27 Search Results for "Fox, Jacob"


Document
From Local Pair-Crossing Number to Local Crossing Number

Authors: Jacob Fox, János Pach, and Andrew Suk

Published in: LIPIcs, Volume 357, 33rd International Symposium on Graph Drawing and Network Visualization (GD 2025)


Abstract
We prove that if a graph can be drawn in the plane such that each edge crosses at most k other edges, then it can be redrawn so that each edge participates in at most k³+O(k²) crossings. This improves the previous exponential bound that follows from a result of Schaefer and Štefankovič and answers a question of Ackerman and Schaefer.

Cite as

Jacob Fox, János Pach, and Andrew Suk. From Local Pair-Crossing Number to Local Crossing Number. In 33rd International Symposium on Graph Drawing and Network Visualization (GD 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 357, pp. 31:1-31:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fox_et_al:LIPIcs.GD.2025.31,
  author =	{Fox, Jacob and Pach, J\'{a}nos and Suk, Andrew},
  title =	{{From Local Pair-Crossing Number to Local Crossing Number}},
  booktitle =	{33rd International Symposium on Graph Drawing and Network Visualization (GD 2025)},
  pages =	{31:1--31:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-403-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{357},
  editor =	{Dujmovi\'{c}, Vida and Montecchiani, Fabrizio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2025.31},
  URN =		{urn:nbn:de:0030-drops-250170},
  doi =		{10.4230/LIPIcs.GD.2025.31},
  annote =	{Keywords: Crossing numbers, pair crossing numbers}
}
Document
Survey
Resilience in Knowledge Graph Embeddings

Authors: Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
In recent years, knowledge graphs have gained interest and witnessed widespread applications in various domains, such as information retrieval, question-answering, recommendation systems, amongst others. Large-scale knowledge graphs to this end have demonstrated their utility in effectively representing structured knowledge. To further facilitate the application of machine learning techniques, knowledge graph embedding models have been developed. Such models can transform entities and relationships within knowledge graphs into vectors. However, these embedding models often face challenges related to noise, missing information, distribution shift, adversarial attacks, etc. This can lead to sub-optimal embeddings and incorrect inferences, thereby negatively impacting downstream applications. While the existing literature has focused so far on adversarial attacks on KGE models, the challenges related to the other critical aspects remain unexplored. In this paper, we, first of all, give a unified definition of resilience, encompassing several factors such as generalisation, in-distribution generalization, distribution adaption, and robustness. After formalizing these concepts for machine learning in general, we define them in the context of knowledge graphs. To find the gap in the existing works on resilience in the context of knowledge graphs, we perform a systematic survey, taking into account all these aspects mentioned previously. Our survey results show that most of the existing works focus on a specific aspect of resilience, namely robustness. After categorizing such works based on their respective aspects of resilience, we discuss the challenges and future research directions.

Cite as

Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo. Resilience in Knowledge Graph Embeddings. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 1:1-1:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{sharma_et_al:TGDK.3.2.1,
  author =	{Sharma, Arnab and Kouagou, N'Dah Jean and Ngomo, Axel-Cyrille Ngonga},
  title =	{{Resilience in Knowledge Graph Embeddings}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{1:1--1:38},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.1},
  URN =		{urn:nbn:de:0030-drops-248117},
  doi =		{10.4230/TGDK.3.2.1},
  annote =	{Keywords: Knowledge graphs, Resilience, Robustness}
}
Document
Compact Representation of Semilinear and Terrain-Like Graphs

Authors: Jean Cardinal and Yelena Yuditsky

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We consider the existence and construction of biclique covers of graphs, consisting of coverings of their edge sets by complete bipartite graphs. The size of such a cover is the sum of the sizes of the bicliques. Small-size biclique covers of graphs are ubiquitous in computational geometry, and have been shown to be useful compact representations of graphs. We give a brief survey of classical and recent results on biclique covers and their applications, and give new families of graphs having biclique covers of near-linear size. In particular, we show that semilinear graphs, whose edges are defined by linear relations in bounded dimensional space, always have biclique covers of size O(npolylog n). This generalizes many previously known results on special classes of graphs including interval graphs, permutation graphs, and graphs of bounded boxicity, but also new classes such as intersection graphs of L-shapes in the plane. It also directly implies the bounds for Zarankiewicz’s problem derived by Basit, Chernikov, Starchenko, Tao, and Tran (Forum Math. Sigma, 2021). We also consider capped graphs, also known as terrain-like graphs, defined as ordered graphs forbidding a certain ordered pattern on four vertices. Terrain-like graphs contain the induced subgraphs of terrain visibility graphs. We give an elementary proof that these graphs admit biclique partitions of size O(nlog³ n). This provides a simple combinatorial analogue of a classical result from Agarwal, Alon, Aronov, and Suri on polygon visibility graphs (Discrete Comput. Geom. 1994). Finally, we prove that there exists families of unit disk graphs on n vertices that do not admit biclique coverings of size o(n^{4/3}), showing that we are unlikely to improve on Szemerédi-Trotter type incidence bounds for higher-degree semialgebraic graphs.

Cite as

Jean Cardinal and Yelena Yuditsky. Compact Representation of Semilinear and Terrain-Like Graphs. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 67:1-67:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cardinal_et_al:LIPIcs.ESA.2025.67,
  author =	{Cardinal, Jean and Yuditsky, Yelena},
  title =	{{Compact Representation of Semilinear and Terrain-Like Graphs}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{67:1--67:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.67},
  URN =		{urn:nbn:de:0030-drops-245359},
  doi =		{10.4230/LIPIcs.ESA.2025.67},
  annote =	{Keywords: Biclique covers, intersection graphs, visibility graphs, Zarankiewicz’s problem}
}
Document
RANDOM
Sublinear Space Graph Algorithms in the Continual Release Model

Authors: Alessandro Epasto, Quanquan C. Liu, Tamalika Mukherjee, and Felix Zhou

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
The graph continual release model of differential privacy seeks to produce differentially private solutions to graph problems under a stream of edge updates where new private solutions are released after each update. Thus far, previously known edge-differentially private algorithms for most graph problems including densest subgraph and matchings in the continual release setting only output real-value estimates (not vertex subset solutions) and do not use sublinear space. Instead, they rely on computing exact graph statistics on the input [Hendrik Fichtenberger et al., 2021; Shuang Song et al., 2018]. In this paper, we leverage sparsification to address the above shortcomings for edge-insertion streams. Our edge-differentially private algorithms use sublinear space with respect to the number of edges in the graph while some also achieve sublinear space in the number of vertices in the graph. In addition, for the densest subgraph problem, we also output edge-differentially private vertex subset solutions; no previous graph algorithms in the continual release model output such subsets. We make novel use of assorted sparsification techniques from the non-private streaming and static graph algorithms literature to achieve new results in the sublinear space, continual release setting. This includes algorithms for densest subgraph, maximum matching, as well as the first continual release k-core decomposition algorithm. We also develop a novel sparse level data structure for k-core decomposition that may be of independent interest. To complement our insertion-only algorithms, we conclude with polynomial additive error lower bounds for edge-privacy in the fully dynamic setting, where only logarithmic lower bounds were previously known.

Cite as

Alessandro Epasto, Quanquan C. Liu, Tamalika Mukherjee, and Felix Zhou. Sublinear Space Graph Algorithms in the Continual Release Model. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 40:1-40:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{epasto_et_al:LIPIcs.APPROX/RANDOM.2025.40,
  author =	{Epasto, Alessandro and Liu, Quanquan C. and Mukherjee, Tamalika and Zhou, Felix},
  title =	{{Sublinear Space Graph Algorithms in the Continual Release Model}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{40:1--40:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.40},
  URN =		{urn:nbn:de:0030-drops-244064},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.40},
  annote =	{Keywords: Differential Privacy, Continual Release, Densest Subgraph, k-Core Decomposition, Maximum Matching}
}
Document
APPROX
A Polynomial-Time Approximation Algorithm for Complete Interval Minors

Authors: Romain Bourneuf, Julien Cocquet, Chaoliang Tang, and Stéphan Thomassé

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
As shown by Robertson and Seymour, deciding whether the complete graph K_t is a minor of an input graph G is a fixed parameter tractable problem when parameterized by t. From the approximation viewpoint, a substantial gap remains: there is no PTAS for finding the largest complete minor unless P = NP, whereas the best known result is a polytime O(√ n)-approximation algorithm by Alon, Lingas and Wahlén. We investigate the complexity of finding K_t as interval minor in ordered graphs (i.e. graphs with a linear order on the vertices, in which intervals are contracted to form minors). Our main result is a polytime f(t)-approximation algorithm, where f is triply exponential in t but independent of n. The algorithm is based on delayed decompositions and shows that ordered graphs without a K_t interval minor can be constructed via a bounded number of three operations: closure under substitutions, edge union, and concatenation of a stable set. As a byproduct, graphs avoiding K_t as an interval minor have bounded chromatic number.

Cite as

Romain Bourneuf, Julien Cocquet, Chaoliang Tang, and Stéphan Thomassé. A Polynomial-Time Approximation Algorithm for Complete Interval Minors. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 15:1-15:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bourneuf_et_al:LIPIcs.APPROX/RANDOM.2025.15,
  author =	{Bourneuf, Romain and Cocquet, Julien and Tang, Chaoliang and Thomass\'{e}, St\'{e}phan},
  title =	{{A Polynomial-Time Approximation Algorithm for Complete Interval Minors}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{15:1--15:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.15},
  URN =		{urn:nbn:de:0030-drops-243814},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.15},
  annote =	{Keywords: Approximation algorithm, Ordered graphs, Interval minors, Delayed decompositions}
}
Document
Dynamic Streaming Algorithms for Geometric Independent Set

Authors: Timothy M. Chan and Yuancheng Yu

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We present the first space-efficient, fully dynamic streaming algorithm for computing a constant-factor approximation of the maximum independent set size of n axis-aligned rectangles in two dimensions. For an arbitrarily small constant δ > 0, our algorithm obtains an O((1/δ)²) approximation and requires O(U^δ polylog n) space and update time with high probability, assuming that coordinates are integers bounded by U. We also obtain a similar result for fat objects in any constant dimension. This extends recent non-streaming algorithms by Bhore and Chan from SODA'25, and also greatly extends previous streaming results, which were limited to special types of geometric objects such as one-dimensional intervals and unit disks.

Cite as

Timothy M. Chan and Yuancheng Yu. Dynamic Streaming Algorithms for Geometric Independent Set. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 17:1-17:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.WADS.2025.17,
  author =	{Chan, Timothy M. and Yu, Yuancheng},
  title =	{{Dynamic Streaming Algorithms for Geometric Independent Set}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{17:1--17:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.17},
  URN =		{urn:nbn:de:0030-drops-242481},
  doi =		{10.4230/LIPIcs.WADS.2025.17},
  annote =	{Keywords: Geometric Independent Set, Dynamic Streaming Algorithms}
}
Document
A Survey of the Bijective Burrows-Wheeler Transform

Authors: Hideo Bannai, Dominik Köppl, and Zsuzsanna Lipták

Published in: OASIcs, Volume 131, The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday (2025)


Abstract
The Bijective BWT (BBWT), conceived by Scott in 2007, later summarized in a preprint by Gil and Scott in 2009 (arXiv 2012), is a variant of the Burrows-Wheeler Transform which is bijective: every string is the BBWT of some string. Indeed, the BBWT of a string is the extended BWT [Mantaci et al., 2007] of the factors of its Lyndon factorization. The BBWT has been receiving increasing interest in recent years. In this paper, we survey existing research on the BBWT, starting with its history and motivation. We then present algorithmic topics including construction algorithms with various complexities and an index on top of the BBWT for pattern matching. We subsequently address some properties of the BBWT as a compressor, discussing robustness to operations such as reversal, edits, rotation, as well as compression power. We close with listing other bijective variants of the BWT and open problems concerning the BBWT.

Cite as

Hideo Bannai, Dominik Köppl, and Zsuzsanna Lipták. A Survey of the Bijective Burrows-Wheeler Transform. In The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday. Open Access Series in Informatics (OASIcs), Volume 131, pp. 2:1-2:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bannai_et_al:OASIcs.Manzini.2,
  author =	{Bannai, Hideo and K\"{o}ppl, Dominik and Lipt\'{a}k, Zsuzsanna},
  title =	{{A Survey of the Bijective Burrows-Wheeler Transform}},
  booktitle =	{The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday},
  pages =	{2:1--2:26},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-390-4},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{131},
  editor =	{Ferragina, Paolo and Gagie, Travis and Navarro, Gonzalo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Manzini.2},
  URN =		{urn:nbn:de:0030-drops-239100},
  doi =		{10.4230/OASIcs.Manzini.2},
  annote =	{Keywords: Burrows-Wheeler Transform, compression, text indexing, repetitiveness measure, Lyndon words, index construction algorithms, bijective string transformation}
}
Document
Efficient Certified Reasoning for Binarized Neural Networks

Authors: Jiong Yang, Yong Kiam Tan, Mate Soos, Magnus O. Myreen, and Kuldeep S. Meel

Published in: LIPIcs, Volume 341, 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)


Abstract
Neural networks have emerged as essential components in safety-critical applications - these use cases demand complex, yet trustworthy computations. Binarized Neural Networks (BNNs) are a type of neural network where each neuron is constrained to a Boolean value; they are particularly well-suited for safety-critical tasks because they retain much of the computational capacities of full-scale (floating-point or quantized) deep neural networks, but remain compatible with satisfiability solvers for qualitative verification and with model counters for quantitative reasoning. However, existing methods for BNN analysis suffer from either limited scalability or susceptibility to soundness errors, which hinders their applicability in real-world scenarios. In this work, we present a scalable and trustworthy approach for both qualitative and quantitative verification of BNNs. Our approach introduces a native representation of BNN constraints in a custom-designed solver for qualitative reasoning, and in an approximate model counter for quantitative reasoning. We further develop specialized proof generation and checking pipelines with native support for BNN constraint reasoning, ensuring trustworthiness for all of our verification results. Empirical evaluations on a BNN robustness verification benchmark suite demonstrate that our certified solving approach achieves a 9× speedup over prior certified CNF and PB-based approaches, and our certified counting approach achieves a 218× speedup over the existing CNF-based baseline. In terms of coverage, our pipeline produces fully certified results for 99% and 86% of the qualitative and quantitative reasoning queries on BNNs, respectively. This is in sharp contrast to the best existing baselines which can fully certify only 62% and 4% of the queries, respectively.

Cite as

Jiong Yang, Yong Kiam Tan, Mate Soos, Magnus O. Myreen, and Kuldeep S. Meel. Efficient Certified Reasoning for Binarized Neural Networks. In 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 341, pp. 32:1-32:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{yang_et_al:LIPIcs.SAT.2025.32,
  author =	{Yang, Jiong and Tan, Yong Kiam and Soos, Mate and Myreen, Magnus O. and Meel, Kuldeep S.},
  title =	{{Efficient Certified Reasoning for Binarized Neural Networks}},
  booktitle =	{28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)},
  pages =	{32:1--32:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-381-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{341},
  editor =	{Berg, Jeremias and Nordstr\"{o}m, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2025.32},
  URN =		{urn:nbn:de:0030-drops-237665},
  doi =		{10.4230/LIPIcs.SAT.2025.32},
  annote =	{Keywords: Neural network verification, proof certification, SAT solving, approximate model counting}
}
Document
Track A: Algorithms, Complexity and Games
Counting Permutation Patterns with Multidimensional Trees

Authors: Gal Beniamini and Nir Lavee

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We consider the well-studied pattern-counting problem: given a permutation π ∈ 𝕊_n and an integer k > 1, count the number of order-isomorphic occurrences of every pattern τ ∈ 𝕊_k in π. Our first result is an 𝒪̃(n²)-time algorithm for k = 6 and k = 7. The proof relies heavily on a new family of graphs that we introduce, called pattern-trees. Every such tree corresponds to an integer linear combination of permutations in 𝕊_k, and is associated with linear extensions of partially ordered sets. We design an evaluation algorithm for these combinations, and apply it to a family of linearly-independent trees. For k = 8, we show a barrier: the subspace spanned by trees in the previous family has dimension exactly |𝕊₈| - 1, one less than required. Our second result is an 𝒪̃(n^{7/4})-time algorithm for k = 5. This algorithm extends the framework of pattern-trees by speeding-up their evaluation in certain cases. A key component of the proof is the introduction of pair-rectangle-trees, a data structure for dominance counting.

Cite as

Gal Beniamini and Nir Lavee. Counting Permutation Patterns with Multidimensional Trees. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 24:1-24:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{beniamini_et_al:LIPIcs.ICALP.2025.24,
  author =	{Beniamini, Gal and Lavee, Nir},
  title =	{{Counting Permutation Patterns with Multidimensional Trees}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{24:1--24:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.24},
  URN =		{urn:nbn:de:0030-drops-234018},
  doi =		{10.4230/LIPIcs.ICALP.2025.24},
  annote =	{Keywords: Pattern counting, patterns, permutations}
}
Document
Strongly Sublinear Separators and Bounded Asymptotic Dimension for Sphere Intersection Graphs

Authors: James Davies, Agelos Georgakopoulos, Meike Hatzel, and Rose McCarty

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
In this paper, we consider the class 𝒞^d of sphere intersection graphs in R^d for d ≥ 2. We show that for each integer t, the class of all graphs in 𝒞^d that exclude K_{t,t} as a subgraph has strongly sublinear separators. We also prove that 𝒞^d has asymptotic dimension at most 2d+2.

Cite as

James Davies, Agelos Georgakopoulos, Meike Hatzel, and Rose McCarty. Strongly Sublinear Separators and Bounded Asymptotic Dimension for Sphere Intersection Graphs. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 36:1-36:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{davies_et_al:LIPIcs.SoCG.2025.36,
  author =	{Davies, James and Georgakopoulos, Agelos and Hatzel, Meike and McCarty, Rose},
  title =	{{Strongly Sublinear Separators and Bounded Asymptotic Dimension for Sphere Intersection Graphs}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{36:1--36:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.36},
  URN =		{urn:nbn:de:0030-drops-231881},
  doi =		{10.4230/LIPIcs.SoCG.2025.36},
  annote =	{Keywords: Intersection graphs, strongly sublinear separators, asymptotic dimension}
}
Document
Sparse Bounded Hop-Spanners for Geometric Intersection Graphs

Authors: Sujoy Bhore, Timothy M. Chan, Zhengcheng Huang, Shakhar Smorodinsky, and Csaba D. Tóth

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
We present new results on 2- and 3-hop spanners for geometric intersection graphs. These include improved upper and lower bounds for 2- and 3-hop spanners for many geometric intersection graphs in ℝ^d. For example, we show that the intersection graph of n balls in ℝ^d admits a 2-hop spanner of size O^*(n^{3/2 - 1/(2(2⌊d/2⌋ + 1))}) and the intersection graph of n fat axis-parallel boxes in ℝ^d admits a 2-hop spanner of size O(n log^{d+1}n). Furthermore, we show that the intersection graph of general semi-algebraic objects in ℝ^d admits a 3-hop spanner of size O^*(n^{3/2 - 1/(2(2D-1))}), where D is a parameter associated with the description complexity of the objects. For such families (or more specifically, for tetrahedra in ℝ³), we provide a lower bound of Ω(n^{4/3}). For 3-hop and axis-parallel boxes in ℝ^d, we provide the upper bound O(n log ^{d-1}n) and lower bound Ω(n ({log n}/{log log n})^{d-2}).

Cite as

Sujoy Bhore, Timothy M. Chan, Zhengcheng Huang, Shakhar Smorodinsky, and Csaba D. Tóth. Sparse Bounded Hop-Spanners for Geometric Intersection Graphs. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 17:1-17:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bhore_et_al:LIPIcs.SoCG.2025.17,
  author =	{Bhore, Sujoy and Chan, Timothy M. and Huang, Zhengcheng and Smorodinsky, Shakhar and T\'{o}th, Csaba D.},
  title =	{{Sparse Bounded Hop-Spanners for Geometric Intersection Graphs}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{17:1--17:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.17},
  URN =		{urn:nbn:de:0030-drops-231698},
  doi =		{10.4230/LIPIcs.SoCG.2025.17},
  annote =	{Keywords: Geometric Spanners, Geometric Intersection Graphs}
}
Document
Immersions and Albertson’s Conjecture

Authors: Jacob Fox, János Pach, and Andrew Suk

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
A graph is said to contain K_k (a clique of size k) as a weak immersion if it has k vertices, pairwise connected by edge-disjoint paths. In 1989, Lescure and Meyniel made the following conjecture related to Hadwiger’s conjecture: Every graph of chromatic number k contains K_k as a weak immersion. We prove this conjecture for graphs with at most 1.4(k-1) vertices. As an application, we make some progress on Albertson’s conjecture on crossing numbers of graphs, according to which every graph G with chromatic number k satisfies cr(G) ≥ cr(K_k). In particular, we show that the conjecture is true for all graphs of chromatic number k, provided that they have at most 1.4(k-1) vertices and k is sufficiently large.

Cite as

Jacob Fox, János Pach, and Andrew Suk. Immersions and Albertson’s Conjecture. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 50:1-50:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fox_et_al:LIPIcs.SoCG.2025.50,
  author =	{Fox, Jacob and Pach, J\'{a}nos and Suk, Andrew},
  title =	{{Immersions and Albertson’s Conjecture}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{50:1--50:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.50},
  URN =		{urn:nbn:de:0030-drops-232022},
  doi =		{10.4230/LIPIcs.SoCG.2025.50},
  annote =	{Keywords: Immersions, crossing numbers, chromatic number}
}
Document
On the Compressiveness of the Burrows-Wheeler Transform

Authors: Hideo Bannai, Tomohiro I, and Yuto Nakashima

Published in: LIPIcs, Volume 331, 36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025)


Abstract
The Burrows-Wheeler transform (BWT) is a reversible transform that converts a string w into another string BWT(w). The size of the run-length encoded BWT (RLBWT) can be interpreted as a measure of repetitiveness in the class of representations called dictionary compression which are essentially representations based on copy and paste operations. In this paper, we shed new light on the compressiveness of BWT and the bijective BWT (BBWT). We first extend previous results on the relations of their run-length compressed sizes r and r_B. We also show that the so-called "clustering effect" of BWT and BBWT can be captured by measures other than empirical entropy or run-length encoding. In particular, we show that BWT and BBWT do not increase the repetitiveness of the string with respect to various measures based on dictionary compression by more than a polylogarithmic factor. Furthermore, we show that there exists an infinite family of strings that are maximally incompressible by any dictionary compression measure, but become very compressible after applying BBWT. An interesting implication of this result is that it is possible to transcend dictionary compression in some cases by simply applying BBWT before applying dictionary compression.

Cite as

Hideo Bannai, Tomohiro I, and Yuto Nakashima. On the Compressiveness of the Burrows-Wheeler Transform. In 36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 331, pp. 17:1-17:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bannai_et_al:LIPIcs.CPM.2025.17,
  author =	{Bannai, Hideo and I, Tomohiro and Nakashima, Yuto},
  title =	{{On the Compressiveness of the Burrows-Wheeler Transform}},
  booktitle =	{36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025)},
  pages =	{17:1--17:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-369-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{331},
  editor =	{Bonizzoni, Paola and M\"{a}kinen, Veli},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2025.17},
  URN =		{urn:nbn:de:0030-drops-231116},
  doi =		{10.4230/LIPIcs.CPM.2025.17},
  annote =	{Keywords: Data Compression, Bijective Burrows-Wheeler Transform, Fibonacci words}
}
Document
Temporal Dominating Set and Temporal Vertex Cover Under the Lense of Degree Restrictions

Authors: Anton Herrmann, Christian Komusiewicz, Nils Morawietz, and Frank Sommer

Published in: LIPIcs, Volume 330, 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)


Abstract
We study the Temporal Dominating Set problem, in which one asks whether a temporal graph 𝒢 = (G₁,… , G_T) given as a sequence of snapshot graphs, over the same vertex set V, has a set S of temporal vertices of size at most k such that each vertex v of V is dominated by some w ∈ S in the snapshot that contains w. Additionally, we consider Temporal Partial Dominating Set, where one asks whether at least t (and not necessarily all) vertices of V can be dominated by S and a further generalization in which the solution may only contain a bounded number of temporal vertices from each snapshot. We analyze how the complexity of Temporal (Partial) Dominating Set is influenced by the maximum snapshot degree and the structure of the underlying graph, the graph with vertex set V and whose edge set is the union of all snapshot edge sets. For example, we obtain a complexity dichotomy for the maximum snapshot degree and we show that Temporal Partial Dominating Set is fixed-parameter tractable for tw+Δ, where tw and Δ denote the treewidth and the maximum degree of the underlying graph of 𝒢, respectively. We also show which of our results transfer to the well-studied Temporal Vertex Cover problem. For example, we show that Temporal Vertex Cover is also fixed-parameter tractable for tw+Δ which substantially extends the previously known polynomial-time algorithms for the case that the underlying graph is a path or cycle.

Cite as

Anton Herrmann, Christian Komusiewicz, Nils Morawietz, and Frank Sommer. Temporal Dominating Set and Temporal Vertex Cover Under the Lense of Degree Restrictions. In 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 330, pp. 16:1-16:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{herrmann_et_al:LIPIcs.SAND.2025.16,
  author =	{Herrmann, Anton and Komusiewicz, Christian and Morawietz, Nils and Sommer, Frank},
  title =	{{Temporal Dominating Set and Temporal Vertex Cover Under the Lense of Degree Restrictions}},
  booktitle =	{4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)},
  pages =	{16:1--16:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-368-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{330},
  editor =	{Meeks, Kitty and Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2025.16},
  URN =		{urn:nbn:de:0030-drops-230695},
  doi =		{10.4230/LIPIcs.SAND.2025.16},
  annote =	{Keywords: NP-hard problem, FPT-algorithm, Treewidth, Color coding}
}
Document
O(1)-Round MPC Algorithms for Multi-Dimensional Grid Graph Connectivity, Euclidean MST and DBSCAN

Authors: Junhao Gan, Anthony Wirth, and Zhuo Zhang

Published in: LIPIcs, Volume 328, 28th International Conference on Database Theory (ICDT 2025)


Abstract
In this paper, we investigate three fundamental problems in the Massively Parallel Computation (MPC) model: (i) grid graph connectivity, (ii) approximate Euclidean Minimum Spanning Tree (EMST), and (iii) approximate DBSCAN. Our first result is a O(1)-round Las Vegas (i.e., succeeding with high probability) MPC algorithm for computing the connected components on a d-dimensional c-penetration grid graph ((d,c)-grid graph), where both d and c are positive integer constants. In such a grid graph, each vertex is a point with integer coordinates in ℕ^d, and an edge can only exist between two distinct vertices with 𝓁_∞-norm at most c. To our knowledge, the current best existing result for computing the connected components (CC’s) on (d,c)-grid graphs in the MPC model is to run the state-of-the-art MPC CC algorithms that are designed for general graphs: they achieve O(log log n + log D) [Behnezhad et al., 2019] and O(log log n + log 1/(λ)) [Sepehr Assadi et al., 2019] rounds, respectively, where D is the diameter and λ is the spectral gap of the graph. With our grid graph connectivity technique, our second main result is a O(1)-round Las Vegas MPC algorithm for computing approximate Euclidean MST. The existing state-of-the-art result on this problem is the O(1)-round MPC algorithm proposed by Andoni et al. [Alexandr Andoni et al., 2014], which only guarantees an approximation on the overall weight in expectation. In contrast, our algorithm not only guarantees a deterministic overall weight approximation, but also achieves a deterministic edge-wise weight approximation. The latter property is crucial to many applications, such as finding the Bichromatic Closest Pair and Single-Linkage Clustering. Last, but not least, our third main result is a O(1)-round Las Vegas MPC algorithm for computing an approximate DBSCAN clustering in O(1)-dimensional Euclidean space.

Cite as

Junhao Gan, Anthony Wirth, and Zhuo Zhang. O(1)-Round MPC Algorithms for Multi-Dimensional Grid Graph Connectivity, Euclidean MST and DBSCAN. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gan_et_al:LIPIcs.ICDT.2025.7,
  author =	{Gan, Junhao and Wirth, Anthony and Zhang, Zhuo},
  title =	{{O(1)-Round MPC Algorithms for Multi-Dimensional Grid Graph Connectivity, Euclidean MST and DBSCAN}},
  booktitle =	{28th International Conference on Database Theory (ICDT 2025)},
  pages =	{7:1--7:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-364-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{328},
  editor =	{Roy, Sudeepa and Kara, Ahmet},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.7},
  URN =		{urn:nbn:de:0030-drops-229483},
  doi =		{10.4230/LIPIcs.ICDT.2025.7},
  annote =	{Keywords: Massively Parallel Computation, Graph Connectivity, Grid Graphs, Euclidean Minimum Spanning Tree, DBSCAN}
}
  • Refine by Type
  • 27 Document/PDF
  • 16 Document/HTML

  • Refine by Publication Year
  • 19 2025
  • 2 2024
  • 1 2021
  • 1 2020
  • 1 2019
  • Show More...

  • Refine by Author
  • 10 Fox, Jacob
  • 8 Pach, János
  • 8 Suk, Andrew
  • 2 Bannai, Hideo
  • 2 Chan, Timothy M.
  • Show More...

  • Refine by Series/Journal
  • 25 LIPIcs
  • 1 OASIcs
  • 1 TGDK

  • Refine by Classification
  • 5 Mathematics of computing → Combinatorics
  • 3 Mathematics of computing → Combinatoric problems
  • 3 Theory of computation → Computational geometry
  • 3 Theory of computation → Graph algorithms analysis
  • 2 Mathematics of computing → Combinatorics on words
  • Show More...

  • Refine by Keyword
  • 4 Ramsey theory
  • 3 VC-dimension
  • 3 intersection graphs
  • 2 pseudo-segments
  • 2 regularity lemma
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail