16 Search Results for "Liu, Qipeng"


Document
Quantum Approximate k-Minimum Finding

Authors: Minbo Gao, Zhengfeng Ji, and Qisheng Wang

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Quantum k-minimum finding is a fundamental subroutine with numerous applications in combinatorial problems and machine learning. Previous approaches typically assume oracle access to exact function values, making it challenging to integrate this subroutine with other quantum algorithms. In this paper, we propose an (almost) optimal quantum k-minimum finding algorithm that works with approximate values for all k ≥ 1, extending a result of van Apeldoorn, Gilyén, Gribling, and de Wolf (FOCS 2017) for k = 1. As practical applications, we present efficient quantum algorithms for identifying the k smallest expectation values among multiple observables and for determining the k lowest ground state energies of a Hamiltonian with a known eigenbasis.

Cite as

Minbo Gao, Zhengfeng Ji, and Qisheng Wang. Quantum Approximate k-Minimum Finding. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 51:1-51:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gao_et_al:LIPIcs.ESA.2025.51,
  author =	{Gao, Minbo and Ji, Zhengfeng and Wang, Qisheng},
  title =	{{Quantum Approximate k-Minimum Finding}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{51:1--51:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.51},
  URN =		{urn:nbn:de:0030-drops-245192},
  doi =		{10.4230/LIPIcs.ESA.2025.51},
  annote =	{Keywords: Quantum Computing, Quantum Algorithms, Quantum Minimum Finding}
}
Document
RANDOM
Consumable Data via Quantum Communication

Authors: Dar Gilboa, Siddhartha Jain, and Jarrod R. McClean

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
Classical data can be copied and re-used for computation, with adverse consequences economically and in terms of data privacy. Motivated by this, we formulate problems in one-way communication complexity where Alice holds some data x and Bob holds m inputs y_1, …, y_m. They want to compute m instances of a bipartite relation R(⋅,⋅) on every pair (x, y_1), …, (x, y_m). We call this the asymmetric direct sum question for one-way communication. We give examples where the quantum communication complexity of such problems scales polynomially with m, while the classical communication complexity depends at most logarithmically on m. Thus, for such problems, data behaves like a consumable resource that is effectively destroyed upon use when the owner stores and transmits it as quantum states, but not when transmitted classically. We show an application to a strategic data-selling game, and discuss other potential economic implications.

Cite as

Dar Gilboa, Siddhartha Jain, and Jarrod R. McClean. Consumable Data via Quantum Communication. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 39:1-39:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gilboa_et_al:LIPIcs.APPROX/RANDOM.2025.39,
  author =	{Gilboa, Dar and Jain, Siddhartha and McClean, Jarrod R.},
  title =	{{Consumable Data via Quantum Communication}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{39:1--39:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.39},
  URN =		{urn:nbn:de:0030-drops-244059},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.39},
  annote =	{Keywords: quantum communication, one-time programs, data markets}
}
Document
RANDOM
Quantum Property Testing in Sparse Directed Graphs

Authors: Simon Apers, Frédéric Magniez, Sayantan Sen, and Dániel Szabó

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We initiate the study of quantum property testing in sparse directed graphs, and more particularly in the unidirectional model, where the algorithm is allowed to query only the outgoing edges of a vertex. In the classical unidirectional model, the problem of testing k-star-freeness, and more generally k-source-subgraph-freeness, is almost maximally hard for large k. We prove that this problem has almost quadratic advantage in the quantum setting. Moreover, we show that this advantage is nearly tight, by showing a quantum lower bound using the method of dual polynomials on an intermediate problem for a new, property testing version of the k-collision problem that was not studied before. To illustrate that not all problems in graph property testing admit such a quantum speedup, we consider the problem of 3-colorability in the related undirected bounded-degree model, when graphs are now undirected. This problem is maximally hard to test classically, and we show that also quantumly it requires a linear number of queries.

Cite as

Simon Apers, Frédéric Magniez, Sayantan Sen, and Dániel Szabó. Quantum Property Testing in Sparse Directed Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 32:1-32:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{apers_et_al:LIPIcs.APPROX/RANDOM.2025.32,
  author =	{Apers, Simon and Magniez, Fr\'{e}d\'{e}ric and Sen, Sayantan and Szab\'{o}, D\'{a}niel},
  title =	{{Quantum Property Testing in Sparse Directed Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{32:1--32:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.32},
  URN =		{urn:nbn:de:0030-drops-243987},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.32},
  annote =	{Keywords: property testing, quantum computing, bounded-degree directed graphs, dual polynomial method, collision finding}
}
Document
A Quantum Cloning Game with Applications to Quantum Position Verification

Authors: Léo Colisson Palais, Llorenç Escolà-Farràs, and Florian Speelman

Published in: LIPIcs, Volume 350, 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)


Abstract
We introduce a quantum cloning game in which k separate collaborative parties receive a classical input, determining which of them has to share a maximally entangled state with an additional party (referee). We provide the optimal winning probability of such a game for every number of parties k, and show that it decays exponentially when the game is played n times in parallel. These results have applications to quantum cryptography, in particular in the topic of quantum position verification, where we show security of the routing protocol (played in parallel), and a variant of it, in the random oracle model.

Cite as

Léo Colisson Palais, Llorenç Escolà-Farràs, and Florian Speelman. A Quantum Cloning Game with Applications to Quantum Position Verification. In 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 350, pp. 2:1-2:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{colissonpalais_et_al:LIPIcs.TQC.2025.2,
  author =	{Colisson Palais, L\'{e}o and Escol\`{a}-Farr\`{a}s, Lloren\c{c} and Speelman, Florian},
  title =	{{A Quantum Cloning Game with Applications to Quantum Position Verification}},
  booktitle =	{20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)},
  pages =	{2:1--2:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-392-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{350},
  editor =	{Fefferman, Bill},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2025.2},
  URN =		{urn:nbn:de:0030-drops-240513},
  doi =		{10.4230/LIPIcs.TQC.2025.2},
  annote =	{Keywords: Quantum position verification, cloning game, random oracle, parallel repetition}
}
Document
Revocable Encryption, Programs, and More: The Case of Multi-Copy Security

Authors: Prabhanjan Ananth, Saachi Mutreja, and Alexander Poremba

Published in: LIPIcs, Volume 343, 6th Conference on Information-Theoretic Cryptography (ITC 2025)


Abstract
Fundamental principles of quantum mechanics have inspired many new research directions, particularly in quantum cryptography. One such principle is quantum no-cloning which has led to the emerging field of revocable cryptography. Roughly speaking, in a revocable cryptographic primitive, a cryptographic object (such as a ciphertext or program) is represented as a quantum state in such a way that surrendering it effectively translates into losing the capability to use this cryptographic object. All of the revocable cryptographic systems studied so far have a major drawback: the recipient only receives one copy of the quantum state. Worse yet, the schemes become completely insecure if the recipient receives many identical copies of the same quantum state - a property that is clearly much more desirable in practice. While multi-copy security has been extensively studied for a number of other quantum cryptographic primitives, it has so far received only little treatment in context of unclonable primitives. Our work, for the first time, shows the feasibility of revocable primitives, such as revocable encryption and revocable programs, which satisfy multi-copy security in oracle models. This suggest that the stronger notion of multi-copy security is within reach in unclonable cryptography more generally, and therefore could lead to a new research direction in the field.

Cite as

Prabhanjan Ananth, Saachi Mutreja, and Alexander Poremba. Revocable Encryption, Programs, and More: The Case of Multi-Copy Security. In 6th Conference on Information-Theoretic Cryptography (ITC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 343, pp. 9:1-9:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ananth_et_al:LIPIcs.ITC.2025.9,
  author =	{Ananth, Prabhanjan and Mutreja, Saachi and Poremba, Alexander},
  title =	{{Revocable Encryption, Programs, and More: The Case of Multi-Copy Security}},
  booktitle =	{6th Conference on Information-Theoretic Cryptography (ITC 2025)},
  pages =	{9:1--9:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-385-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{343},
  editor =	{Gilboa, Niv},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2025.9},
  URN =		{urn:nbn:de:0030-drops-243592},
  doi =		{10.4230/LIPIcs.ITC.2025.9},
  annote =	{Keywords: quantum cryptography, unclonable primitives}
}
Document
Formulations and Constructions of Remote State Preparation with Verifiability, with Applications

Authors: Jiayu Zhang

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
Remote state preparation with verifiability (RSPV) is an important quantum cryptographic primitive [Alexandru Gheorghiu and Thomas Vidick, 2019; Jiayu Zhang, 2022]. In this primitive, a client would like to prepare a quantum state (sampled or chosen from a state family) on the server side, such that ideally the client knows its full description, while the server holds and only holds the state itself. In this work we make several contributions on its formulations, constructions and applications. In more detail: - We first work on the definitions and abstract properties of the RSPV problem. We select and compare different variants of definitions [Bennett et al., 2001; Alexandru Gheorghiu and Thomas Vidick, 2019; Jiayu Zhang, 2022; Alexandru Gheorghiu et al., 2022], and study their basic properties (like composability and amplification). - We also study a closely related question of how to certify the server’s operations (instead of solely the states). We introduce a new notion named remote operator application with verifiability (ROAV). We compare this notion with related existing definitions [Summers and Werner, 1987; Dominic Mayers and Andrew Chi-Chih Yao, 2004; Zhengfeng Ji et al., 2021; Tony Metger and Thomas Vidick, 2021; Anand Natarajan and Tina Zhang, 2023], study its abstract properties and leave its concrete constructions for further works. - Building on the abstract properties and existing results [Zvika Brakerski et al., 2023], we construct a series of new RSPV protocols. Our constructions not only simplify existing results [Alexandru Gheorghiu and Thomas Vidick, 2019] but also cover new state families, for example, states in the form of 1/√2 (|0⟩ + |x_0⟩ + |1⟩ |x_1⟩). All these constructions rely only on the existence of weak NTCF [Zvika Brakerski et al., 2020; Navid Alamati et al., 2022], without additional requirements like the adaptive hardcore bit property [Zvika Brakerski et al., 2018; Navid Alamati et al., 2022]. - As a further application, we show that the classical verification of quantum computations (CVQC) problem [Dorit Aharonov et al., 2010; Urmila Mahadev, 2018] could be constructed from assumptions on group actions [Navid Alamati et al., 2020]. This is achieved by combining our results on RSPV with group-action-based instantiation of weak NTCF [Navid Alamati et al., 2022], and then with the quantum-gadget-assisted quantum verification protocol [Ferracin et al., 2018].

Cite as

Jiayu Zhang. Formulations and Constructions of Remote State Preparation with Verifiability, with Applications. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 96:1-96:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{zhang:LIPIcs.ITCS.2025.96,
  author =	{Zhang, Jiayu},
  title =	{{Formulations and Constructions of Remote State Preparation with Verifiability, with Applications}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{96:1--96:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.96},
  URN =		{urn:nbn:de:0030-drops-227245},
  doi =		{10.4230/LIPIcs.ITCS.2025.96},
  annote =	{Keywords: Quantum Cryptography, Remote State Preparation, Self-testing, Verification of Quantum Computations}
}
Document
Toward Separating QMA from QCMA with a Classical Oracle

Authors: Mark Zhandry

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
QMA is the class of languages that can be decided by an efficient quantum verifier given a quantum witness, whereas QCMA is the class of such languages where the efficient quantum verifier only is given a classical witness. A challenging fundamental goal in quantum query complexity is to find a classical oracle separation for these classes. In this work, we offer a new approach towards proving such a separation that is qualitatively different than prior work, and show that our approach is sound assuming a natural statistical conjecture which may have other applications to quantum query complexity lower bounds.

Cite as

Mark Zhandry. Toward Separating QMA from QCMA with a Classical Oracle. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 95:1-95:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{zhandry:LIPIcs.ITCS.2025.95,
  author =	{Zhandry, Mark},
  title =	{{Toward Separating QMA from QCMA with a Classical Oracle}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{95:1--95:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.95},
  URN =		{urn:nbn:de:0030-drops-227230},
  doi =		{10.4230/LIPIcs.ITCS.2025.95},
  annote =	{Keywords: Quantum, Oracle Separations, QMA, QCMA}
}
Document
Simultaneous Haar Indistinguishability with Applications to Unclonable Cryptography

Authors: Prabhanjan Ananth, Fatih Kaleoglu, and Henry Yuen

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We study a novel question about nonlocal quantum state discrimination: how well can non-communicating - but entangled - players distinguish between different distributions over quantum states? We call this task simultaneous state indistinguishability. Our main technical result is to show that the players cannot distinguish between each player receiving independently-chosen Haar random states versus all players receiving the same Haar random state. We show that this question has implications to unclonable cryptography, which leverages the no-cloning principle to build cryptographic primitives that are classically impossible to achieve. Understanding the feasibility of unclonable encryption, one of the key unclonable primitives, satisfying indistinguishability security in the plain model has been a major open question in the area. So far, the existing constructions of unclonable encryption are either in the quantum random oracle model or are based on new conjectures. We leverage our main result to present the first construction of unclonable encryption satisfying indistinguishability security, with quantum decryption keys, in the plain model. We also show other implications to single-decryptor encryption and leakage-resilient secret sharing. These applications present evidence that simultaneous Haar indistinguishability could be useful in quantum cryptography.

Cite as

Prabhanjan Ananth, Fatih Kaleoglu, and Henry Yuen. Simultaneous Haar Indistinguishability with Applications to Unclonable Cryptography. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 7:1-7:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ananth_et_al:LIPIcs.ITCS.2025.7,
  author =	{Ananth, Prabhanjan and Kaleoglu, Fatih and Yuen, Henry},
  title =	{{Simultaneous Haar Indistinguishability with Applications to Unclonable Cryptography}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{7:1--7:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.7},
  URN =		{urn:nbn:de:0030-drops-226352},
  doi =		{10.4230/LIPIcs.ITCS.2025.7},
  annote =	{Keywords: Quantum, Haar, unclonable encryption}
}
Document
The More the Merrier! On Total Coding and Lattice Problems and the Complexity of Finding Multicollisions

Authors: Huck Bennett, Surendra Ghentiyala, and Noah Stephens-Davidowitz

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We show a number of connections between two types of search problems: (1) the problem of finding an L-wise multicollision in the output of a function; and (2) the problem of finding two codewords in a code (or two vectors in a lattice) that are within distance d of each other. Specifically, we study these problems in the total regime, in which L and d are chosen so that such a solution is guaranteed to exist, though it might be hard to find. In more detail, we study the total search problem in which the input is a function 𝒞 : [A] → [B] (represented as a circuit) and the goal is to find L ≤ ⌈A/B⌉ distinct elements x_1,…, x_L ∈ A such that 𝒞(x_1) = ⋯ = 𝒞(x_L). The associated complexity classes Polynomial Multi-Pigeonhole Principle ((A,B)-PMPP^L) consist of all problems that reduce to this problem. We show close connections between (A,B)-PMPP^L and many celebrated upper bounds on the minimum distance of a code or lattice (and on the list-decoding radius). In particular, we show that the associated computational problems (i.e., the problem of finding two distinct codewords or lattice points that are close to each other) are in (A,B)-PMPP^L, with a more-or-less smooth tradeoff between the distance d and the parameters A, B, and L. These connections are particularly rich in the case of codes, in which case we show that multiple incomparable bounds on the minimum distance lie in seemingly incomparable complexity classes. Surprisingly, we also show that the computational problems associated with some bounds on the minimum distance of codes are actually hard for these classes (for codes represented by arbitrary circuits). In fact, we show that finding two vectors within a certain distance d is actually hard for the important (and well-studied) class PWPP = (B²,B)-PMPP² in essentially all parameter regimes for which an efficient algorithm is not known, so that our hardness results are essentially tight. In fact, for some d (depending on the block length, message length, and alphabet size), we obtain both hardness and containment. We therefore completely settle the complexity of this problem for such parameters and add coding problems to the short list of problems known to be complete for PWPP. We also study (A,B)-PMPP^L as an interesting family of complexity classes in its own right, and we uncover a rich structure. Specifically, we use recent techniques from the cryptographic literature on multicollision-resistant hash functions to (1) show inclusions of the form (A,B)-PMPP^L ⊆ (A',B')-PMPP^L' for certain non-trivial parameters; (2) black-box separations between such classes in different parameter regimes; and (3) a non-black-box proof that (A,B)-PMPP^L ∈ FP if (A',B')-PMPP^L' ∈ FP for yet another parameter regime. We also show that (A,B)-PMPP^L lies in the recently introduced complexity class Polynomial Long Choice for some parameters.

Cite as

Huck Bennett, Surendra Ghentiyala, and Noah Stephens-Davidowitz. The More the Merrier! On Total Coding and Lattice Problems and the Complexity of Finding Multicollisions. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 14:1-14:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bennett_et_al:LIPIcs.ITCS.2025.14,
  author =	{Bennett, Huck and Ghentiyala, Surendra and Stephens-Davidowitz, Noah},
  title =	{{The More the Merrier! On Total Coding and Lattice Problems and the Complexity of Finding Multicollisions}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{14:1--14:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.14},
  URN =		{urn:nbn:de:0030-drops-226424},
  doi =		{10.4230/LIPIcs.ITCS.2025.14},
  annote =	{Keywords: Multicollisions, Error-correcting codes, Lattices}
}
Document
Toward the Impossibility of Perfect Complete Quantum PKE from OWFs

Authors: Longcheng Li, Qian Li, Xingjian Li, and Qipeng Liu

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
In this paper, we study the impossibility of constructing perfect complete quantum public key encryption (QPKE) from quantumly secure one-way functions (OWFs) in a black-box manner. We show that this problem is connected to a fundamental conjecture about the roots of low-degree polynomials on the Boolean hypercube. Informally, the conjecture asserts that for every nonconstant low-degree polynomial, there exists a universal (randomized) way to modify a small number of input bits such that, for every input string, the polynomial evaluated on the modified input string avoids 0 with sufficiently large probability (over the choice of how the input string is modified). Assuming this conjecture, we demonstrate the impossibility of constructing QPKE from quantumly secure one-way functions in a black-box manner, by employing the information-theoretical approach recently developed by Li, Li, Li, and Liu (CRYPTO'24). Towards resolving this conjecture, we provide various pieces of evidence supporting it and prove some special cases. In particular, we fully rule out perfect QPKE from OWFs when the key generation algorithm only makes a logarithmic number of quantum queries, improving the previous work, which can only handle classical queries.

Cite as

Longcheng Li, Qian Li, Xingjian Li, and Qipeng Liu. Toward the Impossibility of Perfect Complete Quantum PKE from OWFs. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 71:1-71:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ITCS.2025.71,
  author =	{Li, Longcheng and Li, Qian and Li, Xingjian and Liu, Qipeng},
  title =	{{Toward the Impossibility of Perfect Complete Quantum PKE from OWFs}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{71:1--71:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.71},
  URN =		{urn:nbn:de:0030-drops-226999},
  doi =		{10.4230/LIPIcs.ITCS.2025.71},
  annote =	{Keywords: Qautnum public-key encryption, Boolean function analysis}
}
Document
Classical vs Quantum Advice and Proofs Under Classically-Accessible Oracle

Authors: Xingjian Li, Qipeng Liu, Angelos Pelecanos, and Takashi Yamakawa

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
It is a long-standing open question to construct a classical oracle relative to which BQP/qpoly ≠ BQP/poly or QMA ≠ QCMA. In this paper, we construct classically-accessible classical oracles relative to which BQP/qpoly ≠ BQP/poly and QMA ≠ QCMA. Here, classically-accessible classical oracles are oracles that can be accessed only classically even for quantum algorithms. Based on a similar technique, we also show an alternative proof for the separation of QMA and QCMA relative to a distributional quantumly-accessible classical oracle, which was recently shown by Natarajan and Nirkhe.

Cite as

Xingjian Li, Qipeng Liu, Angelos Pelecanos, and Takashi Yamakawa. Classical vs Quantum Advice and Proofs Under Classically-Accessible Oracle. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 72:1-72:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ITCS.2024.72,
  author =	{Li, Xingjian and Liu, Qipeng and Pelecanos, Angelos and Yamakawa, Takashi},
  title =	{{Classical vs Quantum Advice and Proofs Under Classically-Accessible Oracle}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{72:1--72:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.72},
  URN =		{urn:nbn:de:0030-drops-196009},
  doi =		{10.4230/LIPIcs.ITCS.2024.72},
  annote =	{Keywords: quantum computation, computational complexity}
}
Document
Vision
Machine Learning and Knowledge Graphs: Existing Gaps and Future Research Challenges

Authors: Claudia d'Amato, Louis Mahon, Pierre Monnin, and Giorgos Stamou

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
The graph model is nowadays largely adopted to model a wide range of knowledge and data, spanning from social networks to knowledge graphs (KGs), representing a successful paradigm of how symbolic and transparent AI can scale on the World Wide Web. However, due to their unprecedented volume, they are generally tackled by Machine Learning (ML) and mostly numeric based methods such as graph embedding models (KGE) and deep neural networks (DNNs). The latter methods have been proved lately very efficient, leading the current AI spring. In this vision paper, we introduce some of the main existing methods for combining KGs and ML, divided into two categories: those using ML to improve KGs, and those using KGs to improve results on ML tasks. From this introduction, we highlight research gaps and perspectives that we deem promising and currently under-explored for the involved research communities, spanning from KG support for LLM prompting, integration of KG semantics in ML models to symbol-based methods, interpretability of ML models, and the need for improved benchmark datasets. In our opinion, such perspectives are stepping stones in an ultimate view of KGs as central assets for neuro-symbolic and explainable AI.

Cite as

Claudia d'Amato, Louis Mahon, Pierre Monnin, and Giorgos Stamou. Machine Learning and Knowledge Graphs: Existing Gaps and Future Research Challenges. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 8:1-8:35, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{damato_et_al:TGDK.1.1.8,
  author =	{d'Amato, Claudia and Mahon, Louis and Monnin, Pierre and Stamou, Giorgos},
  title =	{{Machine Learning and Knowledge Graphs: Existing Gaps and Future Research Challenges}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{8:1--8:35},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.8},
  URN =		{urn:nbn:de:0030-drops-194824},
  doi =		{10.4230/TGDK.1.1.8},
  annote =	{Keywords: Graph-based Learning, Knowledge Graph Embeddings, Large Language Models, Explainable AI, Knowledge Graph Completion \& Curation}
}
Document
Vision
Knowledge Engineering Using Large Language Models

Authors: Bradley P. Allen, Lise Stork, and Paul Groth

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Knowledge engineering is a discipline that focuses on the creation and maintenance of processes that generate and apply knowledge. Traditionally, knowledge engineering approaches have focused on knowledge expressed in formal languages. The emergence of large language models and their capabilities to effectively work with natural language, in its broadest sense, raises questions about the foundations and practice of knowledge engineering. Here, we outline the potential role of LLMs in knowledge engineering, identifying two central directions: 1) creating hybrid neuro-symbolic knowledge systems; and 2) enabling knowledge engineering in natural language. Additionally, we formulate key open research questions to tackle these directions.

Cite as

Bradley P. Allen, Lise Stork, and Paul Groth. Knowledge Engineering Using Large Language Models. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 3:1-3:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{allen_et_al:TGDK.1.1.3,
  author =	{Allen, Bradley P. and Stork, Lise and Groth, Paul},
  title =	{{Knowledge Engineering Using Large Language Models}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:19},
  ISSN =	{2942-7517},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.3},
  URN =		{urn:nbn:de:0030-drops-194777},
  doi =		{10.4230/TGDK.1.1.3},
  annote =	{Keywords: knowledge engineering, large language models}
}
Document
Depth-Bounded Quantum Cryptography with Applications to One-Time Memory and More

Authors: Qipeng Liu

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
With the power of quantum information, we can achieve exciting and classically impossible cryptographic primitives. However, almost all quantum cryptography faces extreme difficulties with the near-term intermediate-scale quantum technology (NISQ technology); namely, the short lifespan of quantum states and limited sequential computation. At the same time, considering only limited quantum adversaries may still enable us to achieve never-before-possible tasks. In this work, we consider quantum cryptographic primitives against limited quantum adversaries - depth-bounded adversaries. We introduce a model for (depth-bounded) NISQ computers, which are classical circuits interleaved with shallow quantum circuits. Then, we show one-time memory can be achieved against any depth-bounded quantum adversaries introduced in the work, with their depth being any pre-fixed polynomial. Therefore we obtain applications like one-time programs and one-time proofs. Finally, we show our one-time memory has correctness even against constant-rate errors.

Cite as

Qipeng Liu. Depth-Bounded Quantum Cryptography with Applications to One-Time Memory and More. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 82:1-82:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{liu:LIPIcs.ITCS.2023.82,
  author =	{Liu, Qipeng},
  title =	{{Depth-Bounded Quantum Cryptography with Applications to One-Time Memory and More}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{82:1--82:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.82},
  URN =		{urn:nbn:de:0030-drops-175859},
  doi =		{10.4230/LIPIcs.ITCS.2023.82},
  annote =	{Keywords: cryptographic protocol, one-time memory, quantum cryptography}
}
Document
Beating Classical Impossibility of Position Verification

Authors: Jiahui Liu, Qipeng Liu, and Luowen Qian

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
Chandran et al. (SIAM J. Comput. '14) formally introduced the cryptographic task of position verification, where they also showed that it cannot be achieved by classical protocols. In this work, we initiate the study of position verification protocols with classical verifiers. We identify that proofs of quantumness (and thus computational assumptions) are necessary for such position verification protocols. For the other direction, we adapt the proof of quantumness protocol by Brakerski et al. (FOCS '18) to instantiate such a position verification protocol. As a result, we achieve classically verifiable position verification assuming the quantum hardness of Learning with Errors. Along the way, we develop the notion of 1-of-2 non-local soundness for a natural non-local game for 1-of-2 puzzles, first introduced by Radian and Sattath (AFT '19), which can be viewed as a computational unclonability property. We show that 1-of-2 non-local soundness follows from the standard 2-of-2 soundness (and therefore the adaptive hardcore bit property), which could be of independent interest.

Cite as

Jiahui Liu, Qipeng Liu, and Luowen Qian. Beating Classical Impossibility of Position Verification. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 100:1-100:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{liu_et_al:LIPIcs.ITCS.2022.100,
  author =	{Liu, Jiahui and Liu, Qipeng and Qian, Luowen},
  title =	{{Beating Classical Impossibility of Position Verification}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{100:1--100:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.100},
  URN =		{urn:nbn:de:0030-drops-156963},
  doi =		{10.4230/LIPIcs.ITCS.2022.100},
  annote =	{Keywords: cryptographic protocol, position verification, quantum cryptography, proof of quantumness, non-locality}
}
  • Refine by Type
  • 16 Document/PDF
  • 12 Document/HTML

  • Refine by Publication Year
  • 10 2025
  • 1 2024
  • 3 2023
  • 1 2022
  • 1 2021

  • Refine by Author
  • 4 Liu, Qipeng
  • 2 Ananth, Prabhanjan
  • 2 Li, Xingjian
  • 1 Allen, Bradley P.
  • 1 Apers, Simon
  • Show More...

  • Refine by Series/Journal
  • 14 LIPIcs
  • 2 TGDK

  • Refine by Classification
  • 5 Theory of computation → Quantum complexity theory
  • 3 Theory of computation → Cryptographic protocols
  • 3 Theory of computation → Quantum query complexity
  • 2 Security and privacy → Authorization
  • 2 Security and privacy → Public key (asymmetric) techniques
  • Show More...

  • Refine by Keyword
  • 3 quantum cryptography
  • 2 Quantum
  • 2 cryptographic protocol
  • 1 Boolean function analysis
  • 1 Error-correcting codes
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail