023
  • 1 2019
  • 1 2017
  • 2 2016

  • Refine by Author
  • 4 Alstrup, Stephen
  • 2 Dahlgaard, Søren
  • 2 Gørtz, Inge Li
  • 2 Knudsen, Mathias Bæk Tejs
  • 2 Porat, Ely
  • Show More...

  • Refine by Series/Journal
  • 16 LIPIcs

  • Refine by Classification
  • 5 Theory of computation → Graph algorithms analysis
  • 3 Theory of computation → Distributed algorithms
  • 2 Mathematics of computing → Graph algorithms
  • 2 Theory of computation → Data structures design and analysis
  • 2 Theory of computation → Dynamic graph algorithms
  • Show More...

  • Refine by Keyword
  • 2 Distance labeling
  • 2 Distributed computing
  • 2 Graph theory
  • 2 dynamic algorithms
  • 1 Adjacency labeling
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail