81 Search Results for "Chen, Yan"


Document
Parallel Joinable B-Trees in the Fork-Join I/O Model

Authors: Michael T. Goodrich, Yan Gu, Ryuto Kitagawa, and Yihan Sun

Published in: LIPIcs, Volume 359, 36th International Symposium on Algorithms and Computation (ISAAC 2025)


Abstract
Balanced search trees are widely used in computer science to efficiently maintain dynamic ordered data. To support efficient set operations (e.g., union, intersection, difference) using trees, the join-based framework is widely studied. This framework has received particular attention in the parallel setting, and has been shown to be effective in enabling simple and theoretically efficient set operations on trees. Despite the widespread adoption of parallel join-based trees, a major drawback of previous work on such data structures is the inefficiency of their input/output (I/O) access patterns. Some recent work (e.g., C-trees and PaC-trees) focused on more I/O-friendly implementations of these algorithms. Surprisingly, however, there have been no results on bounding the I/O-costs for these algorithms. It remains open whether these algorithms can provide tight, provable guarantees in I/O-costs on trees. This paper studies efficient parallel algorithms for set operations based on search tree algorithms using a join-based framework, with a special focus on achieving I/O efficiency in these algorithms. To better capture the I/O-efficiency in these algorithms in parallel, we introduce a new computational model, the Fork-Join I/O Model, to measure the I/O costs in fork-join parallelism. This model measures the total block transfers (I/O work) and their critical path (I/O span). Under this model, we propose our new solution based on B-trees. Our parallel algorithm computes the union, intersection, and difference of two B-trees with O(m log_B(n/m)) I/O work and O(log_B m ⋅ log₂ log_B n + log_B n) I/O span, where n and m ≤ n are the sizes of the two trees, and B is the block size.

Cite as

Michael T. Goodrich, Yan Gu, Ryuto Kitagawa, and Yihan Sun. Parallel Joinable B-Trees in the Fork-Join I/O Model. In 36th International Symposium on Algorithms and Computation (ISAAC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 359, pp. 37:1-37:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{goodrich_et_al:LIPIcs.ISAAC.2025.37,
  author =	{Goodrich, Michael T. and Gu, Yan and Kitagawa, Ryuto and Sun, Yihan},
  title =	{{Parallel Joinable B-Trees in the Fork-Join I/O Model}},
  booktitle =	{36th International Symposium on Algorithms and Computation (ISAAC 2025)},
  pages =	{37:1--37:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-408-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{359},
  editor =	{Chen, Ho-Lin and Hon, Wing-Kai and Tsai, Meng-Tsung},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2025.37},
  URN =		{urn:nbn:de:0030-drops-249451},
  doi =		{10.4230/LIPIcs.ISAAC.2025.37},
  annote =	{Keywords: Parallel algorithm, I/O efficiency, search trees, B-trees}
}
Document
Survey
Resilience in Knowledge Graph Embeddings

Authors: Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
In recent years, knowledge graphs have gained interest and witnessed widespread applications in various domains, such as information retrieval, question-answering, recommendation systems, amongst others. Large-scale knowledge graphs to this end have demonstrated their utility in effectively representing structured knowledge. To further facilitate the application of machine learning techniques, knowledge graph embedding models have been developed. Such models can transform entities and relationships within knowledge graphs into vectors. However, these embedding models often face challenges related to noise, missing information, distribution shift, adversarial attacks, etc. This can lead to sub-optimal embeddings and incorrect inferences, thereby negatively impacting downstream applications. While the existing literature has focused so far on adversarial attacks on KGE models, the challenges related to the other critical aspects remain unexplored. In this paper, we, first of all, give a unified definition of resilience, encompassing several factors such as generalisation, in-distribution generalization, distribution adaption, and robustness. After formalizing these concepts for machine learning in general, we define them in the context of knowledge graphs. To find the gap in the existing works on resilience in the context of knowledge graphs, we perform a systematic survey, taking into account all these aspects mentioned previously. Our survey results show that most of the existing works focus on a specific aspect of resilience, namely robustness. After categorizing such works based on their respective aspects of resilience, we discuss the challenges and future research directions.

Cite as

Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo. Resilience in Knowledge Graph Embeddings. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 1:1-1:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{sharma_et_al:TGDK.3.2.1,
  author =	{Sharma, Arnab and Kouagou, N'Dah Jean and Ngomo, Axel-Cyrille Ngonga},
  title =	{{Resilience in Knowledge Graph Embeddings}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{1:1--1:38},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.1},
  URN =		{urn:nbn:de:0030-drops-248117},
  doi =		{10.4230/TGDK.3.2.1},
  annote =	{Keywords: Knowledge graphs, Resilience, Robustness}
}
Document
Research
GraphRAG on Technical Documents - Impact of Knowledge Graph Schema

Authors: Henri Scaffidi, Melinda Hodkiewicz, Caitlin Woods, and Nicole Roocke

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
Retrieval Augmented Generation (RAG) is seeing rapid adoption in industry to enable employees to query information captured in proprietary data for their organisation. In this work, we test the impact of domain-relevant knowledge graph schemas on the results of Microsoft’s GraphRAG pipeline. Our approach aims to address the poor quality of GraphRAG responses on technical reports rich in domain-specific terms. The use case involves technical reports about geology, chemistry and mineral processing published by the Minerals Research Institute of Western Australia (MRIWA). Four schemas are considered: a simple five-class minerals domain expert-developed schema, an expanded minerals domain schema, the Microsoft GraphRAG auto-generated schema, and a schema-less GraphRAG. These are compared to a conventional baseline RAG. Performance is evaluated using a scoring approach that accounts for the mix of correct, incorrect, additional, and missing content in RAG responses. The results show that the simple five-class minerals domain schema extracts approximately 10% more entities from the MRIWA reports than the other schema options. Additionally, both the five-class and the expanded eight-class minerals domain schemas produce the most factually correct answers and the fewest hallucinations. We attribute this to the minerals-specific schemas extracting more relevant, domain-specific information during the Indexing stage. As a result, the Query stage’s context window includes more high-value content. This contributes to the observed improvement in answer quality compared to the other pipelines. In contrast, pipelines with fewer domain-related entities in the KG retrieve less valuable information, leaving more room for irrelevant content in the context window. Baseline RAG responses were typically shorter, less complete, and contained more hallucinations compared to our GraphRAG pipelines. We provide a complete set of resources at https://github.com/nlp-tlp/GraphRAG-on-Minerals-Domain/tree/main. These resources include links to the MRIWA reports, a set of questions (from simple to challenging) along with domain-expert curated answers, schemas, and evaluations of the pipelines.

Cite as

Henri Scaffidi, Melinda Hodkiewicz, Caitlin Woods, and Nicole Roocke. GraphRAG on Technical Documents - Impact of Knowledge Graph Schema. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 3:1-3:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{scaffidi_et_al:TGDK.3.2.3,
  author =	{Scaffidi, Henri and Hodkiewicz, Melinda and Woods, Caitlin and Roocke, Nicole},
  title =	{{GraphRAG on Technical Documents - Impact of Knowledge Graph Schema}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:24},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.3},
  URN =		{urn:nbn:de:0030-drops-248131},
  doi =		{10.4230/TGDK.3.2.3},
  annote =	{Keywords: RAG, minerals, local search, global search, entity extraction, competency questions}
}
Document
Temporal Ensemble Logic for Integrative Representation of the Entirety of Clinical Trials

Authors: Xiaojin Li, Yan Huang, Rashmie Abeysinghe, Zenan Sun, Hongyu Chen, Pengze Li, Xing He, Shiqiang Tao, Cui Tao, Jiang Bian, Licong Cui, and Guo-Qiang Zhang

Published in: LIPIcs, Volume 355, 32nd International Symposium on Temporal Representation and Reasoning (TIME 2025)


Abstract
Clinical trials are typically specified with protocols that define eligibility criteria, treatment regimens, follow-up schedules, and outcome assessments. Temporality is a hallmark of all clinical trials, reflected within and across trial components, with complex dependencies unfolding across multiple time points. Despite their importance, clinical trial protocols are described in free-text format, limiting their semantic precision and the ability to support automated reasoning, leverage data across studies and sites, or simulate trial execution under varying assumptions using Real-World Data. This paper introduces a formalized representation of clinical trials using Temporal Ensemble Logic (TEL). TEL incorporates metricized modal operators, such as "always until t" (□_t) and "possibly until t" (◇_t), where t is a time-length parameter, to offer a logical framework for capturing phenotypes in biomedicine. TEL is more expressive in syntax than classical linear temporal logic (LTL) while maintaining the simplicity of semantic structures. The attributes of TEL are exploited in this paper to formally represent not only individual clinical trial components, but also the timing and sequential dependencies of these components as a whole. Modeling strategies and demonstration case studies are provided to show that TEL can represent the entirety of clinical trials, whereby providing a formal logical framework that can be used to represent the intricate temporal dependencies in trial structure specification. Since clinical trials are a cornerstone of evidence-based medicine, serving as the scientific basis for evaluating the safety, efficacy, and comparative effectiveness of therapeutic interventions, results reported here can serve as a stepping stone that leads to scalable, consistent, and reproducible representation and simulation of clinical trials across all disease domains.

Cite as

Xiaojin Li, Yan Huang, Rashmie Abeysinghe, Zenan Sun, Hongyu Chen, Pengze Li, Xing He, Shiqiang Tao, Cui Tao, Jiang Bian, Licong Cui, and Guo-Qiang Zhang. Temporal Ensemble Logic for Integrative Representation of the Entirety of Clinical Trials. In 32nd International Symposium on Temporal Representation and Reasoning (TIME 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 355, pp. 13:1-13:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.TIME.2025.13,
  author =	{Li, Xiaojin and Huang, Yan and Abeysinghe, Rashmie and Sun, Zenan and Chen, Hongyu and Li, Pengze and He, Xing and Tao, Shiqiang and Tao, Cui and Bian, Jiang and Cui, Licong and Zhang, Guo-Qiang},
  title =	{{Temporal Ensemble Logic for Integrative Representation of the Entirety of Clinical Trials}},
  booktitle =	{32nd International Symposium on Temporal Representation and Reasoning (TIME 2025)},
  pages =	{13:1--13:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-401-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{355},
  editor =	{Vidal, Thierry and Wa{\l}\k{e}ga, Przemys{\l}aw Andrzej},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2025.13},
  URN =		{urn:nbn:de:0030-drops-244595},
  doi =		{10.4230/LIPIcs.TIME.2025.13},
  annote =	{Keywords: Temporal ensemble logic, Clinical trials, Logic-based modeling}
}
Document
Hardness of Median and Center in the Ulam Metric

Authors: Nick Fischer, Elazar Goldenberg, Mursalin Habib, and Karthik C. S.

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The classical rank aggregation problem seeks to combine a set X of n permutations into a single representative "consensus" permutation. In this paper, we investigate two fundamental rank aggregation tasks under the well-studied Ulam metric: computing a median permutation (which minimizes the sum of Ulam distances to X) and computing a center permutation (which minimizes the maximum Ulam distance to X) in two settings. - Continuous Setting: In the continuous setting, the median/center is allowed to be any permutation. It is known that computing a center in the Ulam metric is NP-hard and we add to this by showing that computing a median is NP-hard as well via a simple reduction from the Max-Cut problem. While this result may not be unexpected, it had remained elusive until now and confirms a speculation by Chakraborty, Das, and Krauthgamer [SODA '21]. - Discrete Setting: In the discrete setting, the median/center must be a permutation from the input set. We fully resolve the fine-grained complexity of the discrete median and discrete center problems under the Ulam metric, proving that the naive Õ(n² L)-time algorithm (where L is the length of the permutation) is conditionally optimal. This resolves an open problem raised by Abboud, Bateni, Cohen-Addad, Karthik C. S., and Seddighin [APPROX '23]. Our reductions are inspired by the known fine-grained lower bounds for similarity measures, but we face and overcome several new highly technical challenges.

Cite as

Nick Fischer, Elazar Goldenberg, Mursalin Habib, and Karthik C. S.. Hardness of Median and Center in the Ulam Metric. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 111:1-111:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fischer_et_al:LIPIcs.ESA.2025.111,
  author =	{Fischer, Nick and Goldenberg, Elazar and Habib, Mursalin and Karthik C. S.},
  title =	{{Hardness of Median and Center in the Ulam Metric}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{111:1--111:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.111},
  URN =		{urn:nbn:de:0030-drops-245809},
  doi =		{10.4230/LIPIcs.ESA.2025.111},
  annote =	{Keywords: Ulam distance, median, center, rank aggregation, fine-grained complexity}
}
Document
Subtrajectory Clustering and Coverage Maximization in Cubic Time, or Better

Authors: Jacobus Conradi and Anne Driemel

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Many application areas collect unstructured trajectory data. In subtrajectory clustering, one is interested to find patterns in this data using a hybrid combination of segmentation and clustering. We analyze two variants of this problem based on the well-known SetCover and CoverageMaximization problems. In both variants the set system is induced by metric balls under the Fréchet distance centered at polygonal curves. Our algorithms focus on improving the running time of the update step of the generic greedy algorithm by means of a careful combination of sweeps through a candidate space. In the first variant, we are given a polygonal curve P of complexity n, distance threshold Δ and complexity bound 𝓁 and the goal is to identify a minimum-size set of center curves 𝒞, where each center curve is of complexity at most 𝓁 and every point p on P is covered. A point p on P is covered if it is part of a subtrajectory π_p of P such that there is a center c ∈ 𝒞 whose Fréchet distance to π_p is at most Δ. We present an approximation algorithm for this problem with a running time of 𝒪((n²𝓁 + √{k_Δ}n^{5/2})log²n), where k_Δ is the size of an optimal solution. The algorithm gives a bicriterial approximation guarantee that relaxes the Fréchet distance threshold by a constant factor and the size of the solution by a factor of 𝒪(log n). The second problem variant asks for the maximum fraction of the input curve P that can be covered using k center curves, where k ≤ n is a parameter to the algorithm. For the second problem variant, our techniques lead to an algorithm with a running time of 𝒪((k+𝓁)n²log²n) and similar approximation guarantees. Note that in both algorithms k,k_Δ ∈ O(n) and hence the running time is cubic, or better if k ≪ n.

Cite as

Jacobus Conradi and Anne Driemel. Subtrajectory Clustering and Coverage Maximization in Cubic Time, or Better. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 12:1-12:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{conradi_et_al:LIPIcs.ESA.2025.12,
  author =	{Conradi, Jacobus and Driemel, Anne},
  title =	{{Subtrajectory Clustering and Coverage Maximization in Cubic Time, or Better}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{12:1--12:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.12},
  URN =		{urn:nbn:de:0030-drops-244806},
  doi =		{10.4230/LIPIcs.ESA.2025.12},
  annote =	{Keywords: Clustering, Set cover, Fr\'{e}chet distance, Approximation algorithms}
}
Document
Min-Max Correlation Clustering via Neighborhood Similarity

Authors: Nairen Cao, Steven Roche, and Hsin-Hao Su

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We present an efficient algorithm for the min-max correlation clustering problem. The input is a complete graph where edges are labeled as either positive (+) or negative (-), and the objective is to find a clustering that minimizes the 𝓁_∞-norm of the disagreement vector over all vertices. We address this problem with an efficient (3 + ε)-approximation algorithm that runs in nearly linear time, Õ(|E^+|), where |E^+| denotes the number of positive edges. This improves upon the previous best-known approximation guarantee of 4 by Heidrich, Irmai, and Andres [Heidrich et al., 2024], whose algorithm runs in O(|V|² + |V| D²) time, where |V| is the number of nodes and D is the maximum degree in the graph (V,E^+). Furthermore, we extend our algorithm to the massively parallel computation (MPC) model and the semi-streaming model. In the MPC model, our algorithm runs on machines with memory sublinear in the number of nodes and takes O(1) rounds. In the streaming model, our algorithm requires only Õ(|V|) space, where |V| is the number of vertices in the graph. Our algorithms are purely combinatorial. They are based on a novel structural observation about the optimal min-max instance, which enables the construction of a (3 + ε)-approximation algorithm using O(|E^+|) neighborhood similarity queries. By leveraging random projection, we further show these queries can be computed in nearly linear time.

Cite as

Nairen Cao, Steven Roche, and Hsin-Hao Su. Min-Max Correlation Clustering via Neighborhood Similarity. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 41:1-41:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cao_et_al:LIPIcs.ESA.2025.41,
  author =	{Cao, Nairen and Roche, Steven and Su, Hsin-Hao},
  title =	{{Min-Max Correlation Clustering via Neighborhood Similarity}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{41:1--41:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.41},
  URN =		{urn:nbn:de:0030-drops-245098},
  doi =		{10.4230/LIPIcs.ESA.2025.41},
  annote =	{Keywords: Min Max Correlation Clustering, Approximate algorithms}
}
Document
Integrating Human-In-The-Loop AI to Tackle Space Communication Delay Challenges

Authors: Nikos Mavrakis, Effie Lai-Chong Law, and Hubert P. H. Shum

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
Deep space missions face significant communication delays that disrupt both operational workflows and psychological support for crew members. Unlike low Earth orbit operations, delays ranging from several minutes to nearly an hour make real-time communication with mission control infeasible, forcing crews to act with greater independence under uncertain conditions. This position paper examines how human-in-the-loop AI, digital twins, and edge AI can be integrated to mitigate these delays while maintaining astronaut autonomy and engagement. We argue that human-in-the-loop AI enables decision-making processes that are responsive to local context while remaining adaptable to changing mission demands. Digital twins offer real-time simulation and predictive modelling capabilities, allowing astronauts to explore options and troubleshoot without waiting for ground input. Edge AI brings computation closer to data sources, enabling low-latency inference onboard spacecraft for time-critical decisions. These ideas are explored through two use cases: using deepfakes to support emotionally resonant communication with loved ones, and applying visual-language models for onboard fault diagnosis and adaptive task replanning. We conclude with reflections on system design challenges under constrained and high-stakes conditions.

Cite as

Nikos Mavrakis, Effie Lai-Chong Law, and Hubert P. H. Shum. Integrating Human-In-The-Loop AI to Tackle Space Communication Delay Challenges. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 15:1-15:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{mavrakis_et_al:OASIcs.SpaceCHI.2025.15,
  author =	{Mavrakis, Nikos and Law, Effie Lai-Chong and Shum, Hubert P. H.},
  title =	{{Integrating Human-In-The-Loop AI to Tackle Space Communication Delay Challenges}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{15:1--15:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.15},
  URN =		{urn:nbn:de:0030-drops-240051},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.15},
  annote =	{Keywords: Human-in-the-loop AI, communication delays, human spaceflight}
}
Document
Toward an Earth-Independent System for EVA Mission Planning: Integrating Physical Models, Domain Knowledge, and Agentic RAG to Provide Explainable LLM-Based Decision Support

Authors: Kaisheng Li and Richard S. Whittle

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
We propose a unified framework for an Earth‑independent AI system that provides explainable, context‑aware decision support for EVA mission planning by integrating six core components: a fine‑tuned EVA domain LLM, a retrieval‑augmented knowledge base, a short-term memory store, physical simulation models, an agentic orchestration layer, and a multimodal user interface. To ground our design, we analyze the current roles and substitution potential of the Mission Control Center - identifying which procedural and analytical functions can be automated onboard while preserving human oversight for experiential and strategic tasks. Building on this framework, we introduce RASAGE (Retrieval & Simulation Augmented Guidance Agent for Exploration), a proof‑of‑concept toolset that combines Microsoft Phi‑4‑mini‑instruct with a FAISS (Facebook AI Similarity Search)‑powered EVA knowledge base and custom A* path planning and hypogravity metabolic models to generate grounded, traceable EVA plans. We outline a staged validation strategy to evaluate improvements in route efficiency, metabolic prediction accuracy, anomaly response effectiveness, and crew trust under realistic communication delays. Our findings demonstrate the feasibility of replicating key Mission Control functions onboard, enhancing crew autonomy, reducing cognitive load, and improving safety for deep‑space exploration missions.

Cite as

Kaisheng Li and Richard S. Whittle. Toward an Earth-Independent System for EVA Mission Planning: Integrating Physical Models, Domain Knowledge, and Agentic RAG to Provide Explainable LLM-Based Decision Support. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{li_et_al:OASIcs.SpaceCHI.2025.6,
  author =	{Li, Kaisheng and Whittle, Richard S.},
  title =	{{Toward an Earth-Independent System for EVA Mission Planning: Integrating Physical Models, Domain Knowledge, and Agentic RAG to Provide Explainable LLM-Based Decision Support}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{6:1--6:17},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.6},
  URN =		{urn:nbn:de:0030-drops-239967},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.6},
  annote =	{Keywords: Human-AI Interaction for Space Exploration, Extravehicular Activities, Cognitive load and Human Performance Issues, Human Systems Exploration, Lunar Exploration, LLM}
}
Document
Extended Abstract
Towards a Java Virtual Machine for Processing-In-Memory (Extended Abstract)

Authors: Kazuki Ichinose, Shigeyuki Sato, and Tomoharu Ugawa

Published in: OASIcs, Volume 134, Companion Proceedings of the 9th International Conference on the Art, Science, and Engineering of Programming (Programming 2025)


Abstract
Processing-in-Memory (PIM) is a computing paradigm in which computation takes place in or near memory devices, offering high-bandwidth yet energy-efficient data-parallel processing. Real-world PIM systems have recently emerged, and SPMD-style programming in C is supported there. However, high-level object-oriented programming in managed languages has never been studied. Pursuing high-level programming for offloading Java applications to PIM processors, we are developing a Java framework to support it. As a status report on our project, we present our prototype Java VM built upon a real-world PIM system and experimentally demonstrate its scalability. The experimental results showed the potential of our Java VM on the PIM system with thousands of PIM processors.

Cite as

Kazuki Ichinose, Shigeyuki Sato, and Tomoharu Ugawa. Towards a Java Virtual Machine for Processing-In-Memory (Extended Abstract). In Companion Proceedings of the 9th International Conference on the Art, Science, and Engineering of Programming (Programming 2025). Open Access Series in Informatics (OASIcs), Volume 134, pp. 2:1-2:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ichinose_et_al:OASIcs.Programming.2025.2,
  author =	{Ichinose, Kazuki and Sato, Shigeyuki and Ugawa, Tomoharu},
  title =	{{Towards a Java Virtual Machine for Processing-In-Memory}},
  booktitle =	{Companion Proceedings of the 9th International Conference on the Art, Science, and Engineering of Programming (Programming 2025)},
  pages =	{2:1--2:5},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-382-9},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{134},
  editor =	{Edwards, Jonathan and Perera, Roly and Petricek, Tomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Programming.2025.2},
  URN =		{urn:nbn:de:0030-drops-242862},
  doi =		{10.4230/OASIcs.Programming.2025.2},
  annote =	{Keywords: Java VM, Processing-in-Memory, Offloading, Data parallelism}
}
Document
RANDOM
Bit-Fixing Extractors for Almost-Logarithmic Entropy

Authors: Dean Doron and Ori Fridman

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
An oblivious bit-fixing source is a distribution over {0,1}ⁿ, where k bits are uniform and independent and the rest n-k are fixed a priori to some constant value. Extracting (close to) true randomness from an oblivious bit-fixing source has been studied since the 1980s, with applications in cryptography and complexity theory. We construct explicit extractors for oblivious bit-fixing source that support k = Õ(log n), outputting almost all the entropy with low error. The previous state-of-the-art construction that outputs many bits is due to Rao [Rao, CCC '09], and requires entropy k ≥ log^{c} n for some large constant c. The two key components in our constructions are new low-error affine condensers for poly-logarithmic entropies (that we achieve using techniques from the nonmalleable extractors literature), and a dual use of linear condensers for OBF sources.

Cite as

Dean Doron and Ori Fridman. Bit-Fixing Extractors for Almost-Logarithmic Entropy. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 33:1-33:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{doron_et_al:LIPIcs.APPROX/RANDOM.2025.33,
  author =	{Doron, Dean and Fridman, Ori},
  title =	{{Bit-Fixing Extractors for Almost-Logarithmic Entropy}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{33:1--33:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.33},
  URN =		{urn:nbn:de:0030-drops-243994},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.33},
  annote =	{Keywords: Seedless extractors, oblivious bit-fixing sources}
}
Document
In-Browser C++ Interpreter for Lightweight Intelligent Programming Learning Environments

Authors: Tomas Blažauskas, Arnoldas Rauba, Jakub Swacha, Raffaele Montella, and Rytis Maskeliunas

Published in: OASIcs, Volume 133, 6th International Computer Programming Education Conference (ICPEC 2025)


Abstract
The paper presents a browser native C++ interpreter integrated into an AI-assisted educational platform designed to enhance programming learning in formal education. The interpreter leverages Parsing Expression Grammars (PEG) to generate Abstract Syntax Trees (AST) and executes C++ code using a TypeScript-based runtime. The system supports key C++ features, including pointer arithmetic, function overloading, and namespace resolution, and emulates memory management via reference-counted JavaScript objects. Integrated within a web-based learning environment, it provides automated feedback, error explanations, and code quality evaluations. The evaluation involved 4582 students in three difficulty levels and feedback from 14 teachers. The results include high system usability scale (SUS) scores (avg. 83.5) and WBLT learning effectiveness scores (avg. 4.58/5). Interpreter performance testing in 65 cases averaged under 10 ms per task, confirming its practical applicability to school curricula. The system supports SCORM and PWA deployment, enabling LMS-independent usage. The work introduces a technical innovation in browser-based C++ execution and a scalable framework for LLM-enhanced programming pedagogy.

Cite as

Tomas Blažauskas, Arnoldas Rauba, Jakub Swacha, Raffaele Montella, and Rytis Maskeliunas. In-Browser C++ Interpreter for Lightweight Intelligent Programming Learning Environments. In 6th International Computer Programming Education Conference (ICPEC 2025). Open Access Series in Informatics (OASIcs), Volume 133, pp. 14:1-14:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{blazauskas_et_al:OASIcs.ICPEC.2025.14,
  author =	{Bla\v{z}auskas, Tomas and Rauba, Arnoldas and Swacha, Jakub and Montella, Raffaele and Maskeliunas, Rytis},
  title =	{{In-Browser C++ Interpreter for Lightweight Intelligent Programming Learning Environments}},
  booktitle =	{6th International Computer Programming Education Conference (ICPEC 2025)},
  pages =	{14:1--14:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-393-5},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{133},
  editor =	{Queir\'{o}s, Ricardo and Pinto, M\'{a}rio and Portela, Filipe and Sim\~{o}es, Alberto},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ICPEC.2025.14},
  URN =		{urn:nbn:de:0030-drops-240449},
  doi =		{10.4230/OASIcs.ICPEC.2025.14},
  annote =	{Keywords: C++ interpreter, browser-based execution, programming education, LLM-assisted learning, PEG, AST, TypeScript runtime}
}
Document
Succinct Data Structures for Chordal Graph with Bounded Leafage or Vertex Leafage

Authors: Meng He and Kaiyu Wu

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We improve the recent succinct data structure result of Balakrishnan et al. for chordal graphs with bounded vertex leafage (SWAT 2024). A chordal graph is a widely studied graph class which can be characterized as the intersection graph of subtrees of a host tree, denoted as a tree representation of the chordal graph. The vertex leafage and leafage parameters of a chordal graph deal with the existence of a tree representation with a bounded number of leaves in either the subtrees representing the vertices or the host tree itself. We simplify the lower bound proof of Balakrishnan et al. which applied to only chordal graphs with bounded vertex leafage, and extend it to a lower bound proof for chordal graphs with bounded leafage as well. For both classes of graphs, the information-theoretic lower bound we (re-)obtain for k = o(n) is (k-1)nlog n - knlog k - o(knlog n) bits, where the leafage or vertex leafage of the graph is at most k = o(n). We further extend the range of the parameter k to Θ(n) as well. Then we give a succinct data structure using (k-1)nlog (n/k) + o(knlog n) bits to answer adjacent queries, which test the adjacency between pairs of vertices, in O((log k)/(log log n) + 1) time compared to the O(klog n) time of the data structure of Balakrishnan et al. For the neighborhood query which lists the neighbours of a given vertex, our query time is O((log n)/(log log n)) per neighbour compared to O(k²log n) per neighbour. We also extend the data structure ideas to obtain a succinct data structure for chordal graphs with bounded leafage k, answering an open question of Balakrishnan et al. Our succinct data structure, which uses (k-1)nlog (n/k) + o(knlog n) bits, has query time O(1) for the adjacent query and O(1) per neighbour for the neighborhood query. Using slightly more space (an additional (1+ε)nlog n bits for any ε > 0) allows distance queries, which compute the number of edges in the shortest path between two given vertices, to be answered in O(1) time as well.

Cite as

Meng He and Kaiyu Wu. Succinct Data Structures for Chordal Graph with Bounded Leafage or Vertex Leafage. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 35:1-35:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{he_et_al:LIPIcs.WADS.2025.35,
  author =	{He, Meng and Wu, Kaiyu},
  title =	{{Succinct Data Structures for Chordal Graph with Bounded Leafage or Vertex Leafage}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{35:1--35:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.35},
  URN =		{urn:nbn:de:0030-drops-242660},
  doi =		{10.4230/LIPIcs.WADS.2025.35},
  annote =	{Keywords: Chordal Graph, Leafage, Vertex Leafage, Succinct Data Structure}
}
Document
Link Diameter, Radius and 2-Point Link Distance Queries in Polygonal Domains

Authors: Mart Hagedoorn and Valentin Polishchuk

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We show how to preprocess a polygonal domain with holes so that the link distance (the number of links in a minimum-link path) between two query points in the domain can be reported efficiently. Using our data structures, the link diameter of the domain (i.e., the maximum number of links that may be required in a minimum-link path between two points in the domain) as well as the link center and radius of the domain (i.e., the point minimizing the maximum link distance to the furthest point in the domain and this maximum link distance) can be found in polynomial time. We also give a simpler algorithm for finding the link diameter, not using the link distance query structures. Answering 2-point link distance queries and computing the link diameter/radius/center in polygonal domains have been open questions since these problems were studied for simple polygons in the 90’s.

Cite as

Mart Hagedoorn and Valentin Polishchuk. Link Diameter, Radius and 2-Point Link Distance Queries in Polygonal Domains. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 34:1-34:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hagedoorn_et_al:LIPIcs.WADS.2025.34,
  author =	{Hagedoorn, Mart and Polishchuk, Valentin},
  title =	{{Link Diameter, Radius and 2-Point Link Distance Queries in Polygonal Domains}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{34:1--34:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.34},
  URN =		{urn:nbn:de:0030-drops-242659},
  doi =		{10.4230/LIPIcs.WADS.2025.34},
  annote =	{Keywords: Minimum-link paths, link distance, diameter, center, radius, 2-point distance queries}
}
Document
Negated String Containment Is Decidable

Authors: Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
We provide a positive answer to a long-standing open question of the decidability of the not-contains string predicate. Not-contains is practically relevant, for instance in symbolic execution of string manipulating programs. Particularly, we show that the predicate ¬Contains(x₁ … x_n, y₁ … y_m), where x₁ … x_n and y₁ … y_m are sequences of string variables constrained by regular languages, is decidable. Decidability of a not-contains predicate combined with chain-free word equations and regular membership constraints follows.

Cite as

Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál. Negated String Containment Is Decidable. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 56:1-56:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{havlena_et_al:LIPIcs.MFCS.2025.56,
  author =	{Havlena, Vojt\v{e}ch and He\v{c}ko, Michal and Hol{\'\i}k, Luk\'{a}\v{s} and Leng\'{a}l, Ond\v{r}ej},
  title =	{{Negated String Containment Is Decidable}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{56:1--56:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.56},
  URN =		{urn:nbn:de:0030-drops-241631},
  doi =		{10.4230/LIPIcs.MFCS.2025.56},
  annote =	{Keywords: not-contains, string constraints, word combinatorics, primitive word}
}
  • Refine by Type
  • 81 Document/PDF
  • 74 Document/HTML

  • Refine by Publication Year
  • 64 2025
  • 6 2024
  • 8 2023
  • 1 2022
  • 1 2018
  • Show More...

  • Refine by Author
  • 3 Biswas, Russa
  • 3 de Melo, Gerard
  • 2 Allen, Bradley P.
  • 2 Carmel, Amir
  • 2 Chen, Jiaoyan
  • Show More...

  • Refine by Series/Journal
  • 55 LIPIcs
  • 7 OASIcs
  • 1 LITES
  • 17 TGDK
  • 1 DagSemProc

  • Refine by Classification
  • 5 Computing methodologies → Knowledge representation and reasoning
  • 5 Computing methodologies → Machine learning
  • 4 Applied computing → Bioinformatics
  • 4 Information systems → Graph-based database models
  • 4 Theory of computation → Design and analysis of algorithms
  • Show More...

  • Refine by Keyword
  • 5 Large Language Models
  • 3 Clustering
  • 3 Knowledge Graphs
  • 3 LLM
  • 2 Complexity
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail