100 Search Results for "Stephan, Daniel"


Document
Connected Partitions via Connected Dominating Sets

Authors: Aikaterini Niklanovits, Kirill Simonov, Shaily Verma, and Ziena Zeif

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The classical theorem due to Győri and Lovász states that any k-connected graph G admits a partition into k connected subgraphs, where each subgraph has a prescribed size and contains a prescribed vertex, as long as the total size of target subgraphs is equal to the size of G. However, this result is notoriously evasive in terms of efficient constructions, and it is still unknown whether such a partition can be computed in polynomial time, even for k = 5. We make progress towards an efficient constructive version of the Győri-Lovász theorem by considering a natural strengthening of the k-connectivity requirement. Specifically, we show that the desired connected partition can be found in polynomial time, if G contains k disjoint connected dominating sets. As a consequence of this result, we give several efficient approximate and exact constructive versions of the original Győri-Lovász theorem: - On general graphs, a Győri-Lovász partition with k parts can be computed in polynomial time when the input graph has connectivity Ω(k ⋅ log² n); - On convex bipartite graphs, connectivity of 4k is sufficient; - On biconvex graphs and interval graphs, connectivity of k is sufficient, meaning that our algorithm gives a "true" constructive version of the theorem on these graph classes.

Cite as

Aikaterini Niklanovits, Kirill Simonov, Shaily Verma, and Ziena Zeif. Connected Partitions via Connected Dominating Sets. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{niklanovits_et_al:LIPIcs.ESA.2025.10,
  author =	{Niklanovits, Aikaterini and Simonov, Kirill and Verma, Shaily and Zeif, Ziena},
  title =	{{Connected Partitions via Connected Dominating Sets}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{10:1--10:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.10},
  URN =		{urn:nbn:de:0030-drops-244785},
  doi =		{10.4230/LIPIcs.ESA.2025.10},
  annote =	{Keywords: Gy\H{o}ri-Lov\'{a}sz theorem, connected dominating sets, graph classes}
}
Document
The Tape Reconfiguration Problem and Its Consequences for Dominating Set Reconfiguration

Authors: Nicolas Bousquet, Quentin Deschamps, Arnaud Mary, Amer E. Mouawad, and Théo Pierron

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A dominating set of a graph G = (V,E) is a set of vertices D ⊆ V whose closed neighborhood is V, i.e., N[D] = V. We view a dominating set as a collection of tokens placed on the vertices of D. In the token sliding variant of the Dominating Set Reconfiguration problem (TS-DSR), we seek to transform a source dominating set into a target dominating set in G by sliding tokens along edges, and while maintaining a dominating set all along the transformation. TS-DSR is known to be PSPACE-complete even restricted to graphs of pathwidth w, for some non-explicit constant w and to be XL-complete parameterized by the size k of the solution. The first contribution of this article consists in using a novel approach to provide the first explicit constant for which the TS-DSR problem is PSPACE-complete, a question that was left open in the literature. From a parameterized complexity perspective, the token jumping variant of DSR, i.e., where tokens can jump to arbitrary vertices, is known to be FPT when parameterized by the size of the dominating sets on nowhere dense classes of graphs. But, in contrast, no non-trivial result was known about TS-DSR. We prove that DSR is actually much harder in the sliding model since it is XL-complete when restricted to bounded pathwidth graphs and even when parameterized by k plus the feedback vertex set number of the graph. This gives, for the first time, a difference of behavior between the complexity under token sliding and token jumping for some problem on graphs of bounded treewidth. All our results are obtained using a brand new method, based on the hardness of the so-called Tape Reconfiguration problem, a problem we believe to be of independent interest. We complement these hardness results with a positive result showing that DSR (parameterized by k) in the sliding model is FPT on planar graphs, also answering an open problem from the literature.

Cite as

Nicolas Bousquet, Quentin Deschamps, Arnaud Mary, Amer E. Mouawad, and Théo Pierron. The Tape Reconfiguration Problem and Its Consequences for Dominating Set Reconfiguration. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 29:1-29:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.ESA.2025.29,
  author =	{Bousquet, Nicolas and Deschamps, Quentin and Mary, Arnaud and Mouawad, Amer E. and Pierron, Th\'{e}o},
  title =	{{The Tape Reconfiguration Problem and Its Consequences for Dominating Set Reconfiguration}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{29:1--29:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.29},
  URN =		{urn:nbn:de:0030-drops-244974},
  doi =		{10.4230/LIPIcs.ESA.2025.29},
  annote =	{Keywords: combinatorial reconfiguration, parameterized complexity, structural graph parameters, treewidth, dominating set}
}
Document
On Algorithmic Applications of ℱ-Branchwidth

Authors: Benjamin Bergougnoux, Thekla Hamm, Lars Jaffke, and Paloma T. Lima

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
F-branchwidth is a framework for width measures of graphs, recently introduced by Eiben et al. [ITCS 2022], that captures tree-width, co-tree-width, clique-width, and mim-width, and several of their generalizations and interpolations. In this work, we search for algorithmic applications of F-branchwidth measures that do not have an equivalent counterpart in the literature so far. Our first contribution is a minimal set of eleven F-branchwidth measures such that each of the infinitely many F-branchwidth measures is equivalent to one of the eleven. We observe that for the FO Model Checking problem, each F-branchwidth is either equivalent to clique-width (and therefore has an FPT-algorithm by formula length plus the width) or the problem remains as hard as on general graphs even on graphs of constant width. Next, we study the number of equivalence classes of the neighborhood equivalence in a decomposition, which upper bounds the run time of the model checking algorithm for ACDN logic recently introduced by Bergougnoux et al. [SODA 2023]. We give structural lower bounds that show that for each F-branchwidth, an efficient model checking algorithm was already known or cannot be obtained via this method. Lastly, we classify the complexity of Independent Set parameterized by any F-branchwidth except for one open case. Also here, our contributions are lower bounds. In this context, we also prove that Independent Set on graphs of mim-width w cannot be solved in time n^o(w) unless the Exponential Time Hypothesis fails, answering an open question in the literature.

Cite as

Benjamin Bergougnoux, Thekla Hamm, Lars Jaffke, and Paloma T. Lima. On Algorithmic Applications of ℱ-Branchwidth. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 16:1-16:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bergougnoux_et_al:LIPIcs.ESA.2025.16,
  author =	{Bergougnoux, Benjamin and Hamm, Thekla and Jaffke, Lars and Lima, Paloma T.},
  title =	{{On Algorithmic Applications of ℱ-Branchwidth}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{16:1--16:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.16},
  URN =		{urn:nbn:de:0030-drops-244849},
  doi =		{10.4230/LIPIcs.ESA.2025.16},
  annote =	{Keywords: Graph width parameters, parameterized complexity, F-branchwidth, tree-width, clique-width, rank-width, mim-width, FO model checking, DN logic, Independent Set, ETH}
}
Document
Going Beyond Surfaces in Diameter Approximation

Authors: Michał Włodarczyk

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Calculating the diameter of an undirected graph requires quadratic running time under the Strong Exponential Time Hypothesis and this barrier works even against any approximation better than 3/2. For planar graphs with positive edge weights, there are known (1+ε)-approximation algorithms with running time poly(1/ε, log n)⋅ n. However, these algorithms rely on shortest path separators and this technique falls short to yield efficient algorithms beyond graphs of bounded genus. In this work we depart from embedding-based arguments and obtain diameter approximations relying on VC set systems and the local treewidth property. We present two orthogonal extensions of the planar case by giving (1+ε)-approximation algorithms with the following running times: - 𝒪_h((1/ε)^𝒪(h) ⋅ nlog² n)-time algorithm for graphs excluding an apex graph of size h as a minor, - 𝒪_d((1/ε)^𝒪(d) ⋅ nlog² n)-time algorithm for the class of d-apex graphs. As a stepping stone, we obtain efficient (1+ε)-approximate distance oracles for graphs excluding an apex graph of size h as a minor. Our oracle has preprocessing time 𝒪_h((1/ε)⁸⋅ nlog nlog W) and query time 𝒪_h((1/ε)²⋅log n log W), where W is the metric stretch. Such oracles have been so far only known for bounded genus graphs. All our algorithms are deterministic.

Cite as

Michał Włodarczyk. Going Beyond Surfaces in Diameter Approximation. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 39:1-39:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{wlodarczyk:LIPIcs.ESA.2025.39,
  author =	{W{\l}odarczyk, Micha{\l}},
  title =	{{Going Beyond Surfaces in Diameter Approximation}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{39:1--39:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.39},
  URN =		{urn:nbn:de:0030-drops-245076},
  doi =		{10.4230/LIPIcs.ESA.2025.39},
  annote =	{Keywords: diameter, approximation, distance oracles, graph minors, treewidth}
}
Document
Buffered Partially-Persistent External-Memory Search Trees

Authors: Gerth Stølting Brodal, Casper Moldrup Rysgaard, and Rolf Svenning

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We present an optimal partially-persistent external-memory search tree with amortized I/O bounds matching those achieved by the non-persistent B^{ε}-tree by Brodal and Fagerberg [SODA 2003]. In a partially-persistent data structure, each update creates a new version. All past versions can be queried, but only the current version can be updated. Operations should be efficient with respect to the size N_v of the accessed version v. For any parameter 0 < ε < 1, our data structure supports insertions and deletions in amortized 𝒪(1/(ε B^{1 - ε}) log_B N_v) I/Os, where B is the external-memory block size. It also supports successor and range reporting queries in amortized 𝒪(1/ε log_B N_v + K/B) I/Os, where K is the number of keys reported. The space usage of the data structure is linear in the total number of updates. We make the standard and minimal assumption that the internal memory has size M ≥ 2B. The previous state-of-the-art external-memory partially-persistent search tree by Arge, Danner and Teh [JEA 2003] supports all operations in worst-case 𝒪(log_B N_v + K/B) I/Os, matching the bounds achieved by the classical B-tree by Bayer and McCreight [Acta Informatica 1972]. Our data structure successfully combines buffering updates with partial persistence. The I/O bounds can also be achieved in the worst-case sense, by slightly modifying our data structure and under the requirement that the memory size M = Ω(B^{1-ε} log₂(max_v N_v)). For updates, where the I/O bound is o(1), we assume that the I/Os are performed evenly spread out among the updates (by performing buffer-overflows incrementally). The worst-case result slightly improves the memory requirement over the previous ephemeral external-memory dictionary by Das, Iacono, and Nekrich (ISAAC 2022), who achieved matching worst-case I/O bounds but required M = Ω(B log_B N), where N is the size of the current dictionary.

Cite as

Gerth Stølting Brodal, Casper Moldrup Rysgaard, and Rolf Svenning. Buffered Partially-Persistent External-Memory Search Trees. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 82:1-82:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{brodal_et_al:LIPIcs.ESA.2025.82,
  author =	{Brodal, Gerth St{\o}lting and Rysgaard, Casper Moldrup and Svenning, Rolf},
  title =	{{Buffered Partially-Persistent External-Memory Search Trees}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{82:1--82:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.82},
  URN =		{urn:nbn:de:0030-drops-245507},
  doi =		{10.4230/LIPIcs.ESA.2025.82},
  annote =	{Keywords: B-tree, buffered updates, partial persistence, external memory}
}
Document
Short Paper
Sledgehammering Without ATPs (Short Paper)

Authors: Martin Desharnais and Jasmin Blanchette

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
We describe an alternative architecture for "hammers," inspired by Magnushammer, in which proofs are found by the proof assistant’s built-in automation instead of by external automatic theorem provers (ATPs). We implemented this approach in Isabelle’s Sledgehammer and evaluated it. The new ATP-free approach nicely complements the traditional Sledgehammer. The two approaches in combination solve more goals than the traditional ATP-based approach alone.

Cite as

Martin Desharnais and Jasmin Blanchette. Sledgehammering Without ATPs (Short Paper). In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 38:1-38:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{desharnais_et_al:LIPIcs.ITP.2025.38,
  author =	{Desharnais, Martin and Blanchette, Jasmin},
  title =	{{Sledgehammering Without ATPs}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{38:1--38:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.38},
  URN =		{urn:nbn:de:0030-drops-246366},
  doi =		{10.4230/LIPIcs.ITP.2025.38},
  annote =	{Keywords: Interactive theorem proving, proof assistants, proof automation}
}
Document
Formalizing the Hidden Number Problem in Isabelle/HOL

Authors: Sage Binder, Eric Ren, and Katherine Kosaian

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
We formalize the hidden number problem (HNP), as introduced in a seminal work by Boneh and Venkatesan in 1996, in Isabelle/HOL. Intuitively, the HNP involves demonstrating the existence of an algorithm (the "adversary") which can compute (with high probability) a hidden number α given access to a bit-leaking oracle. Originally developed to establish the security of Diffie-Hellman key exchange, the HNP has since been used not only for protocol security but also in cryptographic attacks, including notable ones on DSA and ECDSA. Further, as the HNP establishes an expressive paradigm for reasoning about security in the context of information leakage, many HNP variants for other specialized cryptographic applications have since been developed. A main contribution of our work is explicating and clarifying the HNP proof blueprint from the original source material; naturally, formalization forces us to make all assumptions and proof steps precise and transparent. For example, the source material did not explicitly define the adversary and only abstractly defined what information is being leaked; our formalization concretizes both definitions. Additionally, the HNP makes use of an instance of Babai’s nearest plane algorithm, which solves the approximate closest vector problem; we formalize this as a result of independent interest. Our formalizations of Babai’s algorithm and the HNP adversary are executable, setting up potential future work, e.g. in developing formally verified instances of cryptographic attacks.

Cite as

Sage Binder, Eric Ren, and Katherine Kosaian. Formalizing the Hidden Number Problem in Isabelle/HOL. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 23:1-23:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{binder_et_al:LIPIcs.ITP.2025.23,
  author =	{Binder, Sage and Ren, Eric and Kosaian, Katherine},
  title =	{{Formalizing the Hidden Number Problem in Isabelle/HOL}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{23:1--23:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.23},
  URN =		{urn:nbn:de:0030-drops-246216},
  doi =		{10.4230/LIPIcs.ITP.2025.23},
  annote =	{Keywords: hidden number problem, Babai’s nearest plane algorithm, cryptography, interactive theorem proving, Isabelle/HOL}
}
Document
Nondeterministic Asynchronous Dataflow in Isabelle/HOL

Authors: Rafael Castro Gonçalves Silva, Laouen Fernet, and Dmitriy Traytel

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
We formalize nondeterministic asynchronous dataflow networks in Isabelle/HOL. Dataflow networks are comprised of operators that are capable of communicating with the network, performing silent computations, and making nondeterministic choices. We represent operators using a shallow embedding as codatatypes. Using this representation, we define standard asynchronous dataflow primitives, including sequential and parallel composition and a feedback operator. These primitives adhere to a number of laws from the literature, which we prove by coinduction using weak bisimilarity as our equality. Albeit coinductive and nondeterministic, our model is executable via code extraction to Haskell.

Cite as

Rafael Castro Gonçalves Silva, Laouen Fernet, and Dmitriy Traytel. Nondeterministic Asynchronous Dataflow in Isabelle/HOL. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 30:1-30:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{silva_et_al:LIPIcs.ITP.2025.30,
  author =	{Silva, Rafael Castro Gon\c{c}alves and Fernet, Laouen and Traytel, Dmitriy},
  title =	{{Nondeterministic Asynchronous Dataflow in Isabelle/HOL}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{30:1--30:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.30},
  URN =		{urn:nbn:de:0030-drops-246280},
  doi =		{10.4230/LIPIcs.ITP.2025.30},
  annote =	{Keywords: dataflow, verification, coinduction, Isabelle/HOL}
}
Document
Assessing the Use of Mixed Reality as a Valid Tool for Human-Robot Interaction Studies in the Context of Space Exploration

Authors: Enrico Guerra, Sebastian Thomas Büttner, Alper Beşer, and Michael Prilla

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
Mixed Reality (MR) is a technology with strong potential for advancing research in Human-Robot Interaction (HRI) for space exploration. Apart from the efficiency and high flexibility MR can offer, we argue that its benefits for HRI research in space contexts lies particularly in its ability to aid human-in-the-loop development, offer realistic hybrid simulations, and foster broader participation in HRI research in the space exploration context. However, we believe that this is only plausible if MR-based simulations can yield comparable results to fully physical approaches in human-centred studies. In this position paper, we highlight several arguments in favour of MR as a tool for space HRI research, while emphasising the importance of the open question regarding its scientific validity. We believe MR could become a central tool for preparing for future human-robotic space exploration missions and significantly diversify research in this domain.

Cite as

Enrico Guerra, Sebastian Thomas Büttner, Alper Beşer, and Michael Prilla. Assessing the Use of Mixed Reality as a Valid Tool for Human-Robot Interaction Studies in the Context of Space Exploration. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 27:1-27:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{guerra_et_al:OASIcs.SpaceCHI.2025.27,
  author =	{Guerra, Enrico and B\"{u}ttner, Sebastian Thomas and Be\c{s}er, Alper and Prilla, Michael},
  title =	{{Assessing the Use of Mixed Reality as a Valid Tool for Human-Robot Interaction Studies in the Context of Space Exploration}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{27:1--27:11},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.27},
  URN =		{urn:nbn:de:0030-drops-240175},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.27},
  annote =	{Keywords: Mixed Reality, Augmented Reality, Human-Robot Interaction, Space Exploration, Validity}
}
Document
APPROX
A Polynomial-Time Approximation Algorithm for Complete Interval Minors

Authors: Romain Bourneuf, Julien Cocquet, Chaoliang Tang, and Stéphan Thomassé

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
As shown by Robertson and Seymour, deciding whether the complete graph K_t is a minor of an input graph G is a fixed parameter tractable problem when parameterized by t. From the approximation viewpoint, a substantial gap remains: there is no PTAS for finding the largest complete minor unless P = NP, whereas the best known result is a polytime O(√ n)-approximation algorithm by Alon, Lingas and Wahlén. We investigate the complexity of finding K_t as interval minor in ordered graphs (i.e. graphs with a linear order on the vertices, in which intervals are contracted to form minors). Our main result is a polytime f(t)-approximation algorithm, where f is triply exponential in t but independent of n. The algorithm is based on delayed decompositions and shows that ordered graphs without a K_t interval minor can be constructed via a bounded number of three operations: closure under substitutions, edge union, and concatenation of a stable set. As a byproduct, graphs avoiding K_t as an interval minor have bounded chromatic number.

Cite as

Romain Bourneuf, Julien Cocquet, Chaoliang Tang, and Stéphan Thomassé. A Polynomial-Time Approximation Algorithm for Complete Interval Minors. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 15:1-15:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bourneuf_et_al:LIPIcs.APPROX/RANDOM.2025.15,
  author =	{Bourneuf, Romain and Cocquet, Julien and Tang, Chaoliang and Thomass\'{e}, St\'{e}phan},
  title =	{{A Polynomial-Time Approximation Algorithm for Complete Interval Minors}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{15:1--15:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.15},
  URN =		{urn:nbn:de:0030-drops-243814},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.15},
  annote =	{Keywords: Approximation algorithm, Ordered graphs, Interval minors, Delayed decompositions}
}
Document
Online Knapsack Problems with Estimates

Authors: Jakub Balabán, Matthias Gehnen, Henri Lotze, Finn Seesemann, and Moritz Stocker

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
Imagine you are a computer scientist who enjoys attending conferences or workshops within the year. Sadly, your travel budget is limited, so you must select a subset of events you can travel to. When you are aware of all possible events and their costs at the beginning of the year, you can select the subset of the possible events that maximizes your happiness and is within your budget. On the other hand, if you are blind about the options, you will likely have a hard time when trying to decide if you want to register somewhere or not, and will likely regret decisions you made in the future. These scenarios can be modeled by knapsack variants, either by an offline or an online problem. However, both scenarios are somewhat unrealistic: Usually, you will not know the exact costs of each workshop at the beginning of the year. The online version, however, is too pessimistic, as you might already know which options there are and how much they cost roughly. At some point, you have to decide whether to register for some workshop, but then you are aware of the conference fee and the flight and hotel prices. We model this problem within the setting of online knapsack problems with estimates: in the beginning, you receive a list of potential items with their estimated size as well as the accuracy of the estimates. Then, the items are revealed one by one in an online fashion with their actual size, and you need to decide whether to take one or not. In this article, we show a best-possible algorithm for each estimate accuracy δ (i.e., when each actual item size can deviate by ± δ from the announced size) for both the simple knapsack (also known as subset sum problem) and the simple knapsack with removability.

Cite as

Jakub Balabán, Matthias Gehnen, Henri Lotze, Finn Seesemann, and Moritz Stocker. Online Knapsack Problems with Estimates. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 12:1-12:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{balaban_et_al:LIPIcs.MFCS.2025.12,
  author =	{Balab\'{a}n, Jakub and Gehnen, Matthias and Lotze, Henri and Seesemann, Finn and Stocker, Moritz},
  title =	{{Online Knapsack Problems with Estimates}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{12:1--12:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.12},
  URN =		{urn:nbn:de:0030-drops-241190},
  doi =		{10.4230/LIPIcs.MFCS.2025.12},
  annote =	{Keywords: Knapsack, Online Knapsack, Removability, Estimate, Prediction}
}
Document
Solving Partial Dominating Set and Related Problems Using Twin-Width

Authors: Jakub Balabán, Daniel Mock, and Peter Rossmanith

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
Partial vertex cover and partial dominating set are two well-investigated optimization problems. While they are W[1]-hard on general graphs, they have been shown to be fixed-parameter tractable on many sparse graph classes, including nowhere-dense classes. In this paper, we demonstrate that these problems are also fixed-parameter tractable with respect to the twin-width of a graph. Indeed, we establish a more general result: every graph property that can be expressed by a logical formula of the form ϕ≡∃ x₁⋯ ∃ x_k ∑_{α ∈ I} #y ψ_α(x₁,…,x_k,y) ≥ t, where ψ_α is a quantifier-free formula for each α ∈ I, t is an arbitrary number, and #y is a counting quantifier, can be evaluated in time f(d,k)n, where n is the number of vertices and d is the width of a contraction sequence that is part of the input. In addition to the aforementioned problems, this includes also connected partial dominating set and independent partial dominating set.

Cite as

Jakub Balabán, Daniel Mock, and Peter Rossmanith. Solving Partial Dominating Set and Related Problems Using Twin-Width. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{balaban_et_al:LIPIcs.MFCS.2025.13,
  author =	{Balab\'{a}n, Jakub and Mock, Daniel and Rossmanith, Peter},
  title =	{{Solving Partial Dominating Set and Related Problems Using Twin-Width}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.13},
  URN =		{urn:nbn:de:0030-drops-241203},
  doi =		{10.4230/LIPIcs.MFCS.2025.13},
  annote =	{Keywords: Partial Dominating Set, Partial Vertex Cover, meta-algorithm, counting logic, twin-width}
}
Document
Word Structures and Their Automatic Presentations

Authors: Xiaoyang Gong, Bakh Khoussainov, and Yuyang Zhuge

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
We study automatic presentations of the structures (ℕ; S), (ℕ; E_S), (ℕ; ≤), and their expansions by a unary predicate U. Here S is the successor function, E_S is the undirected version of S, and ≤ is the natural order. We call these structures word structures. Our goal is three-fold. First, we study the isomorphism problem for automatic word structures by focusing on the following three problems. The first problem asks to design an algorithm that, given an automatic structure A, decides if A is isomorphic to (ℕ; S). The second asks to design an algorithm that, given two automatic presentations of (ℕ; S, U₁) and (ℕ; S, U₂), where U₁ and U₂ are unary predicates, decides if these structures are isomorphic. The third problem investigates if there is an algorithm that, given two automatic presentations of (ℕ; ≤, U₁) and (ℕ; ≤, U₂), decides whether U₁ ∩ U₂ ≠ ∅. We show that these problems are undecidable. Next, we study intrinsic regularity of the function S in the structure Path_ω = (ℕ; E_S). We build an automatic presentation of Path_ω in which S is not regular. This implies that S is not intrinsically regular in Path_ω. For U ⊆ ℕ, let d_U be the function that computes the distances between the consecutive elements of U. We build automatic presentations of (ℕ; ≤, U) where d_U can realise logarithmic, radical, intermediate, and exponential functions.

Cite as

Xiaoyang Gong, Bakh Khoussainov, and Yuyang Zhuge. Word Structures and Their Automatic Presentations. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 51:1-51:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gong_et_al:LIPIcs.MFCS.2025.51,
  author =	{Gong, Xiaoyang and Khoussainov, Bakh and Zhuge, Yuyang},
  title =	{{Word Structures and Their Automatic Presentations}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{51:1--51:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.51},
  URN =		{urn:nbn:de:0030-drops-241581},
  doi =		{10.4230/LIPIcs.MFCS.2025.51},
  annote =	{Keywords: Automatic structures, the isomorphism problem, decidability, undecidability, regular relations}
}
Document
Elimination Distance to Dominated Clusters

Authors: Nicole Schirrmacher, Sebastian Siebertz, and Alexandre Vigny

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
In the Dominated Cluster Deletion problem, we are given an undirected graph G and integers k and d and the question is to decide whether there exists a set of at most k vertices whose removal results in a graph in which each connected component has a dominating set of size at most d. In the Elimination Distance to Dominated Clusters problem, we are again given an undirected graph G and integers k and d and the question is to decide whether we can recursively delete vertices up to depth k such that each remaining connected component has a dominating set of size at most d. Bentert et al. [Bentert et al., MFCS 2024] recently provided an almost complete classification of the parameterized complexity of Dominated Cluster Deletion with respect to the parameters k, d, c, and Δ, where c and Δ are the degeneracy, and the maximum degree of the input graph, respectively. In particular, they provided a non-uniform algorithm with running time f(k,d)⋅ n^{𝒪(d)}. They left as an open problem whether the problem is fixed-parameter tractable with respect to the parameter k + d + c. We provide a uniform algorithm running in time f(k,d)⋅ n^{𝒪(d)} for both Dominated Cluster Deletion and Elimination Distance to Dominated Clusters. We furthermore show that both problems are FPT when parameterized by k+d+𝓁, where 𝓁 is the semi-ladder index of the input graph, a parameter that is upper bounded and may be much smaller than the degeneracy c, positively answering the open question of Bentert et al. We further complete the picture by providing an almost full classification for the parameterized complexity and kernelization complexity of Elimination Distance to Dominated Clusters. The one difficult base case that remains open is whether Treedepth (the case d = 0) is NP-hard on graphs of bounded maximum degree.

Cite as

Nicole Schirrmacher, Sebastian Siebertz, and Alexandre Vigny. Elimination Distance to Dominated Clusters. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 90:1-90:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{schirrmacher_et_al:LIPIcs.MFCS.2025.90,
  author =	{Schirrmacher, Nicole and Siebertz, Sebastian and Vigny, Alexandre},
  title =	{{Elimination Distance to Dominated Clusters}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{90:1--90:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.90},
  URN =		{urn:nbn:de:0030-drops-241978},
  doi =		{10.4230/LIPIcs.MFCS.2025.90},
  annote =	{Keywords: Graph theory, Fixed-parameter algorithms, Dominated cluster, Elimination distance}
}
Document
Graphs with No Long Claws: An Improved Bound for the Analog of the Gyárfás' Path Argument

Authors: Romain Bourneuf, Jana Masaříková, Wojciech Nadara, and Marcin Pilipczuk

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
For a fixed integer t ⩾ 1, a (t-)long claw, denoted S_{t,t,t}, is the unique tree with three leaves, each at distance exactly t from the vertex of degree three. Majewski et al. [ICALP 2022, ACM ToCT 2024] proved an analog of the Gyárfás' path argument for S_{t,t,t}-free graphs: given an n-vertex S_{t,t,t}-free graph, one can delete neighborhoods of 𝒪(log n) vertices so that the remainder admits an extended strip decomposition (an appropriate generalization of partition into connected components) into particles of multiplicatively smaller size. In this work, we refine the argument of Majewski et al. to its arguably final form: we show that a constant number of neighborhoods suffice. The statement of Majewski et al. is one of the two pillars of a recent quasi-polynomial time algorithm for Maximum Weight Independent Set in S_{t,t,t}-free graphs [Gartland et al., STOC 2024]; our work immediately improves the quasi-polynomial function in the running time bound. Furthermore, our result significantly simplifies known polynomial-time algorithms for Maximum Weight Independent Set in S_{t,t,t}-free graphs with an additional sparsity assumption such as bounded degree or excluding a fixed biclique as a subgraph.

Cite as

Romain Bourneuf, Jana Masaříková, Wojciech Nadara, and Marcin Pilipczuk. Graphs with No Long Claws: An Improved Bound for the Analog of the Gyárfás' Path Argument. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 28:1-28:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bourneuf_et_al:LIPIcs.MFCS.2025.28,
  author =	{Bourneuf, Romain and Masa\v{r}{\'\i}kov\'{a}, Jana and Nadara, Wojciech and Pilipczuk, Marcin},
  title =	{{Graphs with No Long Claws: An Improved Bound for the Analog of the Gy\'{a}rf\'{a}s' Path Argument}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{28:1--28:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.28},
  URN =		{urn:nbn:de:0030-drops-241350},
  doi =		{10.4230/LIPIcs.MFCS.2025.28},
  annote =	{Keywords: long-claw-free graphs, extended strip decomposition, maximum weight independent set, Gy\'{a}rf\'{a}s' path, three in a tree}
}
  • Refine by Type
  • 100 Document/PDF
  • 76 Document/HTML

  • Refine by Publication Year
  • 64 2025
  • 10 2024
  • 8 2023
  • 3 2022
  • 1 2020
  • Show More...

  • Refine by Author
  • 4 Fomin, Fedor V.
  • 4 Saurabh, Saket
  • 4 Thomassé, Stéphan
  • 4 Wagner, Stephan
  • 3 Calbimonte, Jean-Paul
  • Show More...

  • Refine by Series/Journal
  • 75 LIPIcs
  • 2 OASIcs
  • 5 LITES
  • 14 TGDK
  • 1 DagRep
  • Show More...

  • Refine by Classification
  • 10 Theory of computation → Parameterized complexity and exact algorithms
  • 8 Theory of computation → Graph algorithms analysis
  • 7 Mathematics of computing → Graph algorithms
  • 6 Theory of computation → Computational geometry
  • 5 Theory of computation → Problems, reductions and completeness
  • Show More...

  • Refine by Keyword
  • 7 parameterized complexity
  • 3 Graph theory
  • 3 Knowledge Graphs
  • 3 SAT
  • 3 clique-width
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail