38 Search Results for "Erickson, Jeff"


Document
Conversational Agents: A Framework for Evaluation (CAFE) (Dagstuhl Perspectives Workshop 24352)

Authors: Christine Bauer, Li Chen, Nicola Ferro, Norbert Fuhr, Avishek Anand, Timo Breuer, Guglielmo Faggioli, Ophir Frieder, Hideo Joho, Jussi Karlgren, Johannes Kiesel, Bart P. Knijnenburg, Aldo Lipani, Lien Michiels, Andrea Papenmeier, Maria Soledad Pera, Mark Sanderson, Scott Sanner, Benno Stein, Johanne R. Trippas, Karin Verspoor, and Martijn C. Willemsen

Published in: Dagstuhl Manifestos, Volume 11, Issue 1 (2025)


Abstract
During the workshop, we deeply discussed what CONversational Information ACcess (CONIAC) is and its unique features, proposing a world model abstracting it, and defined the Conversational Agents Framework for Evaluation (CAFE) for the evaluation of CONIAC systems, consisting of six major components: 1) goals of the system’s stakeholders, 2) user tasks to be studied in the evaluation, 3) aspects of the users carrying out the tasks, 4) evaluation criteria to be considered, 5) evaluation methodology to be applied, and 6) measures for the quantitative criteria chosen.

Cite as

Christine Bauer, Li Chen, Nicola Ferro, Norbert Fuhr, Avishek Anand, Timo Breuer, Guglielmo Faggioli, Ophir Frieder, Hideo Joho, Jussi Karlgren, Johannes Kiesel, Bart P. Knijnenburg, Aldo Lipani, Lien Michiels, Andrea Papenmeier, Maria Soledad Pera, Mark Sanderson, Scott Sanner, Benno Stein, Johanne R. Trippas, Karin Verspoor, and Martijn C. Willemsen. Conversational Agents: A Framework for Evaluation (CAFE) (Dagstuhl Perspectives Workshop 24352). In Dagstuhl Manifestos, Volume 11, Issue 1, pp. 19-67, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{bauer_et_al:DagMan.11.1.19,
  author =	{Bauer, Christine and Chen, Li and Ferro, Nicola and Fuhr, Norbert and Anand, Avishek and Breuer, Timo and Faggioli, Guglielmo and Frieder, Ophir and Joho, Hideo and Karlgren, Jussi and Kiesel, Johannes and Knijnenburg, Bart P. and Lipani, Aldo and Michiels, Lien and Papenmeier, Andrea and Pera, Maria Soledad and Sanderson, Mark and Sanner, Scott and Stein, Benno and Trippas, Johanne R. and Verspoor, Karin and Willemsen, Martijn C.},
  title =	{{Conversational Agents: A Framework for Evaluation (CAFE) (Dagstuhl Perspectives Workshop 24352)}},
  pages =	{19--67},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2025},
  volume =	{11},
  number =	{1},
  editor =	{Bauer, Christine and Chen, Li and Ferro, Nicola and Fuhr, Norbert and Anand, Avishek and Breuer, Timo and Faggioli, Guglielmo and Frieder, Ophir and Joho, Hideo and Karlgren, Jussi and Kiesel, Johannes and Knijnenburg, Bart P. and Lipani, Aldo and Michiels, Lien and Papenmeier, Andrea and Pera, Maria Soledad and Sanderson, Mark and Sanner, Scott and Stein, Benno and Trippas, Johanne R. and Verspoor, Karin and Willemsen, Martijn C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.11.1.19},
  URN =		{urn:nbn:de:0030-drops-252722},
  doi =		{10.4230/DagMan.11.1.19},
  annote =	{Keywords: Conversational Agents, Evaluation, Information Access}
}
Document
A Combinatorial Proof of Universal Optimality for Computing a Planar Convex Hull

Authors: Ivor van der Hoog, Eva Rotenberg, and Daniel Rutschmann

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
For a planar point set P, its convex hull is the smallest convex polygon that encloses all points in P. The construction of the convex hull from an array I_P containing P is a fundamental problem in computational geometry. By sorting I_P in lexicographical order, one can construct the convex hull of P in O(n log n) time which is worst-case optimal. Standard worst-case analysis, however, has been criticized as overly coarse or pessimistic, and researchers search for more refined analyses. For an algorithm A, worst-case analysis fixes n, and considers the maximum running time of A across all size-n point sets P and permutations I_P of P. Output-sensitive analysis fixes n and k, and considers the maximum running time across all size-n points sets P with k hull points and permutations I_P of P. Universal analysis provides an even stronger guarantee. It fixes a point set P and considers the maximum running time across all permutations I_P of P. Kirkpatrick, McQueen, and Seidel [SICOMP'86] consider output-sensitive analysis. If the convex hull of P contains k points, then their algorithm runs in O(n log k) time. Afshani, Barbay, Chan [FOCS'07] prove that the algorithm by Kirkpatrick, McQueen, and Seidel is also universally optimal. Their proof restricts the model of computation to any algebraic decision tree model where the test functions have at most constant degree and at most a constant number of arguments. They rely upon involved algebraic arguments to construct a lower bound for each point set P that matches the universal running time of [SICOMP'86]. We provide a different proof of universal optimality. Instead of restricting the computational model, we further specify the output. We require as output (1) the convex hull, and (2) for each internal point of P a witness for it being internal. Our argument is shorter, perhaps simpler, and applicable in more general models of computation.

Cite as

Ivor van der Hoog, Eva Rotenberg, and Daniel Rutschmann. A Combinatorial Proof of Universal Optimality for Computing a Planar Convex Hull. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 102:1-102:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{vanderhoog_et_al:LIPIcs.ESA.2025.102,
  author =	{van der Hoog, Ivor and Rotenberg, Eva and Rutschmann, Daniel},
  title =	{{A Combinatorial Proof of Universal Optimality for Computing a Planar Convex Hull}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{102:1--102:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.102},
  URN =		{urn:nbn:de:0030-drops-245715},
  doi =		{10.4230/LIPIcs.ESA.2025.102},
  annote =	{Keywords: Convex hull, Combinatorial proofs, Universal optimality}
}
Document
Compact Representation of Semilinear and Terrain-Like Graphs

Authors: Jean Cardinal and Yelena Yuditsky

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We consider the existence and construction of biclique covers of graphs, consisting of coverings of their edge sets by complete bipartite graphs. The size of such a cover is the sum of the sizes of the bicliques. Small-size biclique covers of graphs are ubiquitous in computational geometry, and have been shown to be useful compact representations of graphs. We give a brief survey of classical and recent results on biclique covers and their applications, and give new families of graphs having biclique covers of near-linear size. In particular, we show that semilinear graphs, whose edges are defined by linear relations in bounded dimensional space, always have biclique covers of size O(npolylog n). This generalizes many previously known results on special classes of graphs including interval graphs, permutation graphs, and graphs of bounded boxicity, but also new classes such as intersection graphs of L-shapes in the plane. It also directly implies the bounds for Zarankiewicz’s problem derived by Basit, Chernikov, Starchenko, Tao, and Tran (Forum Math. Sigma, 2021). We also consider capped graphs, also known as terrain-like graphs, defined as ordered graphs forbidding a certain ordered pattern on four vertices. Terrain-like graphs contain the induced subgraphs of terrain visibility graphs. We give an elementary proof that these graphs admit biclique partitions of size O(nlog³ n). This provides a simple combinatorial analogue of a classical result from Agarwal, Alon, Aronov, and Suri on polygon visibility graphs (Discrete Comput. Geom. 1994). Finally, we prove that there exists families of unit disk graphs on n vertices that do not admit biclique coverings of size o(n^{4/3}), showing that we are unlikely to improve on Szemerédi-Trotter type incidence bounds for higher-degree semialgebraic graphs.

Cite as

Jean Cardinal and Yelena Yuditsky. Compact Representation of Semilinear and Terrain-Like Graphs. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 67:1-67:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cardinal_et_al:LIPIcs.ESA.2025.67,
  author =	{Cardinal, Jean and Yuditsky, Yelena},
  title =	{{Compact Representation of Semilinear and Terrain-Like Graphs}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{67:1--67:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.67},
  URN =		{urn:nbn:de:0030-drops-245359},
  doi =		{10.4230/LIPIcs.ESA.2025.67},
  annote =	{Keywords: Biclique covers, intersection graphs, visibility graphs, Zarankiewicz’s problem}
}
Document
(Multivariate) k-SUM as Barrier to Succinct Computation

Authors: Geri Gokaj, Marvin Künnemann, Sabine Storandt, and Carina Truschel

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
How does the time complexity of a problem change when the input is given succinctly rather than explicitly? We study this question for several geometric problems defined on a set X of N points in ℤ^d. As succinct representation, we choose a sumset (or Minkowski sum) representation: Instead of receiving X explicitly, we are given sets A,B of n points that define X as A+B = {a+b∣ a ∈ A,b ∈ B}. We investigate the fine-grained complexity of this succinct version for several Õ(N)-time computable geometric primitives. Remarkably, we can tie their complexity tightly to the complexity of corresponding k-SUM problems. Specifically, we introduce as All-ints 3-SUM(n,n,k) the following multivariate, multi-output variant of 3-SUM: given sets A,B of size n and set C of size k, determine for all c ∈ C whether there are a ∈ A and b ∈ B with a+b = c. We obtain the following results: 1) Succinct closest L_∞-pair requires time N^{1-o(1)} under the 3-SUM hypothesis, while succinct furthest L_∞-pair can be solved in time Õ(n). 2) Succinct bichromatic closest L_∞-Pair requires time N^{1-o(1)} iff the 4-SUM hypothesis holds. 3) The following problems are fine-grained equivalent to All-ints 3-SUM(n,n,k): succinct skyline computation in 2D with output size k and succinct batched orthogonal range search with k given ranges. This establishes conditionally tight Õ(min{nk, N})-time algorithms for these problems. We obtain further connections with All-ints 3-SUM(n,n,k) for succinctly computing independent sets in unit interval graphs. Thus, (Multivariate) k-SUM problems precisely capture the barrier for enabling sumset-succinct computation for various geometric primitives.

Cite as

Geri Gokaj, Marvin Künnemann, Sabine Storandt, and Carina Truschel. (Multivariate) k-SUM as Barrier to Succinct Computation. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 42:1-42:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gokaj_et_al:LIPIcs.ESA.2025.42,
  author =	{Gokaj, Geri and K\"{u}nnemann, Marvin and Storandt, Sabine and Truschel, Carina},
  title =	{{(Multivariate) k-SUM as Barrier to Succinct Computation}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{42:1--42:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.42},
  URN =		{urn:nbn:de:0030-drops-245101},
  doi =		{10.4230/LIPIcs.ESA.2025.42},
  annote =	{Keywords: Fine-grained complexity theory, sumsets, additive combinatorics, succinct inputs, computational geometry}
}
Document
The Geodesic Fréchet Distance Between Two Curves Bounding a Simple Polygon

Authors: Thijs van der Horst, Marc van Kreveld, Tim Ophelders, and Bettina Speckmann

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The Fréchet distance is a popular similarity measure that is well-understood for polygonal curves in ℝ^d: near-quadratic time algorithms exist, and conditional lower bounds suggest that these results cannot be improved significantly, even in one dimension and when approximating with a factor less than three. We consider the special case where the curves bound a simple polygon and distances are measured via geodesics inside this simple polygon. Here the conditional lower bounds do not apply; Efrat et al. (2002) were able to give a near-linear time 2-approximation algorithm. In this paper, we significantly improve upon their result: we present a (1+ε)-approximation algorithm, for any ε > 0, that runs in 𝒪(1/(ε) (n+m log n) log nm log 1/(ε)) time for a simple polygon bounded by two curves with n and m vertices, respectively. To do so, we show how to compute the reachability of specific groups of points in the free space at once, by interpreting the free space as one between separated one-dimensional curves. We solve this one-dimensional problem in near-linear time, generalizing a result by Bringmann and Künnemann (2015). Finally, we give a linear time exact algorithm if the two curves bound a convex polygon.

Cite as

Thijs van der Horst, Marc van Kreveld, Tim Ophelders, and Bettina Speckmann. The Geodesic Fréchet Distance Between Two Curves Bounding a Simple Polygon. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 35:1-35:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{vanderhorst_et_al:LIPIcs.ESA.2025.35,
  author =	{van der Horst, Thijs and van Kreveld, Marc and Ophelders, Tim and Speckmann, Bettina},
  title =	{{The Geodesic Fr\'{e}chet Distance Between Two Curves Bounding a Simple Polygon}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{35:1--35:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.35},
  URN =		{urn:nbn:de:0030-drops-245038},
  doi =		{10.4230/LIPIcs.ESA.2025.35},
  annote =	{Keywords: Fr\'{e}chet distance, approximation, geodesic, simple polygon}
}
Document
Separating Two Points with Obstacles in the Plane: Improved Upper and Lower Bounds

Authors: Jack Spalding-Jamieson and Anurag Murty Naredla

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Given two points in the plane, and a set of "obstacles" given as curves through the plane with assigned weights, we consider the point-separation problem, which asks for a minimum-weight subset of the obstacles separating the two points. A few computational models for this problem have been previously studied. We give a unified approach to this problem in all models via a reduction to a particular shortest-path problem, and obtain improved running times in essentially all cases. In addition, we also give fine-grained lower bounds for many cases.

Cite as

Jack Spalding-Jamieson and Anurag Murty Naredla. Separating Two Points with Obstacles in the Plane: Improved Upper and Lower Bounds. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 90:1-90:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{spaldingjamieson_et_al:LIPIcs.ESA.2025.90,
  author =	{Spalding-Jamieson, Jack and Naredla, Anurag Murty},
  title =	{{Separating Two Points with Obstacles in the Plane: Improved Upper and Lower Bounds}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{90:1--90:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.90},
  URN =		{urn:nbn:de:0030-drops-245598},
  doi =		{10.4230/LIPIcs.ESA.2025.90},
  annote =	{Keywords: obstacle separation, point separation, geometric intersection graph, Z₂-homology, fine-grained lower bounds}
}
Document
An O(nlog n) Algorithm for Single-Source Shortest Paths in Disk Graphs

Authors: Mark de Berg and Sergio Cabello

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We prove that the single-source shortest-path problem on disk graphs can be solved in O(n log n) expected time, and that it can be solved on intersection graphs of fat triangles in O(n log³ n) time.

Cite as

Mark de Berg and Sergio Cabello. An O(nlog n) Algorithm for Single-Source Shortest Paths in Disk Graphs. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 81:1-81:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ESA.2025.81,
  author =	{de Berg, Mark and Cabello, Sergio},
  title =	{{An O(nlog n) Algorithm for Single-Source Shortest Paths in Disk Graphs}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{81:1--81:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.81},
  URN =		{urn:nbn:de:0030-drops-245494},
  doi =		{10.4230/LIPIcs.ESA.2025.81},
  annote =	{Keywords: shortest path, geometric intersection graph, disk graph, fat triangles}
}
Document
On Geodesic Disks Enclosing Many Points

Authors: Prosenjit Bose, Guillermo Esteban, David Orden, Rodrigo I. Silveira, and Tyler Tuttle

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
Let Π(n) be the largest number such that for every set S of n points in a polygon P, there always exist two points x, y ∈ S, where every geodesic disk containing x and y contains Π(n) points of S. We establish upper and lower bounds for Π(n), and show that ⌈n/5⌉ +1 ≤ Π(n) ≤ ⌈n/4⌉ +1. We also show that there always exist two points x, y ∈ S such that every geodesic disk with x and y on its boundary contains at least 16/665(n-2) ≈ ⌈(n-2)/41.6⌉ points both inside and outside the disk. For the special case where the points of S are restricted to be the vertices of a geodesically convex polygon we give a tight bound of ⌈n/3⌉ + 1. We provide the same tight bound when we only consider geodesic disks having x and y as diametral endpoints. Finally, we give a lower bound of ⌈(n-2)/36⌉+2 for the two-colored version of the problem.

Cite as

Prosenjit Bose, Guillermo Esteban, David Orden, Rodrigo I. Silveira, and Tyler Tuttle. On Geodesic Disks Enclosing Many Points. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bose_et_al:LIPIcs.WADS.2025.10,
  author =	{Bose, Prosenjit and Esteban, Guillermo and Orden, David and Silveira, Rodrigo I. and Tuttle, Tyler},
  title =	{{On Geodesic Disks Enclosing Many Points}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.10},
  URN =		{urn:nbn:de:0030-drops-242414},
  doi =		{10.4230/LIPIcs.WADS.2025.10},
  annote =	{Keywords: Enclosing disks, Geodesic disks, Bichromatic}
}
Document
Testing Whether a Subgraph Is Convex or Isometric

Authors: Sergio Cabello

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We consider the following two algorithmic problems: given a graph G and a subgraph H ⊆ G, decide whether H is an isometric or a geodesically convex subgraph of G. It is relatively easy to see that the problems can be solved by computing the distances between all pairs of vertices. We provide a conditional lower bound showing that, for sparse graphs with n vertices and Θ(n) edges, we cannot expect to solve the problem in O(n^{2-ε}) time for any constant ε > 0. We also show that the problem can be solved in subquadratic time for planar graphs and in near-linear time for graphs of bounded treewidth. Finally, we provide a near-linear time algorithm for the setting where G is a plane graph and H is defined by a few cycles in G.

Cite as

Sergio Cabello. Testing Whether a Subgraph Is Convex or Isometric. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 12:1-12:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cabello:LIPIcs.WADS.2025.12,
  author =	{Cabello, Sergio},
  title =	{{Testing Whether a Subgraph Is Convex or Isometric}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{12:1--12:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.12},
  URN =		{urn:nbn:de:0030-drops-242439},
  doi =		{10.4230/LIPIcs.WADS.2025.12},
  annote =	{Keywords: convex subgraph, isometric subgraph, plane graph}
}
Document
Quantum Speedups for Polynomial-Time Dynamic Programming Algorithms

Authors: Susanna Caroppo, Giordano Da Lozzo, Giuseppe Di Battista, Michael T. Goodrich, and Martin Nöllenburg

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We introduce a quantum dynamic programming framework that allows us to directly extend to the quantum realm a large body of classical dynamic programming algorithms. The corresponding quantum dynamic programming algorithms retain the same space complexity as their classical counterpart, while achieving a computational speedup. For a combinatorial (search or optimization) problem P and an instance I of P, such a speedup can be expressed in terms of the average degree δ of the {dependency digraph} G_𝒫(I) of I, determined by a recursive formulation of P. The nodes of this graph are the subproblems of P induced by I and its arcs are directed from each subproblem to those on whose solution it relies. In particular, our framework allows us to solve the considered problems in Õ(|V(G_𝒫(I))| √δ) time. As an example, we obtain a quantum version of the Bellman-Ford algorithm for computing shortest paths from a single source vertex to all the other vertices in a weighted n-vertex digraph with m edges that runs in Õ(n√{nm}) time, which improves the best known classical upper bound when m ∈ Ω(n^{1.4}).

Cite as

Susanna Caroppo, Giordano Da Lozzo, Giuseppe Di Battista, Michael T. Goodrich, and Martin Nöllenburg. Quantum Speedups for Polynomial-Time Dynamic Programming Algorithms. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 14:1-14:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{caroppo_et_al:LIPIcs.WADS.2025.14,
  author =	{Caroppo, Susanna and Da Lozzo, Giordano and Di Battista, Giuseppe and Goodrich, Michael T. and N\"{o}llenburg, Martin},
  title =	{{Quantum Speedups for Polynomial-Time Dynamic Programming Algorithms}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{14:1--14:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.14},
  URN =		{urn:nbn:de:0030-drops-242454},
  doi =		{10.4230/LIPIcs.WADS.2025.14},
  annote =	{Keywords: Dynamic Programming, Quantum Algorithms, Quantum Random Access Memory}
}
Document
Convolution and Knapsack in Higher Dimensions

Authors: Kilian Grage, Klaus Jansen, and Björn Schumacher

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
In the Knapsack problem, one is given the task of packing a knapsack of a given size with items in order to gain a packing with a high profit value. As one of the most classical problems in computer science, research for this problem has gone a long way. One important connection to the (max,+)-convolution problem has been established, where knapsack solutions can be combined by building the convolution of two sequences. This observation has been used in recent years to give conditional lower bounds but also parameterized algorithms. In this paper we carry these results into higher dimensions. We consider Knapsack where items are characterized by multiple properties - given through a vector - and a knapsack that has a capacity vector. The packing must not exceed any of the given capacity constraints. In order to show a similar sub-quadratic lower bound we consider a multidimensional version of (max, +)-convolution. We then consider variants of this problem introduced by Cygan et al. and prove that they are all equivalent in terms of algorithms that allow for a running time sub-quadratic in the number of entries of the array. We further develop a parameterized algorithm to solve higher dimensional Knapsack. The techniques we apply are inspired by an algorithm introduced by Axiotis and Tzamos. We will show that even for higher dimensional Knapsack, we can reduce the problem to convolution on one-dimensional, concave sequences, leading to an 𝒪(dn + dD ⋅ max{(Π_{i=1}^d t_i), t_max log t_max}) algorithm, where D is the number of different weight vectors, t the capacity vector and d is the dimension of the problem. Then, we use the techniques to improve the approach of Eisenbrand and Weismantel to obtain an algorithm for Integer Linear Programming with upper bounds with running time 𝒪(dn) + D ⋅ 𝒪(d Δ)^{d(d+1)} + T_LP. Finally, we give an divide-and-conquer algorithm for ILP with running time n^{d+1} ⋅ O(Δ)^d ⋅ log(|u - 𝓁|_∞).

Cite as

Kilian Grage, Klaus Jansen, and Björn Schumacher. Convolution and Knapsack in Higher Dimensions. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 30:1-30:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{grage_et_al:LIPIcs.WADS.2025.30,
  author =	{Grage, Kilian and Jansen, Klaus and Schumacher, Bj\"{o}rn},
  title =	{{Convolution and Knapsack in Higher Dimensions}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{30:1--30:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.30},
  URN =		{urn:nbn:de:0030-drops-242618},
  doi =		{10.4230/LIPIcs.WADS.2025.30},
  annote =	{Keywords: Knapsack, Convolution, Integer Linear Programming}
}
Document
Hitting and Covering Affine Families of Convex Polyhedra, with Applications to Robust Optimization

Authors: Jean Cardinal, Xavier Goaoc, and Sarah Wajsbrot

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
Geometric hitting set problems, in which we seek a smallest set of points that collectively hit a given set of ranges, are ubiquitous in computational geometry. Most often, the set is discrete and is given explicitly. We propose new variants of these problems, dealing with continuous families of convex polyhedra, and show that they capture decision versions of the two-level finite adaptability problem in robust optimization. We show that these problems can be solved in strongly polynomial time when the size of the hitting/covering set and the dimension of the polyhedra and the parameter space are constant. We also show that the hitting set problem can be solved in strongly quadratic time for one-parameter families of convex polyhedra in constant dimension. This leads to new tractability results for finite adaptability that are the first ones with so-called left-hand-side uncertainty, where the underlying problem is non-linear.

Cite as

Jean Cardinal, Xavier Goaoc, and Sarah Wajsbrot. Hitting and Covering Affine Families of Convex Polyhedra, with Applications to Robust Optimization. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 33:1-33:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cardinal_et_al:LIPIcs.MFCS.2025.33,
  author =	{Cardinal, Jean and Goaoc, Xavier and Wajsbrot, Sarah},
  title =	{{Hitting and Covering Affine Families of Convex Polyhedra, with Applications to Robust Optimization}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{33:1--33:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.33},
  URN =		{urn:nbn:de:0030-drops-241401},
  doi =		{10.4230/LIPIcs.MFCS.2025.33},
  annote =	{Keywords: Geometric hitting set problem, Continuous families of polyhedra, Robust optimization}
}
Document
Track A: Algorithms, Complexity and Games
Weakly Approximating Knapsack in Subquadratic Time

Authors: Lin Chen, Jiayi Lian, Yuchen Mao, and Guochuan Zhang

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We consider the classic Knapsack problem. Let t and OPT be the capacity and the optimal value, respectively. If one seeks a solution with total profit at least OPT/(1 + ε) and total weight at most t, then Knapsack can be solved in Õ(n + (1/(ε))²) time [Chen, Lian, Mao, and Zhang '24][Mao '24]. This running time is the best possible (up to a logarithmic factor), assuming that (min,+)-convolution cannot be solved in truly subquadratic time [Künnemann, Paturi, and Schneider '17][Cygan, Mucha, Węgrzycki, and Włodarczyk '19]. The same upper and lower bounds hold if one seeks a solution with total profit at least OPT and total weight at most (1 + ε)t. Therefore, it is natural to ask the following question. If one seeks a solution with total profit at least OPT/(1+ε) and total weight at most (1 + ε)t, can Knsapck be solved in Õ(n + (1/(ε))^{2-δ}) time for some constant δ > 0? We answer this open question affirmatively by proposing an Õ(n + (1/(ε))^{7/4})-time algorithm.

Cite as

Lin Chen, Jiayi Lian, Yuchen Mao, and Guochuan Zhang. Weakly Approximating Knapsack in Subquadratic Time. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 51:1-51:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2025.51,
  author =	{Chen, Lin and Lian, Jiayi and Mao, Yuchen and Zhang, Guochuan},
  title =	{{Weakly Approximating Knapsack in Subquadratic Time}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{51:1--51:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.51},
  URN =		{urn:nbn:de:0030-drops-234286},
  doi =		{10.4230/LIPIcs.ICALP.2025.51},
  annote =	{Keywords: Knapsack, FPTAS}
}
Document
Track A: Algorithms, Complexity and Games
Faster Diameter Computation in Graphs of Bounded Euler Genus

Authors: Kacper Kluk, Marcin Pilipczuk, Michał Pilipczuk, and Giannos Stamoulis

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We show that for any fixed integer k ⩾ 0, there exists an algorithm that computes the diameter and the eccentricies of all vertices of an input unweighted, undirected n-vertex graph of Euler genus at most k in time 𝒪_k(n^{2-1/25}). Furthermore, for the more general class of graphs that can be constructed by clique-sums from graphs that are of Euler genus at most k after deletion of at most k vertices, we show an algorithm for the same task that achieves the running time bound 𝒪_k(n^{2-1/356} log^{6k} n). Up to today, the only known subquadratic algorithms for computing the diameter in those graph classes are that of [Ducoffe, Habib, Viennot; SICOMP 2022], [Le, Wulff-Nilsen; SODA 2024], and [Duraj, Konieczny, Potępa; ESA 2024]. These algorithms work in the more general setting of K_h-minor-free graphs, but the running time bound is 𝒪_h(n^{2-c_h}) for some constant c_h > 0 depending on h. That is, our savings in the exponent of the polynomial function of n, as compared to the naive quadratic algorithm, are independent of the parameter k. The main technical ingredient of our work is an improved bound on the number of distance profiles, as defined in [Le, Wulff-Nilsen; SODA 2024], in graphs of bounded Euler genus.

Cite as

Kacper Kluk, Marcin Pilipczuk, Michał Pilipczuk, and Giannos Stamoulis. Faster Diameter Computation in Graphs of Bounded Euler Genus. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 109:1-109:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kluk_et_al:LIPIcs.ICALP.2025.109,
  author =	{Kluk, Kacper and Pilipczuk, Marcin and Pilipczuk, Micha{\l} and Stamoulis, Giannos},
  title =	{{Faster Diameter Computation in Graphs of Bounded Euler Genus}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{109:1--109:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.109},
  URN =		{urn:nbn:de:0030-drops-234869},
  doi =		{10.4230/LIPIcs.ICALP.2025.109},
  annote =	{Keywords: Diameter, eccentricity, subquadratic algorithms, surface-embeddable graphs}
}
Document
Track A: Algorithms, Complexity and Games
Deterministic Complexity Analysis of Hermitian Eigenproblems

Authors: Aleksandros Sobczyk

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
In this work we revisit the arithmetic and bit complexity of Hermitian eigenproblems. Recently, [BGVKS, FOCS 2020] proved that a (non-Hermitian) matrix A can be diagonalized with a randomized algorithm in O(n^{ω}log²(n/ε)) arithmetic operations, where ω≲ 2.371 is the square matrix multiplication exponent, and [Shah, SODA 2025] significantly improved the bit complexity for the Hermitian case. Our main goal is to obtain similar deterministic complexity bounds for various Hermitian eigenproblems. In the Real RAM model, we show that a Hermitian matrix can be diagonalized deterministically in O(n^{ω}log(n)+n²polylog(n/ε)) arithmetic operations, improving the classic deterministic Õ(n³) algorithms, and derandomizing the aforementioned state-of-the-art. The main technical step is a complete, detailed analysis of a well-known divide-and-conquer tridiagonal eigensolver of Gu and Eisenstat [GE95], when accelerated with the Fast Multipole Method, asserting that it can accurately diagonalize a symmetric tridiagonal matrix in nearly-O(n²) operations. In finite precision, we show that an algorithm by Schönhage [Sch72] to reduce a Hermitian matrix to tridiagonal form is stable in the floating point model, using O(log(n/ε)) bits of precision. This leads to a deterministic algorithm to compute all the eigenvalues of a Hermitian matrix in O(n^{ω}ℱ(log(n/ε)) + n²polylog(n/ε)) bit operations, where ℱ(b) ∈ Õ(b) is the bit complexity of a single floating point operation on b bits. This improves the best known Õ(n³) deterministic and O(n^{ω}log²(n/ε)ℱ(log(n/ε))) randomized complexities. We conclude with some other useful subroutines such as computing spectral gaps, condition numbers, and spectral projectors, and with some open problems.

Cite as

Aleksandros Sobczyk. Deterministic Complexity Analysis of Hermitian Eigenproblems. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 131:1-131:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{sobczyk:LIPIcs.ICALP.2025.131,
  author =	{Sobczyk, Aleksandros},
  title =	{{Deterministic Complexity Analysis of Hermitian Eigenproblems}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{131:1--131:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.131},
  URN =		{urn:nbn:de:0030-drops-235081},
  doi =		{10.4230/LIPIcs.ICALP.2025.131},
  annote =	{Keywords: Hermitian eigenproblem, eigenvalues, SVD, tridiagonal reduction, matrix multiplication time, diagonalization, bit complexity}
}
  • Refine by Type
  • 38 Document/PDF
  • 24 Document/HTML

  • Refine by Publication Year
  • 25 2025
  • 1 2022
  • 2 2021
  • 2 2020
  • 3 2019
  • Show More...

  • Refine by Author
  • 12 Erickson, Jeff
  • 2 Cabello, Sergio
  • 2 Cardinal, Jean
  • 2 Chang, Hsien-Chih
  • 2 Driemel, Anne
  • Show More...

  • Refine by Series/Journal
  • 33 LIPIcs
  • 1 DagMan
  • 4 DagRep

  • Refine by Classification
  • 17 Theory of computation → Computational geometry
  • 5 Theory of computation → Design and analysis of algorithms
  • 3 Mathematics of computing → Geometric topology
  • 3 Mathematics of computing → Graphs and surfaces
  • 3 Theory of computation → Parameterized complexity and exact algorithms
  • Show More...

  • Refine by Keyword
  • 5 approximation
  • 4 planar graphs
  • 3 homotopy
  • 2 Algorithms
  • 2 Fréchet distance
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail