27 Search Results for "Kumar, Pankaj"


Document
Compact Representation of Semilinear and Terrain-Like Graphs

Authors: Jean Cardinal and Yelena Yuditsky

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We consider the existence and construction of biclique covers of graphs, consisting of coverings of their edge sets by complete bipartite graphs. The size of such a cover is the sum of the sizes of the bicliques. Small-size biclique covers of graphs are ubiquitous in computational geometry, and have been shown to be useful compact representations of graphs. We give a brief survey of classical and recent results on biclique covers and their applications, and give new families of graphs having biclique covers of near-linear size. In particular, we show that semilinear graphs, whose edges are defined by linear relations in bounded dimensional space, always have biclique covers of size O(npolylog n). This generalizes many previously known results on special classes of graphs including interval graphs, permutation graphs, and graphs of bounded boxicity, but also new classes such as intersection graphs of L-shapes in the plane. It also directly implies the bounds for Zarankiewicz’s problem derived by Basit, Chernikov, Starchenko, Tao, and Tran (Forum Math. Sigma, 2021). We also consider capped graphs, also known as terrain-like graphs, defined as ordered graphs forbidding a certain ordered pattern on four vertices. Terrain-like graphs contain the induced subgraphs of terrain visibility graphs. We give an elementary proof that these graphs admit biclique partitions of size O(nlog³ n). This provides a simple combinatorial analogue of a classical result from Agarwal, Alon, Aronov, and Suri on polygon visibility graphs (Discrete Comput. Geom. 1994). Finally, we prove that there exists families of unit disk graphs on n vertices that do not admit biclique coverings of size o(n^{4/3}), showing that we are unlikely to improve on Szemerédi-Trotter type incidence bounds for higher-degree semialgebraic graphs.

Cite as

Jean Cardinal and Yelena Yuditsky. Compact Representation of Semilinear and Terrain-Like Graphs. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 67:1-67:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cardinal_et_al:LIPIcs.ESA.2025.67,
  author =	{Cardinal, Jean and Yuditsky, Yelena},
  title =	{{Compact Representation of Semilinear and Terrain-Like Graphs}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{67:1--67:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.67},
  URN =		{urn:nbn:de:0030-drops-245359},
  doi =		{10.4230/LIPIcs.ESA.2025.67},
  annote =	{Keywords: Biclique covers, intersection graphs, visibility graphs, Zarankiewicz’s problem}
}
Document
Streaming Diameter of High-Dimensional Points

Authors: Magnús M. Halldórsson, Nicolaos Matsakis, and Pavel Veselý

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We improve the space bound for streaming approximation of Diameter but also of Farthest Neighbor queries, Minimum Enclosing Ball and its Coreset, in high-dimensional Euclidean spaces. In particular, our deterministic streaming algorithms store 𝒪(ε^{-2}log(1/(ε))) points. This improves by a factor of ε^{-1} the previous space bound of Agarwal and Sharathkumar (SODA 2010), while retaining the state-of-the-art approximation guarantees, such as √2+ε for Diameter or Farthest Neighbor queries, and also offering a simpler and more complete argument. Moreover, we show that storing Ω(ε^{-1}) points is necessary for a streaming (√2+ε)-approximation of Farthest Pair and Farthest Neighbor queries.

Cite as

Magnús M. Halldórsson, Nicolaos Matsakis, and Pavel Veselý. Streaming Diameter of High-Dimensional Points. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 58:1-58:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{halldorsson_et_al:LIPIcs.ESA.2025.58,
  author =	{Halld\'{o}rsson, Magn\'{u}s M. and Matsakis, Nicolaos and Vesel\'{y}, Pavel},
  title =	{{Streaming Diameter of High-Dimensional Points}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{58:1--58:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.58},
  URN =		{urn:nbn:de:0030-drops-245263},
  doi =		{10.4230/LIPIcs.ESA.2025.58},
  annote =	{Keywords: streaming algorithm, farthest pair, diameter, minimum enclosing ball, coreset}
}
Document
Min-Max Correlation Clustering via Neighborhood Similarity

Authors: Nairen Cao, Steven Roche, and Hsin-Hao Su

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We present an efficient algorithm for the min-max correlation clustering problem. The input is a complete graph where edges are labeled as either positive (+) or negative (-), and the objective is to find a clustering that minimizes the 𝓁_∞-norm of the disagreement vector over all vertices. We address this problem with an efficient (3 + ε)-approximation algorithm that runs in nearly linear time, Õ(|E^+|), where |E^+| denotes the number of positive edges. This improves upon the previous best-known approximation guarantee of 4 by Heidrich, Irmai, and Andres [Heidrich et al., 2024], whose algorithm runs in O(|V|² + |V| D²) time, where |V| is the number of nodes and D is the maximum degree in the graph (V,E^+). Furthermore, we extend our algorithm to the massively parallel computation (MPC) model and the semi-streaming model. In the MPC model, our algorithm runs on machines with memory sublinear in the number of nodes and takes O(1) rounds. In the streaming model, our algorithm requires only Õ(|V|) space, where |V| is the number of vertices in the graph. Our algorithms are purely combinatorial. They are based on a novel structural observation about the optimal min-max instance, which enables the construction of a (3 + ε)-approximation algorithm using O(|E^+|) neighborhood similarity queries. By leveraging random projection, we further show these queries can be computed in nearly linear time.

Cite as

Nairen Cao, Steven Roche, and Hsin-Hao Su. Min-Max Correlation Clustering via Neighborhood Similarity. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 41:1-41:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cao_et_al:LIPIcs.ESA.2025.41,
  author =	{Cao, Nairen and Roche, Steven and Su, Hsin-Hao},
  title =	{{Min-Max Correlation Clustering via Neighborhood Similarity}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{41:1--41:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.41},
  URN =		{urn:nbn:de:0030-drops-245098},
  doi =		{10.4230/LIPIcs.ESA.2025.41},
  annote =	{Keywords: Min Max Correlation Clustering, Approximate algorithms}
}
Document
RANDOM
Implications of Better PRGs for Permutation Branching Programs

Authors: Dean Doron and William M. Hoza

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We study the challenge of derandomizing constant-width standard-order read-once branching programs (ROBPs). Let c ∈ [1, 2) be any constant. We prove that if there are explicit pseudorandom generators (PRGs) for width-6 length-n permutation ROBPs with error 1/n and seed length Õ(log^c n), then there are explicit hitting set generators (HSGs) for width-4 length-n ROBPs with threshold 1/polylog(n) and seed length Õ(log^c n). For context, there are known explicit PRGs that fool constant-width permutation ROBPs with error ε and seed length O(log(n)⋅log(1/ε)) (Koucký, Nimbhorkar, and Pudlák STOC 2011; De CCC 2011; Steinke ECCC 2012). When ε = 1/n, there are known constructions of weighted pseudorandom generators (WPRGs) that fool polynomial-width permutation ROBPs with seed length Õ(log^{3/2} n) (Pyne and Vadhan CCC 2021; Chen, Hoza, Lyu, Tal, and Wu FOCS 2023; Chattopadhyay and Liao ITCS 2024), but unweighted PRGs with seed length o(log² n) remain elusive. Meanwhile, for width-4 ROBPs, there are no known explicit PRGs, WPRGs, or HSGs with seed length o(log²n). Our reduction can be divided into two parts. First, we show that explicit low-error PRGs for width-6 permutation ROBPs with seed length Õ(log^c n) would imply explicit low-error PRGs for width-3 ROBPs with seed length Õ(log^c n). This would improve Meka, Reingold, and Tal’s PRG (STOC 2019), which has seed length o(log²n) only when the error parameter is relatively large. Second, we show that for any w, n, s, and ε, an explicit PRG for width-w ROBPs with error 0.01/n and seed length s would imply an explicit ε-HSG for width-(w + 1) ROBPs with seed length O(s + log(n)⋅log(1/ε)).

Cite as

Dean Doron and William M. Hoza. Implications of Better PRGs for Permutation Branching Programs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 28:1-28:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{doron_et_al:LIPIcs.APPROX/RANDOM.2025.28,
  author =	{Doron, Dean and Hoza, William M.},
  title =	{{Implications of Better PRGs for Permutation Branching Programs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{28:1--28:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.28},
  URN =		{urn:nbn:de:0030-drops-243946},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.28},
  annote =	{Keywords: hitting set generators, pseudorandom generators, read-once branching programs}
}
Document
APPROX
Covering Simple Orthogonal Polygons with Rectangles

Authors: Aniket Basu Roy

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We study the problem of Covering Orthogonal Polygons with Rectangles, focusing on three variants: covering the interior, the boundary, and the corners. While previous work provided constant-factor approximation algorithms for these problems, significant improvements had not been achieved for over two decades. The main contribution of this work is the development of a Polynomial Time Approximation Scheme (PTAS) for both the Boundary Cover and Corner Cover problems on simple polygons, using a local search algorithm. Our work advances the state of the art, improving upon the previous best-known 4-approximation for the Boundary Cover and 2-approximation for the Corner Cover problems. The technical core of our work lies in proving the existence of planar support graphs for certain geometric hypergraphs defined by the polygon and its containment-maximal rectangles. This structural insight enables the application of the local search framework to achieve the PTAS results. We also demonstrate the limitations of this approach by constructing instances where local search fails for the Interior Cover and certain dual problems, such as the Maximum Antirectangle and Hitting Set problems. Additionally, the methods yield a PTAS for a special case of the Discrete Independent Set problem for rectangles. These results not only settle longstanding open questions but also introduce new techniques that may be of independent interest within computational geometry.

Cite as

Aniket Basu Roy. Covering Simple Orthogonal Polygons with Rectangles. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 2:1-2:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{basuroy:LIPIcs.APPROX/RANDOM.2025.2,
  author =	{Basu Roy, Aniket},
  title =	{{Covering Simple Orthogonal Polygons with Rectangles}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{2:1--2:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.2},
  URN =		{urn:nbn:de:0030-drops-243686},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.2},
  annote =	{Keywords: Polygon Covering, Approximation Algorithms, Orthogonal Polygons, Rectangles, Local Search, Planar Supports}
}
Document
APPROX
Multipass Linear Sketches for Geometric LP-Type Problems

Authors: N. Efe Çekirge, William Gay, and David P. Woodruff

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
LP-type problems such as the Minimum Enclosing Ball (MEB), Linear Support Vector Machine (SVM), Linear Programming (LP), and Semidefinite Programming (SDP) are fundamental combinatorial optimization problems, with many important applications in machine learning applications such as classification, bioinformatics, and noisy learning. We study LP-type problems in several streaming and distributed big data models, giving ε-approximation linear sketching algorithms with a focus on the high accuracy regime with low dimensionality d, that is, when d < (1/ε)^0.999. Our main result is an O(ds) pass algorithm with O(s(√d/ε)^{3d/s}) ⋅ poly(d, log (1/ε)) space complexity in words, for any parameter s ∈ [1, d log (1/ε)], to solve ε-approximate LP-type problems of O(d) combinatorial and VC dimension. Notably, by taking s = d log (1/ε), we achieve space complexity polynomial in d and polylogarithmic in 1/ε, presenting exponential improvements in 1/ε over current algorithms. We complement our results by showing lower bounds of (1/ε)^Ω(d) for any 1-pass algorithm solving the (1 + ε)-approximation MEB and linear SVM problems, further motivating our multi-pass approach.

Cite as

N. Efe Çekirge, William Gay, and David P. Woodruff. Multipass Linear Sketches for Geometric LP-Type Problems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 8:1-8:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cekirge_et_al:LIPIcs.APPROX/RANDOM.2025.8,
  author =	{\c{C}ekirge, N. Efe and Gay, William and Woodruff, David P.},
  title =	{{Multipass Linear Sketches for Geometric LP-Type Problems}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{8:1--8:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.8},
  URN =		{urn:nbn:de:0030-drops-243741},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.8},
  annote =	{Keywords: Streaming, sketching, LP-type problems}
}
Document
Leakage-Resilience of Shamir’s Secret Sharing: Identifying Secure Evaluation Places

Authors: Jihun Hwang, Hemanta K. Maji, Hai H. Nguyen, and Xiuyu Ye

Published in: LIPIcs, Volume 343, 6th Conference on Information-Theoretic Cryptography (ITC 2025)


Abstract
Can Shamir’s secret-sharing protect its secret even when all shares are partially compromised? For instance, repairing Reed-Solomon codewords, when possible, recovers the entire secret in the corresponding Shamir’s secret sharing. Yet, Shamir’s secret sharing mitigates various side-channel threats, depending on where its "secret-sharing polynomial" is evaluated. Although most evaluation places yield secure schemes, none are known explicitly; even techniques to identify them are unknown. Our work initiates research into such classifier constructions and derandomization objectives. In this work, we focus on Shamir’s scheme over prime fields, where every share is required to reconstruct the secret. We investigate the security of these schemes against single-bit probes into shares stored in their native binary representation. Technical analysis is particularly challenging when dealing with Reed-Solomon codewords over prime fields, as observed recently in the code repair literature. Furthermore, ensuring the statistical independence of the leakage from the secret necessitates the elimination of any subtle correlations between them. In this context, we present: 1) An efficient algorithm to classify evaluation places as secure or vulnerable against the least-significant-bit leakage. 2) Modulus choices where the classifier above extends to any single-bit probe per share. 3) Explicit modulus choices and secure evaluation places for them. On the way, we discover new bit-probing attacks on Shamir’s scheme, revealing surprising correlations between the leakage and the secret, leading to vulnerabilities when choosing evaluation places naïvely. Our results rely on new techniques to analyze the security of secret-sharing schemes against side-channel threats. We connect their leakage resilience to the orthogonality of square wave functions, which, in turn, depends on the 2-adic valuation of rational approximations. These techniques, novel to the security analysis of secret sharings, can potentially be of broader interest.

Cite as

Jihun Hwang, Hemanta K. Maji, Hai H. Nguyen, and Xiuyu Ye. Leakage-Resilience of Shamir’s Secret Sharing: Identifying Secure Evaluation Places. In 6th Conference on Information-Theoretic Cryptography (ITC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 343, pp. 3:1-3:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hwang_et_al:LIPIcs.ITC.2025.3,
  author =	{Hwang, Jihun and Maji, Hemanta K. and Nguyen, Hai H. and Ye, Xiuyu},
  title =	{{Leakage-Resilience of Shamir’s Secret Sharing: Identifying Secure Evaluation Places}},
  booktitle =	{6th Conference on Information-Theoretic Cryptography (ITC 2025)},
  pages =	{3:1--3:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-385-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{343},
  editor =	{Gilboa, Niv},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2025.3},
  URN =		{urn:nbn:de:0030-drops-243531},
  doi =		{10.4230/LIPIcs.ITC.2025.3},
  annote =	{Keywords: Shamir’s secret sharing, leakage resilience, physical bit probing, secure evaluation places, secure modulus choice, square wave families, LLL algorithm, Fourier analysis}
}
Document
Streaming Algorithms for Conflict-Free Coloring

Authors: Rogers Mathew, Fahad Panolan, and Seshikanth

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
Conflict-free coloring of a hypergraph ℋ = (V,ℰ) using k colors is a function f:V → {1,2, …, k} such that for all E ∈ ℰ, there exists a vertex v ∈ E with a unique color. That is, f(v)≠ f(u) for all u ∈ E ⧵ {v}. The minimum k for which ℋ has a conflict-free coloring using k colors is called the conflict-free chromatic number of ℋ. For a simple graph G, a conflict-free coloring of the hypergraph with vertex set V(G) and edge set being the set of all closed neighborhoods of the vertices in G is called a conflict-free closed neighborhood (CFCN) coloring of G. CFCN chromatic number, denoted by χ_{CN}(G), is the minimum number of colors used in a conflict-free closed neighborhood coloring of G. Analogously, we define conflict-free open neighborhood (CFON) coloring and CFON chromatic number, χ_{ON}(G), of a graph G. There are various works on proving upper and lower bounds of χ_{ON}(G) and χ_{CN}(G). In this work, we develop streaming algorithms for CFCN and CFON coloring of a graph where the number of colors used matches the best-known upper bounds of χ_{ON}(G) and χi_{CN}(G). Our algorithms use as input an edge stream of the graph G in the insertion-only model. Our results and the best-known bounds for χ_{ON}(G) and χ_{CN}(G) are given below. 1. Pach and Tardos [Combinatorics, Probability and Computing, 2009] showed that, for any n vertex graph G, χ_{CN}(G) = O(ln² n). Glebov, Szabó and Tardos [Combinatorics, Probability and Computing, 2014] showed the existence of graphs G with χ_{CN}(G) = Ω(ln² n). We design a randomized single-pass semi-streaming algorithm (i.e., it uses O(n ln n) space that, given an n-vertex graph G, outputs a CFCN coloring of G using O(ln² n) colors with probability at least (1-2/n). 2. Bhyravarapu, Kalyanasundaram, Mathew [Journal of Graph Theory, 2021] showed that for a graph G with maximum degree Δ, χ_{CN}(G) = O(ln² Δ). The methods used by our algorithms give rise to a simpler, alternate proof for this bound. 3. It is known that χ_{ON}(G) ≤ 1/2 + √{2n + 1/4} (See Pach and Tardos [Combinatorics, Probability and Computing, 2009] and Ph.D. thesis of Cheilaris). This bound is asymptotically tight. - We design a deterministic single-pass O(n√n) space streaming algorithm that, given a graph G on n vertices, finds a CFON coloring using 2√n colors. - We design a randomized, single-pass, semi-streaming algorithm to find a CFON coloring of a graph G using O(√n ln² n) colors with success probability at least (1-2/n). 4. It is known that χ_{ON}(G) ≤ Δ+1, where Δ is the maximum degree of a vertex in G. Further, there are graphs G known with χ_{ON}(G) = Δ + 1. We design a randomized two-pass semi-streaming algorithm (uses O(1/(ε²) n ln³ n) space) that outputs a CFON coloring of G using (1+ε)Δ colors, for any ε > 0, with a probability at least (1-1/n).

Cite as

Rogers Mathew, Fahad Panolan, and Seshikanth. Streaming Algorithms for Conflict-Free Coloring. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 44:1-44:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{mathew_et_al:LIPIcs.WADS.2025.44,
  author =	{Mathew, Rogers and Panolan, Fahad and Seshikanth},
  title =	{{Streaming Algorithms for Conflict-Free Coloring}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{44:1--44:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.44},
  URN =		{urn:nbn:de:0030-drops-242756},
  doi =		{10.4230/LIPIcs.WADS.2025.44},
  annote =	{Keywords: Streaming algorithm, conflict-free coloring, vertex coloring, randomized algorithms}
}
Document
Clustering Point Sets Revisited

Authors: Md. Billal Hossain and Benjamin Raichel

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
In the sets clustering problem one is given a collection of point sets 𝒫 = {P_1,… P_m} in ℝ^d, where for any set of k centers in ℝ^d, each P_i is assigned to its nearest center as determine by some local cost functions. The goal is then to select a set of k centers to minimize some global cost function of the corresponding local assignment costs. Specifically, we consider either summing or taking the maximum cost over all P_i, where for each P_i the cost of assigning it to a center c is either max_{p ∈ P_i} ‖c-p‖, ∑_{p ∈ P_i} ‖c-p‖, or ∑_{p ∈ P_i} ‖c-p‖². Different combinations of the global and local cost functions naturally generalize the k-center, k-median, and k-means clustering problems. In this paper, we improve the prior results for the natural generalization of k-center, give the first result for the natural generalization of k-means, and give results for generalizations of k-median and k-center which differ from those previously studied.

Cite as

Md. Billal Hossain and Benjamin Raichel. Clustering Point Sets Revisited. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 38:1-38:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hossain_et_al:LIPIcs.WADS.2025.38,
  author =	{Hossain, Md. Billal and Raichel, Benjamin},
  title =	{{Clustering Point Sets Revisited}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{38:1--38:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.38},
  URN =		{urn:nbn:de:0030-drops-242693},
  doi =		{10.4230/LIPIcs.WADS.2025.38},
  annote =	{Keywords: Clustering, k-center, k-median, k-means}
}
Document
Track A: Algorithms, Complexity and Games
3.415-Approximation for Coflow Scheduling via Iterated Rounding

Authors: Lars Rohwedder and Leander Schnaars

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We provide an algorithm giving a 140/41 (< 3.415)-approximation for Coflow Scheduling and a 4.36-approximation for Coflow Scheduling with release dates. This improves upon the best known 4- and respectively 5-approximations and addresses an open question posed by Agarwal, Rajakrishnan, Narayan, Agarwal, Shmoys, and Vahdat [Agarwal et al., 2018], Fukunaga [Fukunaga, 2022], and others. We additionally show that in an asymptotic setting, the algorithm achieves a (2+ε)-approximation, which is essentially optimal under ℙ ≠ NP. The improvements are achieved using a novel edge allocation scheme using iterated LP rounding together with a framework which enables establishing strong bounds for combinations of several edge allocation algorithms.

Cite as

Lars Rohwedder and Leander Schnaars. 3.415-Approximation for Coflow Scheduling via Iterated Rounding. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 128:1-128:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{rohwedder_et_al:LIPIcs.ICALP.2025.128,
  author =	{Rohwedder, Lars and Schnaars, Leander},
  title =	{{3.415-Approximation for Coflow Scheduling via Iterated Rounding}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{128:1--128:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.128},
  URN =		{urn:nbn:de:0030-drops-235050},
  doi =		{10.4230/LIPIcs.ICALP.2025.128},
  annote =	{Keywords: Coflow Scheduling, Approximation Algorithms, Iterated Rounding}
}
Document
Computing Oriented Spanners and Their Dilation

Authors: Kevin Buchin, Antonia Kalb, Anil Maheshwari, Saeed Odak, Carolin Rehs, Michiel Smid, and Sampson Wong

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
Given a point set P in a metric space and a real number t ≥ 1, an oriented t-spanner is an oriented graph G = (P, E), where for every pair of distinct points p and q in P, the shortest oriented closed walk in G that contains p and q is at most a factor t longer than the perimeter of the smallest triangle in P containing p and q. The oriented dilation of a graph G is the minimum t for which G is an oriented t-spanner. For arbitrary point sets of size n in ℝ^d, where d ≥ 2 is a constant, the only known oriented spanner construction is an oriented 2-spanner with binom(n,2) edges. Moreover, there exists a set P of four points in the plane, for which the oriented dilation is larger than 1.46, for any oriented graph on P. We present the first algorithm that computes, in Euclidean space, a sparse oriented spanner whose oriented dilation is bounded by a constant. More specifically, for any set of n points in ℝ^d, where d is a constant, we construct an oriented (2+ε)-spanner with 𝒪(n) edges in 𝒪(n log n) time and 𝒪(n) space. Our construction uses the well-separated pair decomposition and an algorithm that computes a (1+ε)-approximation of the minimum-perimeter triangle in P containing two given query points in 𝒪(log n) time. While our algorithm is based on first computing a suitable undirected graph and then orienting it, we show that, in general, computing the orientation of an undirected graph that minimises its oriented dilation is NP-hard, even for point sets in the Euclidean plane. We further prove that even if the oriented graph is already given, computing its oriented dilation is APSP-hard for points in a general metric space. We complement this result with an algorithm that approximates the oriented dilation of a given graph in subcubic time for point sets in ℝ^d, where d is a constant.

Cite as

Kevin Buchin, Antonia Kalb, Anil Maheshwari, Saeed Odak, Carolin Rehs, Michiel Smid, and Sampson Wong. Computing Oriented Spanners and Their Dilation. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 27:1-27:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{buchin_et_al:LIPIcs.SoCG.2025.27,
  author =	{Buchin, Kevin and Kalb, Antonia and Maheshwari, Anil and Odak, Saeed and Rehs, Carolin and Smid, Michiel and Wong, Sampson},
  title =	{{Computing Oriented Spanners and Their Dilation}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{27:1--27:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.27},
  URN =		{urn:nbn:de:0030-drops-231792},
  doi =		{10.4230/LIPIcs.SoCG.2025.27},
  annote =	{Keywords: spanner, oriented graph, dilation, orientation, well-separated pair decomposition, minimum-perimeter triangle}
}
Document
Optimal Motion Planning for Two Square Robots in a Rectilinear Environment

Authors: Pankaj K. Agarwal, Mark de Berg, Benjamin Holmgren, Alex Steiger, and Martijn Struijs

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
Let W ⊂ ℝ² be a rectilinear polygonal environment (that is, a rectilinear polygon potentially with holes) with a total of n vertices, and let A,B be two robots, each modeled as an axis-aligned unit square, that can move rectilinearly inside W. The goal is to compute an optimal collision-free motion plan π for A and B between a given pair of source and target configurations. We study two variants of this problem and obtain the following results. - Min-Sum: Here the goal is to compute a motion plan that minimizes the sum of the lengths of the paths of the robots. We present an O(n⁴log n)-time algorithm for computing an optimal solution to the min-sum problem. This is the first polynomial-time algorithm to compute an optimal, collision-free motion of two robots amid obstacles in a planar polygonal environment. - Min-Makespan: Here the robots can move with at most unit speed, and the goal is to compute a motion plan that minimizes the maximum time taken by a robot to reach its target location. We prove that the min-makespan variant is NP-hard.

Cite as

Pankaj K. Agarwal, Mark de Berg, Benjamin Holmgren, Alex Steiger, and Martijn Struijs. Optimal Motion Planning for Two Square Robots in a Rectilinear Environment. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 5:1-5:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.SoCG.2025.5,
  author =	{Agarwal, Pankaj K. and de Berg, Mark and Holmgren, Benjamin and Steiger, Alex and Struijs, Martijn},
  title =	{{Optimal Motion Planning for Two Square Robots in a Rectilinear Environment}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{5:1--5:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.5},
  URN =		{urn:nbn:de:0030-drops-231577},
  doi =		{10.4230/LIPIcs.SoCG.2025.5},
  annote =	{Keywords: Computational geometry, motion planning, multiple robots, rectilinear paths}
}
Document
On the Runtime of Local Mutual Exclusion for Anonymous Dynamic Networks

Authors: Anya Chaturvedi, Joshua J. Daymude, and Andréa W. Richa

Published in: LIPIcs, Volume 330, 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)


Abstract
Algorithms for mutual exclusion aim to isolate potentially concurrent accesses to the same shared resources. Motivated by distributed computing research on programmable matter and population protocols where interactions among entities are often assumed to be isolated, Daymude, Richa, and Scheideler (SAND`22) introduced a variant of the local mutual exclusion problem that applies to arbitrary dynamic networks: each node, on issuing a lock request, must acquire exclusive locks on itself and all its persistent neighbors, i.e., the neighbors that remain connected to it over the duration of the lock request. Assuming adversarial edge dynamics, semi-synchronous or asynchronous concurrency, and anonymous nodes communicating via message passing, their randomized algorithm achieves mutual exclusion (non-intersecting lock sets) and lockout freedom (eventual success with probability 1). However, they did not analyze their algorithm’s runtime. In this paper, we prove that any node will successfully lock itself and its persistent neighbors within 𝒪(nΔ³) open rounds of its lock request in expectation, where n is the number of nodes in the dynamic network, Δ is the maximum degree of the dynamic network, rounds are normalized to the execution time of the "slowest" node, and "closed" rounds when some persistent neighbors are already locked by another node are ignored (i.e., only "open" rounds are considered).

Cite as

Anya Chaturvedi, Joshua J. Daymude, and Andréa W. Richa. On the Runtime of Local Mutual Exclusion for Anonymous Dynamic Networks. In 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 330, pp. 15:1-15:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chaturvedi_et_al:LIPIcs.SAND.2025.15,
  author =	{Chaturvedi, Anya and Daymude, Joshua J. and Richa, Andr\'{e}a W.},
  title =	{{On the Runtime of Local Mutual Exclusion for Anonymous Dynamic Networks}},
  booktitle =	{4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)},
  pages =	{15:1--15:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-368-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{330},
  editor =	{Meeks, Kitty and Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2025.15},
  URN =		{urn:nbn:de:0030-drops-230687},
  doi =		{10.4230/LIPIcs.SAND.2025.15},
  annote =	{Keywords: Mutual exclusion, dynamic networks, message passing, concurrency}
}
Document
Approximating Densest Subgraph in Geometric Intersection Graphs

Authors: Sariel Har-Peled and Saladi Rahul

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
For an undirected graph 𝖦 = (𝖵, 𝖤), with n vertices and m edges, the densest subgraph problem, is to compute a subset S ⊆ 𝖵 which maximizes the ratio |𝖤_S|/|S|, where 𝖤_S ⊆ 𝖤 is the set of all edges of 𝖦 with endpoints in S. The densest subgraph problem is a well studied problem in computer science. Existing exact and approximation algorithms for computing the densest subgraph require Ω(m) time. We present near-linear time (in n) approximation algorithms for the densest subgraph problem on implicit geometric intersection graphs, where the vertices are explicitly given but not the edges. As a concrete example, we consider n disks in the plane with arbitrary radii and present two different approximation algorithms. As a by-product, we show a reduction from (shallow) range-reporting to approximate counting/sampling which seems to be new and is useful for other problems such as independent query sampling.

Cite as

Sariel Har-Peled and Saladi Rahul. Approximating Densest Subgraph in Geometric Intersection Graphs. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 43:1-43:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{harpeled_et_al:LIPIcs.STACS.2025.43,
  author =	{Har-Peled, Sariel and Rahul, Saladi},
  title =	{{Approximating Densest Subgraph in Geometric Intersection Graphs}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{43:1--43:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.43},
  URN =		{urn:nbn:de:0030-drops-228697},
  doi =		{10.4230/LIPIcs.STACS.2025.43},
  annote =	{Keywords: Geometric intersection graphs, Densest subgraph, Range searching, Approximation algorithms}
}
Document
Coresets for 1-Center in 𝓁₁ Metrics

Authors: Amir Carmel, Chengzhi Guo, Shaofeng H.-C. Jiang, and Robert Krauthgamer

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We explore the applicability of coresets - a small subset of the input dataset that approximates a predefined set of queries - to the 1-center problem in 𝓁₁ spaces. This approach could potentially extend to solving the 1-center problem in related metric spaces, and has implications for streaming and dynamic algorithms. We show that in 𝓁₁, unlike in Euclidean space, even weak coresets exhibit exponential dependency on the underlying dimension. Moreover, while inputs with a unique optimal center admit better bounds, they are not dimension independent. We then relax the guarantee of the coreset further, to merely approximate the value (optimal cost of 1-center), and obtain a dimension-independent coreset for every desired accuracy ε > 0. Finally, we discuss the broader implications of our findings to related metric spaces, and show explicit implications to Jaccard and Kendall’s tau distances.

Cite as

Amir Carmel, Chengzhi Guo, Shaofeng H.-C. Jiang, and Robert Krauthgamer. Coresets for 1-Center in 𝓁₁ Metrics. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 28:1-28:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{carmel_et_al:LIPIcs.ITCS.2025.28,
  author =	{Carmel, Amir and Guo, Chengzhi and Jiang, Shaofeng H.-C. and Krauthgamer, Robert},
  title =	{{Coresets for 1-Center in 𝓁₁ Metrics}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{28:1--28:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.28},
  URN =		{urn:nbn:de:0030-drops-226566},
  doi =		{10.4230/LIPIcs.ITCS.2025.28},
  annote =	{Keywords: clustering, k-center, minimum enclosing balls, coresets, 𝓁₁ norm, Kendall’s tau, Jaccard metric}
}
  • Refine by Type
  • 27 Document/PDF
  • 16 Document/HTML

  • Refine by Publication Year
  • 15 2025
  • 1 2024
  • 1 2022
  • 1 2020
  • 1 2018
  • Show More...

  • Refine by Author
  • 3 Agarwal, Pankaj K.
  • 2 Agarwal, Pankaj Kumar
  • 2 Sintos, Stavros
  • 2 Suri, Subhash
  • 2 Teillaud, Monique
  • Show More...

  • Refine by Series/Journal
  • 19 LIPIcs
  • 1 TGDK
  • 1 DagRep
  • 6 DagSemProc

  • Refine by Classification
  • 5 Theory of computation → Computational geometry
  • 2 Theory of computation → Distributed algorithms
  • 2 Theory of computation → Graph algorithms analysis
  • 2 Theory of computation → Sketching and sampling
  • 2 Theory of computation → Streaming, sublinear and near linear time algorithms
  • Show More...

  • Refine by Keyword
  • 2 Approximation Algorithms
  • 2 coreset
  • 2 k-center
  • 1 Absolute Gaussian curvature
  • 1 Algorithms
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail