22 Search Results for "Bonnet, Rémi"


Document
The Tape Reconfiguration Problem and Its Consequences for Dominating Set Reconfiguration

Authors: Nicolas Bousquet, Quentin Deschamps, Arnaud Mary, Amer E. Mouawad, and Théo Pierron

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A dominating set of a graph G = (V,E) is a set of vertices D ⊆ V whose closed neighborhood is V, i.e., N[D] = V. We view a dominating set as a collection of tokens placed on the vertices of D. In the token sliding variant of the Dominating Set Reconfiguration problem (TS-DSR), we seek to transform a source dominating set into a target dominating set in G by sliding tokens along edges, and while maintaining a dominating set all along the transformation. TS-DSR is known to be PSPACE-complete even restricted to graphs of pathwidth w, for some non-explicit constant w and to be XL-complete parameterized by the size k of the solution. The first contribution of this article consists in using a novel approach to provide the first explicit constant for which the TS-DSR problem is PSPACE-complete, a question that was left open in the literature. From a parameterized complexity perspective, the token jumping variant of DSR, i.e., where tokens can jump to arbitrary vertices, is known to be FPT when parameterized by the size of the dominating sets on nowhere dense classes of graphs. But, in contrast, no non-trivial result was known about TS-DSR. We prove that DSR is actually much harder in the sliding model since it is XL-complete when restricted to bounded pathwidth graphs and even when parameterized by k plus the feedback vertex set number of the graph. This gives, for the first time, a difference of behavior between the complexity under token sliding and token jumping for some problem on graphs of bounded treewidth. All our results are obtained using a brand new method, based on the hardness of the so-called Tape Reconfiguration problem, a problem we believe to be of independent interest. We complement these hardness results with a positive result showing that DSR (parameterized by k) in the sliding model is FPT on planar graphs, also answering an open problem from the literature.

Cite as

Nicolas Bousquet, Quentin Deschamps, Arnaud Mary, Amer E. Mouawad, and Théo Pierron. The Tape Reconfiguration Problem and Its Consequences for Dominating Set Reconfiguration. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 29:1-29:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.ESA.2025.29,
  author =	{Bousquet, Nicolas and Deschamps, Quentin and Mary, Arnaud and Mouawad, Amer E. and Pierron, Th\'{e}o},
  title =	{{The Tape Reconfiguration Problem and Its Consequences for Dominating Set Reconfiguration}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{29:1--29:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.29},
  URN =		{urn:nbn:de:0030-drops-244974},
  doi =		{10.4230/LIPIcs.ESA.2025.29},
  annote =	{Keywords: combinatorial reconfiguration, parameterized complexity, structural graph parameters, treewidth, dominating set}
}
Document
On Algorithmic Applications of ℱ-Branchwidth

Authors: Benjamin Bergougnoux, Thekla Hamm, Lars Jaffke, and Paloma T. Lima

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
F-branchwidth is a framework for width measures of graphs, recently introduced by Eiben et al. [ITCS 2022], that captures tree-width, co-tree-width, clique-width, and mim-width, and several of their generalizations and interpolations. In this work, we search for algorithmic applications of F-branchwidth measures that do not have an equivalent counterpart in the literature so far. Our first contribution is a minimal set of eleven F-branchwidth measures such that each of the infinitely many F-branchwidth measures is equivalent to one of the eleven. We observe that for the FO Model Checking problem, each F-branchwidth is either equivalent to clique-width (and therefore has an FPT-algorithm by formula length plus the width) or the problem remains as hard as on general graphs even on graphs of constant width. Next, we study the number of equivalence classes of the neighborhood equivalence in a decomposition, which upper bounds the run time of the model checking algorithm for ACDN logic recently introduced by Bergougnoux et al. [SODA 2023]. We give structural lower bounds that show that for each F-branchwidth, an efficient model checking algorithm was already known or cannot be obtained via this method. Lastly, we classify the complexity of Independent Set parameterized by any F-branchwidth except for one open case. Also here, our contributions are lower bounds. In this context, we also prove that Independent Set on graphs of mim-width w cannot be solved in time n^o(w) unless the Exponential Time Hypothesis fails, answering an open question in the literature.

Cite as

Benjamin Bergougnoux, Thekla Hamm, Lars Jaffke, and Paloma T. Lima. On Algorithmic Applications of ℱ-Branchwidth. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 16:1-16:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bergougnoux_et_al:LIPIcs.ESA.2025.16,
  author =	{Bergougnoux, Benjamin and Hamm, Thekla and Jaffke, Lars and Lima, Paloma T.},
  title =	{{On Algorithmic Applications of ℱ-Branchwidth}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{16:1--16:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.16},
  URN =		{urn:nbn:de:0030-drops-244849},
  doi =		{10.4230/LIPIcs.ESA.2025.16},
  annote =	{Keywords: Graph width parameters, parameterized complexity, F-branchwidth, tree-width, clique-width, rank-width, mim-width, FO model checking, DN logic, Independent Set, ETH}
}
Document
Compact Representation of Semilinear and Terrain-Like Graphs

Authors: Jean Cardinal and Yelena Yuditsky

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We consider the existence and construction of biclique covers of graphs, consisting of coverings of their edge sets by complete bipartite graphs. The size of such a cover is the sum of the sizes of the bicliques. Small-size biclique covers of graphs are ubiquitous in computational geometry, and have been shown to be useful compact representations of graphs. We give a brief survey of classical and recent results on biclique covers and their applications, and give new families of graphs having biclique covers of near-linear size. In particular, we show that semilinear graphs, whose edges are defined by linear relations in bounded dimensional space, always have biclique covers of size O(npolylog n). This generalizes many previously known results on special classes of graphs including interval graphs, permutation graphs, and graphs of bounded boxicity, but also new classes such as intersection graphs of L-shapes in the plane. It also directly implies the bounds for Zarankiewicz’s problem derived by Basit, Chernikov, Starchenko, Tao, and Tran (Forum Math. Sigma, 2021). We also consider capped graphs, also known as terrain-like graphs, defined as ordered graphs forbidding a certain ordered pattern on four vertices. Terrain-like graphs contain the induced subgraphs of terrain visibility graphs. We give an elementary proof that these graphs admit biclique partitions of size O(nlog³ n). This provides a simple combinatorial analogue of a classical result from Agarwal, Alon, Aronov, and Suri on polygon visibility graphs (Discrete Comput. Geom. 1994). Finally, we prove that there exists families of unit disk graphs on n vertices that do not admit biclique coverings of size o(n^{4/3}), showing that we are unlikely to improve on Szemerédi-Trotter type incidence bounds for higher-degree semialgebraic graphs.

Cite as

Jean Cardinal and Yelena Yuditsky. Compact Representation of Semilinear and Terrain-Like Graphs. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 67:1-67:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cardinal_et_al:LIPIcs.ESA.2025.67,
  author =	{Cardinal, Jean and Yuditsky, Yelena},
  title =	{{Compact Representation of Semilinear and Terrain-Like Graphs}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{67:1--67:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.67},
  URN =		{urn:nbn:de:0030-drops-245359},
  doi =		{10.4230/LIPIcs.ESA.2025.67},
  annote =	{Keywords: Biclique covers, intersection graphs, visibility graphs, Zarankiewicz’s problem}
}
Document
APPROX
A Polynomial-Time Approximation Algorithm for Complete Interval Minors

Authors: Romain Bourneuf, Julien Cocquet, Chaoliang Tang, and Stéphan Thomassé

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
As shown by Robertson and Seymour, deciding whether the complete graph K_t is a minor of an input graph G is a fixed parameter tractable problem when parameterized by t. From the approximation viewpoint, a substantial gap remains: there is no PTAS for finding the largest complete minor unless P = NP, whereas the best known result is a polytime O(√ n)-approximation algorithm by Alon, Lingas and Wahlén. We investigate the complexity of finding K_t as interval minor in ordered graphs (i.e. graphs with a linear order on the vertices, in which intervals are contracted to form minors). Our main result is a polytime f(t)-approximation algorithm, where f is triply exponential in t but independent of n. The algorithm is based on delayed decompositions and shows that ordered graphs without a K_t interval minor can be constructed via a bounded number of three operations: closure under substitutions, edge union, and concatenation of a stable set. As a byproduct, graphs avoiding K_t as an interval minor have bounded chromatic number.

Cite as

Romain Bourneuf, Julien Cocquet, Chaoliang Tang, and Stéphan Thomassé. A Polynomial-Time Approximation Algorithm for Complete Interval Minors. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 15:1-15:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bourneuf_et_al:LIPIcs.APPROX/RANDOM.2025.15,
  author =	{Bourneuf, Romain and Cocquet, Julien and Tang, Chaoliang and Thomass\'{e}, St\'{e}phan},
  title =	{{A Polynomial-Time Approximation Algorithm for Complete Interval Minors}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{15:1--15:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.15},
  URN =		{urn:nbn:de:0030-drops-243814},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.15},
  annote =	{Keywords: Approximation algorithm, Ordered graphs, Interval minors, Delayed decompositions}
}
Document
Solving Partial Dominating Set and Related Problems Using Twin-Width

Authors: Jakub Balabán, Daniel Mock, and Peter Rossmanith

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
Partial vertex cover and partial dominating set are two well-investigated optimization problems. While they are W[1]-hard on general graphs, they have been shown to be fixed-parameter tractable on many sparse graph classes, including nowhere-dense classes. In this paper, we demonstrate that these problems are also fixed-parameter tractable with respect to the twin-width of a graph. Indeed, we establish a more general result: every graph property that can be expressed by a logical formula of the form ϕ≡∃ x₁⋯ ∃ x_k ∑_{α ∈ I} #y ψ_α(x₁,…,x_k,y) ≥ t, where ψ_α is a quantifier-free formula for each α ∈ I, t is an arbitrary number, and #y is a counting quantifier, can be evaluated in time f(d,k)n, where n is the number of vertices and d is the width of a contraction sequence that is part of the input. In addition to the aforementioned problems, this includes also connected partial dominating set and independent partial dominating set.

Cite as

Jakub Balabán, Daniel Mock, and Peter Rossmanith. Solving Partial Dominating Set and Related Problems Using Twin-Width. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{balaban_et_al:LIPIcs.MFCS.2025.13,
  author =	{Balab\'{a}n, Jakub and Mock, Daniel and Rossmanith, Peter},
  title =	{{Solving Partial Dominating Set and Related Problems Using Twin-Width}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.13},
  URN =		{urn:nbn:de:0030-drops-241203},
  doi =		{10.4230/LIPIcs.MFCS.2025.13},
  annote =	{Keywords: Partial Dominating Set, Partial Vertex Cover, meta-algorithm, counting logic, twin-width}
}
Document
Elimination Distance to Dominated Clusters

Authors: Nicole Schirrmacher, Sebastian Siebertz, and Alexandre Vigny

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
In the Dominated Cluster Deletion problem, we are given an undirected graph G and integers k and d and the question is to decide whether there exists a set of at most k vertices whose removal results in a graph in which each connected component has a dominating set of size at most d. In the Elimination Distance to Dominated Clusters problem, we are again given an undirected graph G and integers k and d and the question is to decide whether we can recursively delete vertices up to depth k such that each remaining connected component has a dominating set of size at most d. Bentert et al. [Bentert et al., MFCS 2024] recently provided an almost complete classification of the parameterized complexity of Dominated Cluster Deletion with respect to the parameters k, d, c, and Δ, where c and Δ are the degeneracy, and the maximum degree of the input graph, respectively. In particular, they provided a non-uniform algorithm with running time f(k,d)⋅ n^{𝒪(d)}. They left as an open problem whether the problem is fixed-parameter tractable with respect to the parameter k + d + c. We provide a uniform algorithm running in time f(k,d)⋅ n^{𝒪(d)} for both Dominated Cluster Deletion and Elimination Distance to Dominated Clusters. We furthermore show that both problems are FPT when parameterized by k+d+𝓁, where 𝓁 is the semi-ladder index of the input graph, a parameter that is upper bounded and may be much smaller than the degeneracy c, positively answering the open question of Bentert et al. We further complete the picture by providing an almost full classification for the parameterized complexity and kernelization complexity of Elimination Distance to Dominated Clusters. The one difficult base case that remains open is whether Treedepth (the case d = 0) is NP-hard on graphs of bounded maximum degree.

Cite as

Nicole Schirrmacher, Sebastian Siebertz, and Alexandre Vigny. Elimination Distance to Dominated Clusters. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 90:1-90:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{schirrmacher_et_al:LIPIcs.MFCS.2025.90,
  author =	{Schirrmacher, Nicole and Siebertz, Sebastian and Vigny, Alexandre},
  title =	{{Elimination Distance to Dominated Clusters}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{90:1--90:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.90},
  URN =		{urn:nbn:de:0030-drops-241978},
  doi =		{10.4230/LIPIcs.MFCS.2025.90},
  annote =	{Keywords: Graph theory, Fixed-parameter algorithms, Dominated cluster, Elimination distance}
}
Document
Subcoloring of (Unit) Disk Graphs

Authors: Malory Marin and Rémi Watrigant

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
A subcoloring of a graph is a partition of its vertex set into subsets (called colors), each inducing a disjoint union of cliques. It is a natural generalization of the classical proper coloring, in which each color must instead induce an independent set. Similarly to proper coloring, we define the subchromatic number of a graph as the minimum integer k such that it admits a subcoloring with k colors, and the corresponding problem k-Subcoloring which asks whether a graph has subchromatic number at most k. In this paper, we initiate the study of the subcoloring of (unit) disk graphs. One motivation stems from the fact that disk graphs can be seen as a dense generalization of planar graphs where, intuitively, each vertex can be blown into a large clique-much like subcoloring generalizes proper coloring. Interestingly, it can be observed that every unit disk graph admits a subcoloring with at most 7 colors. We first prove that the subchromatic number can be 3-approximated in polynomial-time in unit disk graphs. We then present several hardness results for special cases of unit disk graphs which somehow prevents the use of classical approaches for improving this result. We show in particular that 2-Subcoloring remains NP-hard in triangle-free unit disk graphs, as well as in unit disk graphs representable within a strip of bounded height. We also solve an open question of Broersma, Fomin, Nešetřil, and Woeginger (2002) by proving that 3-Subcoloring remains NP-hard in co-comparability graphs (which contain unit disk graphs representable within a strip of height √3/2). Finally, we prove that every n-vertex disk graph admits a subcoloring with at most O(log³(n)) colors and present a O(log²(n))-approximation algorithm for computing the subchromatic number of such graphs. This is achieved by defining a decomposition and a special type of co-comparability disk graph, called Δ-disk graphs, which might be of independent interest.

Cite as

Malory Marin and Rémi Watrigant. Subcoloring of (Unit) Disk Graphs. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 74:1-74:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{marin_et_al:LIPIcs.MFCS.2025.74,
  author =	{Marin, Malory and Watrigant, R\'{e}mi},
  title =	{{Subcoloring of (Unit) Disk Graphs}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{74:1--74:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.74},
  URN =		{urn:nbn:de:0030-drops-241811},
  doi =		{10.4230/LIPIcs.MFCS.2025.74},
  annote =	{Keywords: subcoloring, algorithms, disk graphs, unit disk graphs}
}
Document
Track A: Algorithms, Complexity and Games
Induced Disjoint Paths Without an Induced Minor

Authors: Pierre Aboulker, Édouard Bonnet, Timothé Picavet, and Nicolas Trotignon

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We exhibit a new obstacle to the nascent algorithmic theory for classes excluding an induced minor. We indeed show that on the class of string graphs - which avoids the 1-subdivision of, say, K₅ as an induced minor - Induced 2-Disjoint Paths is NP-complete. So, while k-Disjoint Paths, for a fixed k, is polynomial-time solvable in general graphs, the absence of a graph as an induced minor does not make its induced variant tractable, even for k = 2. This answers a question of Korhonen and Lokshtanov [SODA '24], and complements a polynomial-time algorithm for Induced k-Disjoint Paths in classes of bounded genus by Kobayashi and Kawarabayashi [SODA '09]. In addition to being string graphs, our produced hard instances are subgraphs of a constant power of bounded-degree planar graphs, hence have bounded twin-width and bounded maximum degree. We also leverage our new result to show that there is a fixed subcubic graph H such that deciding if an input graph contains H as an induced subdivision is NP-complete. Until now, all the graphs H for which such a statement was known had a vertex of degree at least 4. This answers a question by Chudnovsky, Seymour, and Trotignon [JCTB '13], and by Le [JGT '19]. Finally we resolve another question of Korhonen and Lokshtanov by exhibiting a subcubic graph H without two adjacent degree-3 vertices and such that deciding if an input n-vertex graph contains H as an induced minor is NP-complete, and unless the Exponential-Time Hypothesis fails, requires time 2^{Ω(√ n)}. This complements an algorithm running in subexponential time 2^{Õ(n^{2/3})} by these authors [SODA '24] under the same technical condition.

Cite as

Pierre Aboulker, Édouard Bonnet, Timothé Picavet, and Nicolas Trotignon. Induced Disjoint Paths Without an Induced Minor. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 4:1-4:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{aboulker_et_al:LIPIcs.ICALP.2025.4,
  author =	{Aboulker, Pierre and Bonnet, \'{E}douard and Picavet, Timoth\'{e} and Trotignon, Nicolas},
  title =	{{Induced Disjoint Paths Without an Induced Minor}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{4:1--4:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.4},
  URN =		{urn:nbn:de:0030-drops-233813},
  doi =		{10.4230/LIPIcs.ICALP.2025.4},
  annote =	{Keywords: Induced Disjoint Paths, string graphs, induced subdivisions, induced minors}
}
Document
Invited Talk
Evaluating First-Order Formulas in Structured Graphs (Invited Talk)

Authors: Szymon Toruńczyk

Published in: LIPIcs, Volume 328, 28th International Conference on Database Theory (ICDT 2025)


Abstract
A central problem in database theory concerns the complexity of the query evaluation problem, also called the model-checking problem in finite model theory: the problem of evaluating a given formula in a given structure. Here, I will focus on formulas of first-order logic, and the data complexity (or parameterized complexity) of their evaluation. Leveraging tools from structural graph theory, I will assume that the input structure is a graph which comes from a fixed class of well-structured graphs, such as the class of planar graphs, classes of bounded treewidth or clique-width, or much more general "tame" graph classes, such as the nowhere dense graph classes introduced by Ossona de Mendez and Nešetřil, or classes of bounded twin-width studied by Bonnet, Thomassé, and coauthors. I will survey the recent progress in this area, which connects tools from structural graph theory, from model theory - such as stability and dependence - and from statistical learning theory and computational geometry - such as VC-dimension and ε-nets.

Cite as

Szymon Toruńczyk. Evaluating First-Order Formulas in Structured Graphs (Invited Talk). In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 3:1-3:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{torunczyk:LIPIcs.ICDT.2025.3,
  author =	{Toru\'{n}czyk, Szymon},
  title =	{{Evaluating First-Order Formulas in Structured Graphs}},
  booktitle =	{28th International Conference on Database Theory (ICDT 2025)},
  pages =	{3:1--3:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-364-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{328},
  editor =	{Roy, Sudeepa and Kara, Ahmet},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.3},
  URN =		{urn:nbn:de:0030-drops-229449},
  doi =		{10.4230/LIPIcs.ICDT.2025.3},
  annote =	{Keywords: Finite model theory, first-order model checking, graph parameters}
}
Document
Multivariate Exploration of Metric Dilation

Authors: Aritra Banik, Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Satyabrata Jana, and Saket Saurabh

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
Let G be a weighted graph embedded in a metric space (M, d_M). The vertices of G correspond to the points in M, with the weight of each edge uv being the distance d_M(u,v) between their respective points in M. The dilation (or stretch) of G is defined as the minimum factor t such that, for any pair of vertices u,v, the distance between u and v - represented by the weight of a shortest u,v-path - is at most t⋅ d_M(u,v). We study Dilation t-Augmentation, where the objective is, given a metric M, a graph G, and numerical values k and t, to determine whether G can be transformed into a graph with dilation t by adding at most k edges. Our primary focus is on the scenario where the metric M is the shortest path metric of an unweighted graph Γ. Even in this specific case, Dilation t-Augmentation remains computationally challenging. In particular, the problem is W[2]-hard parameterized by k when Γ is a complete graph, already for t = 2. Our main contribution lies in providing new insights into the impact of combinations of various parameters on the computational complexity of the problem. We establish the following. - The parameterized dichotomy of the problem with respect to dilation t, when the graph G is sparse: Parameterized by k, the problem is FPT for graphs excluding a biclique K_{d,d} as a subgraph for t ≤ 2 and the problem is W[1]-hard for t ≥ 3 even if G is a forest consisting of disjoint stars. - The problem is FPT parameterized by the combined parameter k+t+Δ, where Δ is the maximum degree of the graph G or Γ.

Cite as

Aritra Banik, Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Satyabrata Jana, and Saket Saurabh. Multivariate Exploration of Metric Dilation. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 14:1-14:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{banik_et_al:LIPIcs.STACS.2025.14,
  author =	{Banik, Aritra and Fomin, Fedor V. and Golovach, Petr A. and Inamdar, Tanmay and Jana, Satyabrata and Saurabh, Saket},
  title =	{{Multivariate Exploration of Metric Dilation}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{14:1--14:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.14},
  URN =		{urn:nbn:de:0030-drops-228395},
  doi =		{10.4230/LIPIcs.STACS.2025.14},
  annote =	{Keywords: Metric dilation, geometric spanner, fixed-parameter tractability}
}
Document
Twin-Width One

Authors: Jungho Ahn, Hugo Jacob, Noleen Köhler, Christophe Paul, Amadeus Reinald, and Sebastian Wiederrecht

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
We investigate the structure of graphs of twin-width at most 1, and obtain the following results: - Graphs of twin-width at most 1 are permutation graphs. In particular they have an intersection model and a linear structure. - There is always a 1-contraction sequence closely following a given permutation diagram. - Based on a recursive decomposition theorem, we obtain a simple algorithm running in linear time that produces a 1-contraction sequence of a graph, or guarantees that it has twin-width more than 1. - We characterise distance-hereditary graphs based on their twin-width and deduce a linear time algorithm to compute optimal sequences on this class of graphs.

Cite as

Jungho Ahn, Hugo Jacob, Noleen Köhler, Christophe Paul, Amadeus Reinald, and Sebastian Wiederrecht. Twin-Width One. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ahn_et_al:LIPIcs.STACS.2025.6,
  author =	{Ahn, Jungho and Jacob, Hugo and K\"{o}hler, Noleen and Paul, Christophe and Reinald, Amadeus and Wiederrecht, Sebastian},
  title =	{{Twin-Width One}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.6},
  URN =		{urn:nbn:de:0030-drops-228319},
  doi =		{10.4230/LIPIcs.STACS.2025.6},
  annote =	{Keywords: Twin-width, Hereditary graph classes, Intersection model}
}
Document
Adjacency Labeling Schemes for Small Classes

Authors: Édouard Bonnet, Julien Duron, John Sylvester, and Viktor Zamaraev

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
A graph class admits an implicit representation if, for every positive integer n, its n-vertex graphs have a O(log n)-bit (adjacency) labeling scheme, i.e., their vertices can be labeled by binary strings of length O(log n) such that the presence of an edge between any pair of vertices can be deduced solely from their labels. The famous Implicit Graph Conjecture posited that every hereditary (i.e., closed under taking induced subgraphs) factorial (i.e., containing 2^O(n log n) n-vertex graphs) class admits an implicit representation. The conjecture was recently refuted [Hatami and Hatami, FOCS '22], and does not even hold among monotone (i.e., closed under taking subgraphs) factorial classes [Bonnet et al., ICALP '24]. However, monotone small (i.e., containing at most n! cⁿ many n-vertex graphs for some constant c) classes do admit implicit representations. This motivates the Small Implicit Graph Conjecture: Every hereditary small class admits an O(log n)-bit labeling scheme. We provide evidence supporting the Small Implicit Graph Conjecture. First, we show that every small weakly sparse (i.e., excluding some fixed bipartite complete graph as a subgraph) class has an implicit representation. This is a consequence of the following fact of independent interest proved in the paper: Every weakly sparse small class has bounded expansion (hence, in particular, bounded degeneracy). Second, we show that every hereditary small class admits an O(log³ n)-bit labeling scheme, which provides a substantial improvement of the best-known polynomial upper bound of n^(1-ε) on the size of adjacency labeling schemes for such classes. This is a consequence of another fact of independent interest proved in the paper: Every small class has neighborhood complexity O(n log n).

Cite as

Édouard Bonnet, Julien Duron, John Sylvester, and Viktor Zamaraev. Adjacency Labeling Schemes for Small Classes. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 21:1-21:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ITCS.2025.21,
  author =	{Bonnet, \'{E}douard and Duron, Julien and Sylvester, John and Zamaraev, Viktor},
  title =	{{Adjacency Labeling Schemes for Small Classes}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{21:1--21:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.21},
  URN =		{urn:nbn:de:0030-drops-226493},
  doi =		{10.4230/LIPIcs.ITCS.2025.21},
  annote =	{Keywords: Adjacency labeling, degeneracy, weakly sparse classes, small classes, implicit graph conjecture}
}
Document
Extension Preservation on Dense Graph Classes

Authors: Ioannis Eleftheriadis

Published in: LIPIcs, Volume 326, 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)


Abstract
Preservation theorems provide a direct correspondence between the syntactic structure of first-order sentences and the closure properties of their respective classes of models. A line of work has explored preservation theorems relativised to combinatorially tame classes of sparse structures [Atserias et al., JACM 2006; Atserias et al., SiCOMP 2008; Dawar, JCSS 2010; Dawar and Eleftheriadis, MFCS 2024]. In this article we initiate the study of preservation theorems for dense classes of graphs. In contrast to the sparse setting, we show that extension preservation fails on most natural dense classes of low complexity. Nonetheless, we isolate a technical condition which is sufficient for extension preservation to hold, providing a dense analogue to a result of [Atserias et al., SiCOMP 2008].

Cite as

Ioannis Eleftheriadis. Extension Preservation on Dense Graph Classes. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 326, pp. 7:1-7:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{eleftheriadis:LIPIcs.CSL.2025.7,
  author =	{Eleftheriadis, Ioannis},
  title =	{{Extension Preservation on Dense Graph Classes}},
  booktitle =	{33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)},
  pages =	{7:1--7:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-362-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{326},
  editor =	{Endrullis, J\"{o}rg and Schmitz, Sylvain},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2025.7},
  URN =		{urn:nbn:de:0030-drops-227640},
  doi =		{10.4230/LIPIcs.CSL.2025.7},
  annote =	{Keywords: Extension preservation, finite model theory, dense graphs, cliquewidth}
}
Document
Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

Authors: Pierre Bergé, Édouard Bonnet, Hugues Déprés, and Rémi Watrigant

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
For any ε > 0, we give a polynomial-time n^ε-approximation algorithm for Max Independent Set in graphs of bounded twin-width given with an O(1)-sequence. This result is derived from the following time-approximation trade-off: We establish an O(1)^{2^q-1}-approximation algorithm running in time exp(O_q(n^{2^{-q}})), for every integer q ⩾ 0. Guided by the same framework, we obtain similar approximation algorithms for Min Coloring and Max Induced Matching. In general graphs, all these problems are known to be highly inapproximable: for any ε > 0, a polynomial-time n^{1-ε}-approximation for any of them would imply that P=NP [Håstad, FOCS '96; Zuckerman, ToC '07; Chalermsook et al., SODA '13]. We generalize the algorithms for Max Independent Set and Max Induced Matching to the independent (induced) packing of any fixed connected graph H. In contrast, we show that such approximation guarantees on graphs of bounded twin-width given with an O(1)-sequence are very unlikely for Min Independent Dominating Set, and somewhat unlikely for Longest Path and Longest Induced Path. Regarding the existence of better approximation algorithms, there is a (very) light evidence that the obtained approximation factor of n^ε for Max Independent Set may be best possible. This is the first in-depth study of the approximability of problems in graphs of bounded twin-width. Prior to this paper, essentially the only such result was a polynomial-time O(1)-approximation algorithm for Min Dominating Set [Bonnet et al., ICALP '21].

Cite as

Pierre Bergé, Édouard Bonnet, Hugues Déprés, and Rémi Watrigant. Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 10:1-10:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{berge_et_al:LIPIcs.STACS.2023.10,
  author =	{Berg\'{e}, Pierre and Bonnet, \'{E}douard and D\'{e}pr\'{e}s, Hugues and Watrigant, R\'{e}mi},
  title =	{{Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{10:1--10:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.10},
  URN =		{urn:nbn:de:0030-drops-176629},
  doi =		{10.4230/LIPIcs.STACS.2023.10},
  annote =	{Keywords: Approximation algorithms, bounded twin-width}
}
Document
Track A: Algorithms, Complexity and Games
Deciding Twin-Width at Most 4 Is NP-Complete

Authors: Pierre Bergé, Édouard Bonnet, and Hugues Déprés

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We show that determining if an n-vertex graph has twin-width at most 4 is NP-complete, and requires time 2^Ω(n/log n) unless the Exponential-Time Hypothesis fails. Along the way, we give an elementary proof that n-vertex graphs subdivided at least 2 log n times have twin-width at most 4. We also show how to encode trigraphs H (2-edge colored graphs involved in the definition of twin-width) into graphs G, in the sense that every d-sequence (sequence of vertex contractions witnessing that the twin-width is at most d) of G inevitably creates H as an induced subtrigraph, whereas there exists a partial d-sequence that actually goes from G to H. We believe that these facts and their proofs can be of independent interest.

Cite as

Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding Twin-Width at Most 4 Is NP-Complete. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 18:1-18:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{berge_et_al:LIPIcs.ICALP.2022.18,
  author =	{Berg\'{e}, Pierre and Bonnet, \'{E}douard and D\'{e}pr\'{e}s, Hugues},
  title =	{{Deciding Twin-Width at Most 4 Is NP-Complete}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{18:1--18:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.18},
  URN =		{urn:nbn:de:0030-drops-163595},
  doi =		{10.4230/LIPIcs.ICALP.2022.18},
  annote =	{Keywords: Twin-width, lower bounds}
}
  • Refine by Type
  • 22 Document/PDF
  • 13 Document/HTML

  • Refine by Publication Year
  • 13 2025
  • 1 2023
  • 1 2022
  • 2 2021
  • 1 2020
  • Show More...

  • Refine by Author
  • 9 Bonnet, Édouard
  • 7 Watrigant, Rémi
  • 6 Thomassé, Stéphan
  • 3 Bousquet, Nicolas
  • 2 Bergé, Pierre
  • Show More...

  • Refine by Series/Journal
  • 22 LIPIcs

  • Refine by Classification
  • 10 Theory of computation → Graph algorithms analysis
  • 6 Theory of computation → Fixed parameter tractability
  • 4 Mathematics of computing → Graph theory
  • 3 Mathematics of computing → Graph algorithms
  • 3 Theory of computation → Design and analysis of algorithms
  • Show More...

  • Refine by Keyword
  • 4 Twin-width
  • 3 Independent Set
  • 3 Parameterized Algorithms
  • 2 H-Free Graphs
  • 2 lower bounds
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail