14 Search Results for "Thompson, Kevin"


Document
Improved Algorithms for Quantum MaxCut via Partially Entangled Matchings

Authors: Anuj Apte, Eunou Lee, Kunal Marwaha, Ojas Parekh, and James Sud

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We introduce a 0.611-approximation algorithm for Quantum MaxCut and a (1+√5)/4 ≈ 0.809-approximation algorithm for the EPR Hamiltonian of [King, 2023]. A novel ingredient in both of these algorithms is to partially entangle pairs of qubits associated to edges in a matching, while preserving the direction of their single-qubit Bloch vectors. This allows us to interpolate between product states and matching-based states with a tunable parameter.

Cite as

Anuj Apte, Eunou Lee, Kunal Marwaha, Ojas Parekh, and James Sud. Improved Algorithms for Quantum MaxCut via Partially Entangled Matchings. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 101:1-101:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{apte_et_al:LIPIcs.ESA.2025.101,
  author =	{Apte, Anuj and Lee, Eunou and Marwaha, Kunal and Parekh, Ojas and Sud, James},
  title =	{{Improved Algorithms for Quantum MaxCut via Partially Entangled Matchings}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{101:1--101:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.101},
  URN =		{urn:nbn:de:0030-drops-245705},
  doi =		{10.4230/LIPIcs.ESA.2025.101},
  annote =	{Keywords: Quantum computing, Quantum MaxCut, Maximum matching}
}
Document
Classical Algorithms for Constant Approximation of the Ground State Energy of Local Hamiltonians

Authors: François Le Gall

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We construct classical algorithms computing an approximation of the ground state energy of an arbitrary k-local Hamiltonian acting on n qubits. We first consider the setting where a good "guiding state" is available, which is the main setting where quantum algorithms are expected to achieve an exponential speedup over classical methods. We show that a constant approximation (i.e., an approximation with constant relative accuracy) of the ground state energy can be computed classically in poly (1/χ,n) time and poly(n) space, where χ denotes the overlap between the guiding state and the ground state (as in prior works in dequantization, we assume sample-and-query access to the guiding state). This gives a significant improvement over the recent classical algorithm by Gharibian and Le Gall (SICOMP 2023), and matches (up to a polynomial overhead) both the time and space complexities of quantum algorithms for constant approximation of the ground state energy. We also obtain classical algorithms for higher-precision approximation. For the setting where no guided state is given (i.e., the standard version of the local Hamiltonian problem), we obtain a classical algorithm computing a constant approximation of the ground state energy in 2^O(n) time and poly(n) space. To our knowledge, before this work it was unknown how to classically achieve these bounds simultaneously, even for constant approximation. We also discuss complexity-theoretic aspects of our results.

Cite as

François Le Gall. Classical Algorithms for Constant Approximation of the Ground State Energy of Local Hamiltonians. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 73:1-73:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{legall:LIPIcs.ESA.2025.73,
  author =	{Le Gall, Fran\c{c}ois},
  title =	{{Classical Algorithms for Constant Approximation of the Ground State Energy of Local Hamiltonians}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{73:1--73:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.73},
  URN =		{urn:nbn:de:0030-drops-245419},
  doi =		{10.4230/LIPIcs.ESA.2025.73},
  annote =	{Keywords: approximation algorithms, quantum computing, dequantization}
}
Document
Toward an Earth-Independent System for EVA Mission Planning: Integrating Physical Models, Domain Knowledge, and Agentic RAG to Provide Explainable LLM-Based Decision Support

Authors: Kaisheng Li and Richard S. Whittle

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
We propose a unified framework for an Earth‑independent AI system that provides explainable, context‑aware decision support for EVA mission planning by integrating six core components: a fine‑tuned EVA domain LLM, a retrieval‑augmented knowledge base, a short-term memory store, physical simulation models, an agentic orchestration layer, and a multimodal user interface. To ground our design, we analyze the current roles and substitution potential of the Mission Control Center - identifying which procedural and analytical functions can be automated onboard while preserving human oversight for experiential and strategic tasks. Building on this framework, we introduce RASAGE (Retrieval & Simulation Augmented Guidance Agent for Exploration), a proof‑of‑concept toolset that combines Microsoft Phi‑4‑mini‑instruct with a FAISS (Facebook AI Similarity Search)‑powered EVA knowledge base and custom A* path planning and hypogravity metabolic models to generate grounded, traceable EVA plans. We outline a staged validation strategy to evaluate improvements in route efficiency, metabolic prediction accuracy, anomaly response effectiveness, and crew trust under realistic communication delays. Our findings demonstrate the feasibility of replicating key Mission Control functions onboard, enhancing crew autonomy, reducing cognitive load, and improving safety for deep‑space exploration missions.

Cite as

Kaisheng Li and Richard S. Whittle. Toward an Earth-Independent System for EVA Mission Planning: Integrating Physical Models, Domain Knowledge, and Agentic RAG to Provide Explainable LLM-Based Decision Support. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{li_et_al:OASIcs.SpaceCHI.2025.6,
  author =	{Li, Kaisheng and Whittle, Richard S.},
  title =	{{Toward an Earth-Independent System for EVA Mission Planning: Integrating Physical Models, Domain Knowledge, and Agentic RAG to Provide Explainable LLM-Based Decision Support}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{6:1--6:17},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.6},
  URN =		{urn:nbn:de:0030-drops-239967},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.6},
  annote =	{Keywords: Human-AI Interaction for Space Exploration, Extravehicular Activities, Cognitive load and Human Performance Issues, Human Systems Exploration, Lunar Exploration, LLM}
}
Document
APPROX
Improved Approximation Algorithms for the EPR Hamiltonian

Authors: Nathan Ju and Ansh Nagda

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
The EPR Hamiltonian is a family of 2-local quantum Hamiltonians introduced by King [King, 2023]. We introduce a polynomial time (1+√5)/4≈0.809-approximation algorithm for the problem of computing the ground energy of the EPR Hamiltonian, improving upon the previous state of the art of 0.72 [Jorquera et al., 2024].

Cite as

Nathan Ju and Ansh Nagda. Improved Approximation Algorithms for the EPR Hamiltonian. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 24:1-24:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ju_et_al:LIPIcs.APPROX/RANDOM.2025.24,
  author =	{Ju, Nathan and Nagda, Ansh},
  title =	{{Improved Approximation Algorithms for the EPR Hamiltonian}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{24:1--24:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.24},
  URN =		{urn:nbn:de:0030-drops-243909},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.24},
  annote =	{Keywords: Approximation Algorithms, Quantum Local Hamiltonian}
}
Document
Mutational Signature Refitting on Sparse Pan-Cancer Data

Authors: Gal Gilad, Teresa M. Przytycka, and Roded Sharan

Published in: LIPIcs, Volume 344, 25th International Conference on Algorithms for Bioinformatics (WABI 2025)


Abstract
Mutational processes shape cancer genomes, leaving characteristic marks that are termed signatures. The level of activity of each such process, or its signature exposure, provides important information on the disease, improving patient stratification and the prediction of drug response. Thus, there is growing interest in developing refitting methods that decipher those exposures. Previous work in this domain was unsupervised in nature, employing algebraic decomposition and probabilistic inference methods. Here we provide a supervised approach to the problem of signature refitting and show its superiority over current methods. Our method, SuRe, leverages a neural network model to capture correlations between signature exposures in real data. We show that SuRe outperforms previous methods on sparse mutation data from tumor type specific data sets, as well as pan-cancer data sets, with an increasing advantage as the data become sparser. We further demonstrate its utility in clinical settings.

Cite as

Gal Gilad, Teresa M. Przytycka, and Roded Sharan. Mutational Signature Refitting on Sparse Pan-Cancer Data. In 25th International Conference on Algorithms for Bioinformatics (WABI 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 344, pp. 11:1-11:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gilad_et_al:LIPIcs.WABI.2025.11,
  author =	{Gilad, Gal and Przytycka, Teresa M. and Sharan, Roded},
  title =	{{Mutational Signature Refitting on Sparse Pan-Cancer Data}},
  booktitle =	{25th International Conference on Algorithms for Bioinformatics (WABI 2025)},
  pages =	{11:1--11:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-386-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{344},
  editor =	{Brejov\'{a}, Bro\v{n}a and Patro, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2025.11},
  URN =		{urn:nbn:de:0030-drops-239374},
  doi =		{10.4230/LIPIcs.WABI.2025.11},
  annote =	{Keywords: mutational signatures, signature refitting, cancer genomics, genomic data analysis, somatic mutations}
}
Document
Automatic Goal Clone Detection in Rocq

Authors: Ali Ghanbari

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
Proof engineering in Rocq is a labor-intensive process, and as proof developments grow in size, redundancy and maintainability become challenges. One such redundancy is goal cloning, i.e., proving α-equivalent goals multiple times, leading to wasted effort and bloated proof scripts. In this paper, we introduce clone-finder, a novel technique for detecting goal clones in Rocq proofs. By leveraging the formal notion of α-equivalence for Gallina terms, clone-finder systematically identifies duplicated proof goals across large Rocq codebases. We evaluate clone-finder on 40 real-world Rocq projects from the CoqGym dataset. Our results reveal that each project contains an average of 27.73 instances of goal clone. We observed that the clones can be categorized as either exact goal duplication, generalization, or α-equivalent goals with different proofs, each signifying varying levels duplicate effort. Our findings highlight significant untapped potential for proof reuse in Rocq-based formal verification projects, paving the way for future improvements in automated proof engineering.

Cite as

Ali Ghanbari. Automatic Goal Clone Detection in Rocq. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 12:1-12:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ghanbari:LIPIcs.ECOOP.2025.12,
  author =	{Ghanbari, Ali},
  title =	{{Automatic Goal Clone Detection in Rocq}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{12:1--12:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.12},
  URN =		{urn:nbn:de:0030-drops-233055},
  doi =		{10.4230/LIPIcs.ECOOP.2025.12},
  annote =	{Keywords: Clone Detection, Goal, Proof, Rocq, Gallina}
}
Document
Complexity Classification of Product State Problems for Local Hamiltonians

Authors: John Kallaugher, Ojas Parekh, Kevin Thompson, Yipu Wang, and Justin Yirka

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
Product states, unentangled tensor products of single qubits, are a ubiquitous ansatz in quantum computation, including for state-of-the-art Hamiltonian approximation algorithms. A natural question is whether we should expect to efficiently solve product state problems on any interesting families of Hamiltonians. We completely classify the complexity of finding minimum-energy product states for Hamiltonians defined by any fixed set of allowed 2-qubit interactions. Our results follow a line of work classifying the complexity of solving Hamiltonian problems and classical constraint satisfaction problems based on the allowed constraints. We prove that estimating the minimum energy of a product state is in 𝖯 if and only if all allowed interactions are 1-local, and NP-complete otherwise. Equivalently, any family of non-trivial two-body interactions generates Hamiltonians with NP-complete product-state problems. Our hardness constructions only require coupling strengths of constant magnitude. A crucial component of our proofs is a collection of hardness results for a new variant of the Vector Max-Cut problem, which should be of independent interest. Our definition involves sums of distances rather than squared distances and allows linear stretches. We similarly give a proof that the original Vector Max-Cut problem is NP-complete in 3 dimensions. This implies hardness of optimizing product states for Quantum Max-Cut (the quantum Heisenberg model) is NP-complete, even when every term is guaranteed to have positive unit weight.

Cite as

John Kallaugher, Ojas Parekh, Kevin Thompson, Yipu Wang, and Justin Yirka. Complexity Classification of Product State Problems for Local Hamiltonians. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 63:1-63:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kallaugher_et_al:LIPIcs.ITCS.2025.63,
  author =	{Kallaugher, John and Parekh, Ojas and Thompson, Kevin and Wang, Yipu and Yirka, Justin},
  title =	{{Complexity Classification of Product State Problems for Local Hamiltonians}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{63:1--63:32},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.63},
  URN =		{urn:nbn:de:0030-drops-226910},
  doi =		{10.4230/LIPIcs.ITCS.2025.63},
  annote =	{Keywords: quantum complexity, quantum algorithms, local hamiltonians}
}
Document
A Quantum Unique Games Conjecture

Authors: Hamoon Mousavi and Taro Spirig

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
After the NP-hardness of computational problems such as 3SAT and MaxCut was established, a natural next step was to explore whether these problems remain hard to approximate. While the quantum nonlocal games extensions of some of these problems are known to be hard - indeed undecidable - their inapproximability remains largely unresolved. In this work, we introduce definitions for the quantum extensions of Label-Cover and Unique-Label-Cover. We show that these problems play a similarly crucial role in studying the inapproximability of quantum constraint satisfaction problems as they do in the classical setting.

Cite as

Hamoon Mousavi and Taro Spirig. A Quantum Unique Games Conjecture. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 76:1-76:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{mousavi_et_al:LIPIcs.ITCS.2025.76,
  author =	{Mousavi, Hamoon and Spirig, Taro},
  title =	{{A Quantum Unique Games Conjecture}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{76:1--76:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.76},
  URN =		{urn:nbn:de:0030-drops-227047},
  doi =		{10.4230/LIPIcs.ITCS.2025.76},
  annote =	{Keywords: hardness of approximation, quantum computing, noncommutative constraint satisfaction problems, Fourier analysis}
}
Document
Survey
How Does Knowledge Evolve in Open Knowledge Graphs?

Authors: Axel Polleres, Romana Pernisch, Angela Bonifati, Daniele Dell'Aglio, Daniil Dobriy, Stefania Dumbrava, Lorena Etcheverry, Nicolas Ferranti, Katja Hose, Ernesto Jiménez-Ruiz, Matteo Lissandrini, Ansgar Scherp, Riccardo Tommasini, and Johannes Wachs

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Openly available, collaboratively edited Knowledge Graphs (KGs) are key platforms for the collective management of evolving knowledge. The present work aims t o provide an analysis of the obstacles related to investigating and processing specifically this central aspect of evolution in KGs. To this end, we discuss (i) the dimensions of evolution in KGs, (ii) the observability of evolution in existing, open, collaboratively constructed Knowledge Graphs over time, and (iii) possible metrics to analyse this evolution. We provide an overview of relevant state-of-the-art research, ranging from metrics developed for Knowledge Graphs specifically to potential methods from related fields such as network science. Additionally, we discuss technical approaches - and their current limitations - related to storing, analysing and processing large and evolving KGs in terms of handling typical KG downstream tasks.

Cite as

Axel Polleres, Romana Pernisch, Angela Bonifati, Daniele Dell'Aglio, Daniil Dobriy, Stefania Dumbrava, Lorena Etcheverry, Nicolas Ferranti, Katja Hose, Ernesto Jiménez-Ruiz, Matteo Lissandrini, Ansgar Scherp, Riccardo Tommasini, and Johannes Wachs. How Does Knowledge Evolve in Open Knowledge Graphs?. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 11:1-11:59, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{polleres_et_al:TGDK.1.1.11,
  author =	{Polleres, Axel and Pernisch, Romana and Bonifati, Angela and Dell'Aglio, Daniele and Dobriy, Daniil and Dumbrava, Stefania and Etcheverry, Lorena and Ferranti, Nicolas and Hose, Katja and Jim\'{e}nez-Ruiz, Ernesto and Lissandrini, Matteo and Scherp, Ansgar and Tommasini, Riccardo and Wachs, Johannes},
  title =	{{How Does Knowledge Evolve in Open Knowledge Graphs?}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{11:1--11:59},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.11},
  URN =		{urn:nbn:de:0030-drops-194855},
  doi =		{10.4230/TGDK.1.1.11},
  annote =	{Keywords: KG evolution, temporal KG, versioned KG, dynamic KG}
}
Document
Vision
Knowledge Engineering Using Large Language Models

Authors: Bradley P. Allen, Lise Stork, and Paul Groth

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Knowledge engineering is a discipline that focuses on the creation and maintenance of processes that generate and apply knowledge. Traditionally, knowledge engineering approaches have focused on knowledge expressed in formal languages. The emergence of large language models and their capabilities to effectively work with natural language, in its broadest sense, raises questions about the foundations and practice of knowledge engineering. Here, we outline the potential role of LLMs in knowledge engineering, identifying two central directions: 1) creating hybrid neuro-symbolic knowledge systems; and 2) enabling knowledge engineering in natural language. Additionally, we formulate key open research questions to tackle these directions.

Cite as

Bradley P. Allen, Lise Stork, and Paul Groth. Knowledge Engineering Using Large Language Models. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 3:1-3:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{allen_et_al:TGDK.1.1.3,
  author =	{Allen, Bradley P. and Stork, Lise and Groth, Paul},
  title =	{{Knowledge Engineering Using Large Language Models}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:19},
  ISSN =	{2942-7517},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.3},
  URN =		{urn:nbn:de:0030-drops-194777},
  doi =		{10.4230/TGDK.1.1.3},
  annote =	{Keywords: knowledge engineering, large language models}
}
Document
Improved Approximations for Extremal Eigenvalues of Sparse Hamiltonians

Authors: Daniel Hothem, Ojas Parekh, and Kevin Thompson

Published in: LIPIcs, Volume 266, 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023)


Abstract
We give a classical 1/(qk+1)-approximation for the maximum eigenvalue of a k-sparse fermionic Hamiltonian with strictly q-local terms, as well as a 1/(4k+1)-approximation when the Hamiltonian has both 2-local and 4-local terms. More generally we obtain a 1/O(qk²)-approximation for k-sparse fermionic Hamiltonians with terms of locality at most q. Our techniques also yield analogous approximations for k-sparse, q-local qubit Hamiltonians with small hidden constants and improved dependence on q.

Cite as

Daniel Hothem, Ojas Parekh, and Kevin Thompson. Improved Approximations for Extremal Eigenvalues of Sparse Hamiltonians. In 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 266, pp. 6:1-6:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{hothem_et_al:LIPIcs.TQC.2023.6,
  author =	{Hothem, Daniel and Parekh, Ojas and Thompson, Kevin},
  title =	{{Improved Approximations for Extremal Eigenvalues of Sparse Hamiltonians}},
  booktitle =	{18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023)},
  pages =	{6:1--6:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-283-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{266},
  editor =	{Fawzi, Omar and Walter, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2023.6},
  URN =		{urn:nbn:de:0030-drops-183163},
  doi =		{10.4230/LIPIcs.TQC.2023.6},
  annote =	{Keywords: Approximation algorithms, Extremal eigenvalues, Sparse Hamiltonians, Fermionic Hamiltonians, Qubit Hamiltonians}
}
Document
Beating Random Assignment for Approximating Quantum 2-Local Hamiltonian Problems

Authors: Ojas Parekh and Kevin Thompson

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
The quantum k-Local Hamiltonian problem is a natural generalization of classical constraint satisfaction problems (k-CSP) and is complete for QMA, a quantum analog of NP. Although the complexity of k-Local Hamiltonian problems has been well studied, only a handful of approximation results are known. For Max 2-Local Hamiltonian where each term is a rank 3 projector, a natural quantum generalization of classical Max 2-SAT, the best known approximation algorithm was the trivial random assignment, yielding a 0.75-approximation. We present the first approximation algorithm beating this bound, a classical polynomial-time 0.764-approximation. For strictly quadratic instances, which are maximally entangled instances, we provide a 0.801 approximation algorithm, and numerically demonstrate that our algorithm is likely a 0.821-approximation. We conjecture these are the hardest instances to approximate. We also give improved approximations for quantum generalizations of other related classical 2-CSPs. Finally, we exploit quantum connections to a generalization of the Grothendieck problem to obtain a classical constant-factor approximation for the physically relevant special case of strictly quadratic traceless 2-Local Hamiltonians on bipartite interaction graphs, where a inverse logarithmic approximation was the best previously known (for general interaction graphs). Our work employs recently developed techniques for analyzing classical approximations of CSPs and is intended to be accessible to both quantum information scientists and classical computer scientists.

Cite as

Ojas Parekh and Kevin Thompson. Beating Random Assignment for Approximating Quantum 2-Local Hamiltonian Problems. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 74:1-74:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{parekh_et_al:LIPIcs.ESA.2021.74,
  author =	{Parekh, Ojas and Thompson, Kevin},
  title =	{{Beating Random Assignment for Approximating Quantum 2-Local Hamiltonian Problems}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{74:1--74:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.74},
  URN =		{urn:nbn:de:0030-drops-146554},
  doi =		{10.4230/LIPIcs.ESA.2021.74},
  annote =	{Keywords: Quantum Approximation Algorithms, Local Hamiltonian}
}
Document
Track A: Algorithms, Complexity and Games
Application of the Level-2 Quantum Lasserre Hierarchy in Quantum Approximation Algorithms

Authors: Ojas Parekh and Kevin Thompson

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
The Lasserre Hierarchy is a set of semidefinite programs which yield increasingly tight bounds on optimal solutions to many NP-hard optimization problems. The hierarchy is parameterized by levels, with a higher level corresponding to a more accurate relaxation. High level programs have proven to be invaluable components of approximation algorithms for many NP-hard optimization problems. There is a natural analogous quantum hierarchy, which is also parameterized by level and provides a relaxation of many (QMA-hard) quantum problems of interest. In contrast to the classical case, however, there is only one approximation algorithm which makes use of higher levels of the hierarchy. Here we provide the first ever use of the level-2 hierarchy in an approximation algorithm for a particular QMA-complete problem, so-called Quantum Max Cut. We obtain modest improvements on state-of-the-art approximation factors for this problem, as well as demonstrate that the level-2 hierarchy satisfies many physically-motivated constraints that the level-1 does not satisfy. Indeed, this observation is at the heart of our analysis and indicates that higher levels of the quantum Lasserre Hierarchy may be very useful tools in the design of approximation algorithms for QMA-complete problems.

Cite as

Ojas Parekh and Kevin Thompson. Application of the Level-2 Quantum Lasserre Hierarchy in Quantum Approximation Algorithms. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 102:1-102:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{parekh_et_al:LIPIcs.ICALP.2021.102,
  author =	{Parekh, Ojas and Thompson, Kevin},
  title =	{{Application of the Level-2 Quantum Lasserre Hierarchy in Quantum Approximation Algorithms}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{102:1--102:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.102},
  URN =		{urn:nbn:de:0030-drops-141718},
  doi =		{10.4230/LIPIcs.ICALP.2021.102},
  annote =	{Keywords: Quantum Max Cut, Quantum Approximation Algorithms, Lasserre Hierarchy, Local Hamiltonian, Heisenberg model}
}
Document
Invited Talk
What Makes a Mathematician Tick? (Invited Talk)

Authors: Kevin Buzzard

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
Formalised mathematics has a serious image problem in mathematics departments. Mathematicians working in "mainstream" areas such as modern algebra, analysis, geometry etc have absolutely no desire to work formally, it slows them down and they cannot see the point. The mathematical community has its own methods for deciding whether a proof (in pdf format) is correct or not; these methods rely on the views of a cabal of experts - our high priests. Our proof of the odd order theorem is "John Thompson got a Fields Medal for the work". This proof is of a rather different nature to the formalised proof of Gonthier et al. Our methods are arcane and mysterious; there is also ample evidence that they are, in general, extremely accurate when it comes to the important stuff. I will talk about my attempts, as a "mainstream mathematician", to introduce formalised mathematics to my community.

Cite as

Kevin Buzzard. What Makes a Mathematician Tick? (Invited Talk). In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{buzzard:LIPIcs.ITP.2019.2,
  author =	{Buzzard, Kevin},
  title =	{{What Makes a Mathematician Tick?}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.2},
  URN =		{urn:nbn:de:0030-drops-110576},
  doi =		{10.4230/LIPIcs.ITP.2019.2},
  annote =	{Keywords: Formalization of mathematics}
}
  • Refine by Type
  • 14 Document/PDF
  • 10 Document/HTML

  • Refine by Publication Year
  • 8 2025
  • 3 2023
  • 2 2021
  • 1 2019

  • Refine by Author
  • 5 Parekh, Ojas
  • 4 Thompson, Kevin
  • 1 Allen, Bradley P.
  • 1 Apte, Anuj
  • 1 Bonifati, Angela
  • Show More...

  • Refine by Series/Journal
  • 11 LIPIcs
  • 1 OASIcs
  • 2 TGDK

  • Refine by Classification
  • 6 Theory of computation → Approximation algorithms analysis
  • 4 Theory of computation → Quantum complexity theory
  • 2 Theory of computation → Semidefinite programming
  • 1 Applied computing → Bioinformatics
  • 1 Computing methodologies → Machine learning
  • Show More...

  • Refine by Keyword
  • 2 Local Hamiltonian
  • 2 Quantum Approximation Algorithms
  • 2 quantum computing
  • 1 Approximation Algorithms
  • 1 Approximation algorithms
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail