25 Search Results for "Vondrák, Jan"


Document
On the Complexity of Knapsack Under Explorable Uncertainty: Hardness and Algorithms

Authors: Jens Schlöter

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
In the knapsack problem under explorable uncertainty, we are given a knapsack instance with uncertain item profits. Instead of having access to the precise profits, we are only given uncertainty intervals that are guaranteed to contain the corresponding profits. The actual item profit can be obtained via a query. The goal of the problem is to adaptively query item profits until the revealed information suffices to compute an optimal (or approximate) solution to the underlying knapsack instance. Since queries are costly, the objective is to minimize the number of queries. In the offline variant of this problem, we assume knowledge of the precise profits and the task is to compute a query set of minimum cardinality that a third party without access to the profits could use to identify an optimal (or approximate) knapsack solution. We show that this offline variant is complete for the second-level of the polynomial hierarchy, i.e., Σ₂^p-complete, and cannot be approximated within a non-trivial factor unless Σ₂^p = Δ₂^p. Motivated by these strong hardness results, we consider a "resource-augmented" variant of the problem where the requirements on the query set computed by an algorithm are less strict than the requirements on the optimal solution we compare against. More precisely, a query set computed by the algorithm must reveal sufficient information to identify an approximate knapsack solution, while the optimal query set we compare against has to reveal sufficient information to identify an optimal solution. We show that this resource-augmented setting allows interesting non-trivial algorithmic results.

Cite as

Jens Schlöter. On the Complexity of Knapsack Under Explorable Uncertainty: Hardness and Algorithms. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 6:1-6:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{schloter:LIPIcs.ESA.2025.6,
  author =	{Schl\"{o}ter, Jens},
  title =	{{On the Complexity of Knapsack Under Explorable Uncertainty: Hardness and Algorithms}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{6:1--6:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.6},
  URN =		{urn:nbn:de:0030-drops-244740},
  doi =		{10.4230/LIPIcs.ESA.2025.6},
  annote =	{Keywords: Explorable uncertainty, knapsack, queries, approximation algorithms}
}
Document
RANDOM
Time Lower Bounds for the Metropolis Process and Simulated Annealing

Authors: Zongchen Chen, Dan Mikulincer, Daniel Reichman, and Alexander S. Wein

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
The Metropolis process (MP) and Simulated Annealing (SA) are stochastic local search heuristics that are often used in solving combinatorial optimization problems. Despite significant interest, there are very few theoretical results regarding the quality of approximation obtained by MP and SA (with polynomially many iterations) for NP-hard optimization problems. We provide rigorous lower bounds for MP and SA with respect to the classical maximum independent set problem when the algorithms are initialized from the empty set. We establish the existence of a family of graphs for which both MP and SA fail to find approximate solutions in polynomial time. More specifically, we show that for any ε ∈ (0,1) there are n-vertex graphs for which the probability SA (when limited to polynomially many iterations) will approximate the optimal solution within ratio Ω(1/n^{1-ε}) is exponentially small. Our lower bounds extend to graphs of constant average degree d, illustrating the failure of MP to achieve an approximation ratio of Ω(log(d)/d) in polynomial time. In some cases, our lower bounds apply even when the temperature is chosen adaptively. Finally, we prove exponential-time lower bounds when the inputs to these algorithms are bipartite graphs, and even trees, which are known to admit polynomial-time algorithms for the independent set problem.

Cite as

Zongchen Chen, Dan Mikulincer, Daniel Reichman, and Alexander S. Wein. Time Lower Bounds for the Metropolis Process and Simulated Annealing. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 47:1-47:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.APPROX/RANDOM.2025.47,
  author =	{Chen, Zongchen and Mikulincer, Dan and Reichman, Daniel and Wein, Alexander S.},
  title =	{{Time Lower Bounds for the Metropolis Process and Simulated Annealing}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{47:1--47:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.47},
  URN =		{urn:nbn:de:0030-drops-244138},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.47},
  annote =	{Keywords: Metropolis Process, Simulated Annealing, Independent Set}
}
Document
APPROX
Covering a Few Submodular Constraints and Applications

Authors: Tanvi Bajpai, Chandra Chekuri, and Pooja Kulkarni

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We consider the problem of covering multiple submodular constraints. Given a finite ground set N, a cost function c: N → ℝ_+, r monotone submodular functions f_1,f_2,…,f_r over N and requirements b_1,b_2,…,b_r the goal is to find a minimum cost subset S ⊆ N such that f_i(S) ≥ b_i for 1 ≤ i ≤ r. When r = 1 this is the well-known Submodular Set Cover problem. Previous work [Chekuri et al., 2022] considered the setting when r is large and developed bi-criteria approximation algorithms, and approximation algorithms for the important special case when each f_i is a weighted coverage function. These are fairly general models and capture several concrete and interesting problems as special cases. The approximation ratios for these problem are at least Ω(log r) which is unavoidable when r is part of the input. In this paper, motivated by some recent applications, we consider the problem when r is a fixed constant and obtain two main results. When the f_i are weighted coverage functions from a deletion-closed set system we obtain a (1+ε)(e/(e-1))(1+β)-approximation where β is the approximation ratio for the underlying set cover instances via the natural LP. Second, for covering multiple submodular constraints we obtain a randomized bi-criteria approximation algorithm that for any given integer α ≥ 1 outputs a set S such that f_i(S) ≥ (1-1/e^α-ε)b_i for each i ∈ [r] and 𝔼[c(S)] ≤ (1+ε)α ⋅ OPT. These results show that one can obtain nearly as good an approximation for any fixed r as what one would achieve for r = 1. We also demonstrate applications of our results to implicit covering problems such as fair facility location.

Cite as

Tanvi Bajpai, Chandra Chekuri, and Pooja Kulkarni. Covering a Few Submodular Constraints and Applications. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 25:1-25:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bajpai_et_al:LIPIcs.APPROX/RANDOM.2025.25,
  author =	{Bajpai, Tanvi and Chekuri, Chandra and Kulkarni, Pooja},
  title =	{{Covering a Few Submodular Constraints and Applications}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{25:1--25:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.25},
  URN =		{urn:nbn:de:0030-drops-243917},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.25},
  annote =	{Keywords: covering, linear programming, rounding, fairness}
}
Document
APPROX
Non-Adaptive Evaluation of k-of- n Functions: Tight Gap and a Unit-Cost PTAS

Authors: Mads Anker Nielsen, Lars Rohwedder, and Kevin Schewior

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We consider the Stochastic Boolean Function Evaluation (SBFE) problem in the well-studied case of k-of-n functions: There are independent Boolean random variables x_1,… ,x_n where each variable i has a known probability p_i of taking value 1, and a known cost c_i that can be paid to find out its value. The value of the function is 1 iff there are at least k 1s among the variables. The goal is to efficiently compute a strategy that, at minimum expected cost, tests the variables until the function value is determined. While an elegant polynomial-time exact algorithm is known when tests can be made adaptively, we focus on the non-adaptive variant, for which much less is known. First, we show a clean and tight lower bound of 2 on the adaptivity gap, i.e., the worst-case multiplicative loss in the objective function caused by disallowing adaptivity, of the problem. This improves the tight lower bound of 3/2 for the unit-cost variant. Second, we give a PTAS for computing the best non-adaptive strategy in the unit-cost case, the first PTAS for an SBFE problem. At the core, our scheme establishes a novel notion of two-sided dominance (w.r.t. the optimal solution) by guessing so-called milestone tests for a set of carefully chosen buckets of tests. To turn this technique into a polynomial-time algorithm, we use a decomposition approach paired with a random-shift argument.

Cite as

Mads Anker Nielsen, Lars Rohwedder, and Kevin Schewior. Non-Adaptive Evaluation of k-of- n Functions: Tight Gap and a Unit-Cost PTAS. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 26:1-26:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{nielsen_et_al:LIPIcs.APPROX/RANDOM.2025.26,
  author =	{Nielsen, Mads Anker and Rohwedder, Lars and Schewior, Kevin},
  title =	{{Non-Adaptive Evaluation of k-of- n Functions: Tight Gap and a Unit-Cost PTAS}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{26:1--26:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.26},
  URN =		{urn:nbn:de:0030-drops-243920},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.26},
  annote =	{Keywords: Approximation scheme, Boolean functions, stochastic combinatorial optimization, stochastic function evaluation, sequential testing, adaptivity}
}
Document
RANDOM
Sink-Free Orientations: A Local Sampler with Applications

Authors: Konrad Anand, Graham Freifeld, Heng Guo, Chunyang Wang, and Jiaheng Wang

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
For sink-free orientations in graphs of minimum degree at least 3, we show that there is a deterministic approximate counting algorithm that runs in time O((n^33/ε^32)log(n/ε)), a near-linear time sampling algorithm, and a randomised approximate counting algorithm that runs in time O((n/ε)²log(n/ε)), where n denotes the number of vertices of the input graph and 0 < ε < 1 is the desired accuracy. All three algorithms are based on a local implementation of the sink popping method (Cohn, Pemantle, and Propp, 2002) under the partial rejection sampling framework (Guo, Jerrum, and Liu, 2019).

Cite as

Konrad Anand, Graham Freifeld, Heng Guo, Chunyang Wang, and Jiaheng Wang. Sink-Free Orientations: A Local Sampler with Applications. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 60:1-60:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{anand_et_al:LIPIcs.APPROX/RANDOM.2025.60,
  author =	{Anand, Konrad and Freifeld, Graham and Guo, Heng and Wang, Chunyang and Wang, Jiaheng},
  title =	{{Sink-Free Orientations: A Local Sampler with Applications}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{60:1--60:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.60},
  URN =		{urn:nbn:de:0030-drops-244267},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.60},
  annote =	{Keywords: Sink-free orientations, local sampling, deterministic counting}
}
Document
APPROX
Max-Cut with Multiple Cardinality Constraints

Authors: Yury Makarychev, Madhusudhan Reddy Pittu, and Ali Vakilian

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We study the classic Max-Cut problem under multiple cardinality constraints, which we refer to as the Constrained Max-Cut problem. Given a graph G = (V, E), a partition of the vertices into c disjoint parts V₁, …, V_c, and cardinality parameters k₁, …, k_c, the goal is to select a set S ⊆ V such that |S ∩ V_i| = k_i for each i ∈ [c], maximizing the total weight of edges crossing S (i.e., edges with exactly one endpoint in S). By designing an approximate kernel for Constrained Max-Cut and building on the correlation rounding technique of Raghavendra and Tan (2012), we present a (0.858 - ε)-approximation algorithm for the problem when c = O(1). The algorithm runs in time O(min{k/ε, n}^poly(c/ε) + poly(n)), where k = ∑_{i∈[c]} k_i and n = |V|. This improves upon the (1/2 + ε₀)-approximation of Feige and Langberg (2001) for Max-Cut_k (the special case when c = 1, k₁ = k), and generalizes the (0.858 - ε)-approximation of Raghavendra and Tan (2012), which only applies when min{k,n-k} = Ω(n) and does not handle multiple constraints. We also establish that, for general values of c, it is NP-hard to determine whether a feasible solution exists that cuts all edges. Finally, we present a 1/2-approximation algorithm for Max-Cut under an arbitrary matroid constraint.

Cite as

Yury Makarychev, Madhusudhan Reddy Pittu, and Ali Vakilian. Max-Cut with Multiple Cardinality Constraints. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 13:1-13:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{makarychev_et_al:LIPIcs.APPROX/RANDOM.2025.13,
  author =	{Makarychev, Yury and Pittu, Madhusudhan Reddy and Vakilian, Ali},
  title =	{{Max-Cut with Multiple Cardinality Constraints}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{13:1--13:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.13},
  URN =		{urn:nbn:de:0030-drops-243790},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.13},
  annote =	{Keywords: Maxcut, Semi-definite Programming, Sum of Squares Hierarchy}
}
Document
APPROX
On the Constant-Factor Approximability of Minimum Cost Constraint Satisfaction Problems

Authors: Ian DeHaan, Neng Huang, and Euiwoong Lee

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We study minimum cost constraint satisfaction problems (MinCostCSP) through the algebraic lens. We show that for any constraint language Γ which has the dual discriminator operation as a polymorphism, there exists a |D|-approximation algorithm for MinCostCSP(Γ) where D is the domain. Complementing our algorithmic result, we show that any constraint language Γ where MinCostCSP(Γ) admits a constant-factor approximation must have a near-unanimity (NU) polymorphism unless P = NP, extending a similar result by Dalmau et al. on MinCSPs. These results imply a dichotomy of constant-factor approximability for constraint languages that contain all permutation relations (a natural generalization for Boolean CSPs that allow variable negation): either MinCostCSP(Γ) has an NU polymorphism and is |D|-approximable, or it does not have any NU polymorphism and is NP-hard to approximate within any constant factor. Finally, we present a constraint language which has a majority polymorphism, but is nonetheless NP-hard to approximate within any constant factor assuming the Unique Games Conjecture, showing that the condition of having an NU polymorphism is in general not sufficient unless UGC fails.

Cite as

Ian DeHaan, Neng Huang, and Euiwoong Lee. On the Constant-Factor Approximability of Minimum Cost Constraint Satisfaction Problems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 19:1-19:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dehaan_et_al:LIPIcs.APPROX/RANDOM.2025.19,
  author =	{DeHaan, Ian and Huang, Neng and Lee, Euiwoong},
  title =	{{On the Constant-Factor Approximability of Minimum Cost Constraint Satisfaction Problems}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{19:1--19:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.19},
  URN =		{urn:nbn:de:0030-drops-243851},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.19},
  annote =	{Keywords: Constraint satisfaction problems, approximation algorithms, polymorphisms}
}
Document
Track A: Algorithms, Complexity and Games
Dynamic Algorithms for Submodular Matching

Authors: Kiarash Banihashem, Leyla Biabani, Samira Goudarzi, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Morteza Monemizadeh

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
The Maximum Submodular Matching (MSM) problem is a generalization of the classical Maximum Weight Matching (MWM) problem. In this problem, given a monotone submodular function f: 2^E → ℝ^{≥ 0} defined over subsets of edges of a graph G(V, E), we are asked to return a matching whose submodular value is maximum among all matchings in graph G(V, E). In this paper, we consider this problem in a fully dynamic setting against an oblivious adversary. In this setting, we are given a sequence 𝒮 of insertions and deletions of edges of the underlying graph G(V, E), along with an oracle access to the monotone submodular function f. The goal is to maintain a matching M such that, at any time t of sequence 𝒮, its submodular value is a good approximation of the value of the optimal submodular matching while keeping the number of operations minimal. We develop the first dynamic algorithm for the submodular matching problem, in which we maintain a matching whose submodular value is within expected (8 + ε)-approximation of the optimal submodular matching at any time t of sequence 𝒮 using expected amortized poly(log n, 1/(ε)) update time. Our approach incorporates a range of novel techniques, notably the concept of Uniform Hierarchical Caches (UHC) data structure along with its invariants, which lead to the first algorithm for fully dynamic submodular matching and may be of independent interest for designing dynamic algorithms for other problems.

Cite as

Kiarash Banihashem, Leyla Biabani, Samira Goudarzi, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Morteza Monemizadeh. Dynamic Algorithms for Submodular Matching. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 19:1-19:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{banihashem_et_al:LIPIcs.ICALP.2025.19,
  author =	{Banihashem, Kiarash and Biabani, Leyla and Goudarzi, Samira and Hajiaghayi, MohammadTaghi and Jabbarzade, Peyman and Monemizadeh, Morteza},
  title =	{{Dynamic Algorithms for Submodular Matching}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{19:1--19:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.19},
  URN =		{urn:nbn:de:0030-drops-233969},
  doi =		{10.4230/LIPIcs.ICALP.2025.19},
  annote =	{Keywords: Matching, Submodular, Dynamic, Polylogarithmic}
}
Document
Track A: Algorithms, Complexity and Games
q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations

Authors: Kiril Bangachev and S. Matthew Weinberg

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
For a set M of m elements, we define a decreasing chain of classes of normalized monotone-increasing valuation functions from 2^M to ℝ_{≥ 0}, parameterized by an integer q ∈ [2,m]. For a given q, we refer to the class as q-partitioning. A valuation function is subadditive if and only if it is 2-partitioning, and fractionally subadditive if and only if it is m-partitioning. Thus, our chain establishes an interpolation between subadditive and fractionally subadditive valuations. We show that this interpolation is smooth (q-partitioning valuations are "nearly" (q-1)-partitioning in a precise sense, Theorem 6), interpretable (the definition arises by analyzing the core of a cost-sharing game, à la the Bondareva-Shapley Theorem for fractionally subadditive valuations, Section 3.1), and non-trivial (the class of q-partitioning valuations is distinct for all q, Proposition 3). For domains where provable separations exist between subadditive and fractionally subadditive, we interpolate the stronger guarantees achievable for fractionally subadditive valuations to all q ∈ {2,…, m}. Two highlights are the following: 1) An Ω ((log log q)/(log log m))-competitive posted price mechanism for q-partitioning valuations. Note that this matches asymptotically the state-of-the-art for both subadditive (q = 2) [Paul Dütting et al., 2020], and fractionally subadditive (q = m) [Feldman et al., 2015]. 2) Two upper-tail concentration inequalities on 1-Lipschitz, q-partitioning valuations over independent items. One extends the state-of-the-art for q = m to q < m, the other improves the state-of-the-art for q = 2 for q > 2. Our concentration inequalities imply several corollaries that interpolate between subadditive and fractionally subadditive, for example: 𝔼[v(S)] ≤ (1 + 1/log q)Median[v(S)] + O(log q). To prove this, we develop a new isoperimetric inequality using Talagrand’s method of control by q points, which may be of independent interest. We also discuss other probabilistic inequalities and game-theoretic applications of q-partitioning valuations, and connections to subadditive MPH-k valuations [Tomer Ezra et al., 2019].

Cite as

Kiril Bangachev and S. Matthew Weinberg. q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 18:1-18:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bangachev_et_al:LIPIcs.ICALP.2025.18,
  author =	{Bangachev, Kiril and Weinberg, S. Matthew},
  title =	{{q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{18:1--18:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.18},
  URN =		{urn:nbn:de:0030-drops-233956},
  doi =		{10.4230/LIPIcs.ICALP.2025.18},
  annote =	{Keywords: Subadditive Functions, Fractionally Subadditive Functions, Posted Price Mechanisms, Concentration Inequalities}
}
Document
Track A: Algorithms, Complexity and Games
New Results on a General Class of Minimum Norm Optimization Problems

Authors: Kuowen Chen, Jian Li, Yuval Rabani, and Yiran Zhang

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We study the general norm optimization for combinatorial problems, initiated by Chakrabarty and Swamy (STOC 2019). We propose a general formulation that captures a large class of combinatorial structures: we are given a set 𝒰 of n weighted elements and a family of feasible subsets ℱ. Each subset S ∈ ℱ is called a feasible solution/set of the problem. We denote the value vector by v = {v_i}_{i ∈ [n]}, where v_i ≥ 0 is the value of element i. For any subset S ⊆ 𝒰, we use v[S] to denote the n-dimensional vector {v_e⋅ 𝟏[e ∈ S]}_{e ∈ 𝒰} (i.e., we zero out all entries that are not in S). Let f: ℝⁿ → ℝ_+ be a symmetric monotone norm function. Our goal is to minimize the norm objective f(v[S]) over feasible subset S ∈ ℱ. The problem significantly generalizes the corresponding min-sum and min-max problems. We present a general equivalent reduction of the norm minimization problem to a multi-criteria optimization problem with logarithmic budget constraints, up to a constant approximation factor. Leveraging this reduction, we obtain constant factor approximation algorithms for the norm minimization versions of several covering problems, such as interval cover, multi-dimensional knapsack cover, and logarithmic factor approximation for set cover. We also study the norm minimization versions for perfect matching, s-t path and s-t cut. We show the natural linear programming relaxations for these problems have a large integrality gap. To complement the negative result, we show that, for perfect matching, it is possible to obtain a bi-criteria result: for any constant ε,δ > 0, we can find in polynomial time a nearly perfect matching (i.e., a matching that matches at least 1-ε proportion of vertices) and its cost is at most (8+δ) times of the optimum for perfect matching. Moreover, we establish the existence of a polynomial-time O(log log n)-approximation algorithm for the norm minimization variant of the s-t path problem. Specifically, our algorithm achieves an α-approximation with a time complexity of n^{O(log log n / α)}, where 9 ≤ α ≤ log log n.

Cite as

Kuowen Chen, Jian Li, Yuval Rabani, and Yiran Zhang. New Results on a General Class of Minimum Norm Optimization Problems. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 50:1-50:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2025.50,
  author =	{Chen, Kuowen and Li, Jian and Rabani, Yuval and Zhang, Yiran},
  title =	{{New Results on a General Class of Minimum Norm Optimization Problems}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{50:1--50:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.50},
  URN =		{urn:nbn:de:0030-drops-234276},
  doi =		{10.4230/LIPIcs.ICALP.2025.50},
  annote =	{Keywords: Approximation Algorithms, Minimum Norm Optimization, Linear Programming}
}
Document
Track A: Algorithms, Complexity and Games
Universal Online Contention Resolution with Preselected Order

Authors: Junyao Zhao

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Online contention resolution scheme (OCRS) is a powerful technique for online decision making, which - in the case of matroids - given a matroid and a prior distribution of active elements, selects a subset of active elements that satisfies the matroid constraint in an online fashion. OCRS has been studied mostly for product distributions in the literature. Recently, universal OCRS, that works even for correlated distributions, has gained interest, because it naturally generalizes the classic notion, and its existence in the random-order arrival model turns out to be equivalent to the matroid secretary conjecture. However, currently very little is known about how to design universal OCRSs for any arrival model. In this work, we consider a natural and relatively flexible arrival model, where the OCRS is allowed to preselect (i.e., non-adaptively select) the arrival order of the elements, and within this model, we design simple and optimal universal OCRSs that are computationally efficient. In the course of deriving our OCRSs, we also discover an efficient reduction from universal online contention resolution to the matroid secretary problem for any arrival model, answering a question posed in [Dughmi, 2020].

Cite as

Junyao Zhao. Universal Online Contention Resolution with Preselected Order. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 137:1-137:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{zhao:LIPIcs.ICALP.2025.137,
  author =	{Zhao, Junyao},
  title =	{{Universal Online Contention Resolution with Preselected Order}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{137:1--137:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.137},
  URN =		{urn:nbn:de:0030-drops-235147},
  doi =		{10.4230/LIPIcs.ICALP.2025.137},
  annote =	{Keywords: Matroids, online contention resolution schemes, secretary problems}
}
Document
Track A: Algorithms, Complexity and Games
The Long Arm of Nashian Allocation in Online p-Mean Welfare Maximization

Authors: Zhiyi Huang, Chui Shan Lee, Xinkai Shu, and Zhaozi Wang

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We study the online allocation of divisible items to n agents with additive valuations for p-mean welfare maximization, a problem introduced by Barman, Khan, and Maiti (2022). Our algorithmic and hardness results characterize the optimal competitive ratios for the entire spectrum of -∞ ≤ p ≤ 1. Surprisingly, our improved algorithms for all p ≤ (1)/(log n) are simply the greedy algorithm for the Nash welfare, supplemented with two auxiliary components to ensure all agents have non-zero utilities and to help a small number of agents with low utilities. In this sense, the long arm of Nashian allocation achieves near-optimal competitive ratios not only for Nash welfare but also all the way to egalitarian welfare.

Cite as

Zhiyi Huang, Chui Shan Lee, Xinkai Shu, and Zhaozi Wang. The Long Arm of Nashian Allocation in Online p-Mean Welfare Maximization. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 98:1-98:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{huang_et_al:LIPIcs.ICALP.2025.98,
  author =	{Huang, Zhiyi and Lee, Chui Shan and Shu, Xinkai and Wang, Zhaozi},
  title =	{{The Long Arm of Nashian Allocation in Online p-Mean Welfare Maximization}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{98:1--98:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.98},
  URN =		{urn:nbn:de:0030-drops-234754},
  doi =		{10.4230/LIPIcs.ICALP.2025.98},
  annote =	{Keywords: Online Algorithms, Fair Division, Nash Welfare}
}
Document
Track A: Algorithms, Complexity and Games
Cost Preserving Dependent Rounding for Allocation Problems

Authors: Lars Rohwedder, Arman Rouhani, and Leo Wennmann

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We present a dependent randomized rounding scheme, which rounds fractional solutions to integral solutions satisfying certain hard constraints on the output while preserving Chernoff-like concentration properties. In contrast to previous dependent rounding schemes, our algorithm guarantees that the cost of the rounded integral solution does not exceed that of the fractional solution. Our algorithm works for a class of assignment problems with restrictions similar to those of prior works. In a non-trivial combination of our general result with a classical approach from Shmoys and Tardos [Math. Programm.'93] and more recent linear programming techniques developed for the restricted assignment variant by Bansal, Sviridenko [STOC'06] and Davies, Rothvoss, Zhang [SODA'20], we derive a O(log n)-approximation algorithm for the Budgeted Santa Claus Problem. In this new variant, the goal is to allocate resources with different values to players, maximizing the minimum value a player receives, and satisfying a budget constraint on player-resource allocation costs.

Cite as

Lars Rohwedder, Arman Rouhani, and Leo Wennmann. Cost Preserving Dependent Rounding for Allocation Problems. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 127:1-127:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{rohwedder_et_al:LIPIcs.ICALP.2025.127,
  author =	{Rohwedder, Lars and Rouhani, Arman and Wennmann, Leo},
  title =	{{Cost Preserving Dependent Rounding for Allocation Problems}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{127:1--127:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.127},
  URN =		{urn:nbn:de:0030-drops-235049},
  doi =		{10.4230/LIPIcs.ICALP.2025.127},
  annote =	{Keywords: Matching, Randomized Rounding, Santa Claus, Approximation Algorithms}
}
Document
A Bicriterion Concentration Inequality and Prophet Inequalities for k-Fold Matroid Unions

Authors: Noga Alon, Nick Gravin, Tristan Pollner, Aviad Rubinstein, Hongao Wang, S. Matthew Weinberg, and Qianfan Zhang

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We investigate prophet inequalities with competitive ratios approaching 1, seeking to generalize k-uniform matroids. We first show that large girth does not suffice: for all k, there exists a matroid of girth ≥ k and a prophet inequality instance on that matroid whose optimal competitive ratio is 1/2. Next, we show k-fold matroid unions do suffice: we provide a prophet inequality with competitive ratio 1-O(√{(log k)/k}) for any k-fold matroid union. Our prophet inequality follows from an online contention resolution scheme. The key technical ingredient in our online contention resolution scheme is a novel bicriterion concentration inequality for arbitrary monotone 1-Lipschitz functions over independent items which may be of independent interest. Applied to our particular setting, our bicriterion concentration inequality yields "Chernoff-strength" concentration for a 1-Lipschitz function that is not (approximately) self-bounding.

Cite as

Noga Alon, Nick Gravin, Tristan Pollner, Aviad Rubinstein, Hongao Wang, S. Matthew Weinberg, and Qianfan Zhang. A Bicriterion Concentration Inequality and Prophet Inequalities for k-Fold Matroid Unions. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 4:1-4:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{alon_et_al:LIPIcs.ITCS.2025.4,
  author =	{Alon, Noga and Gravin, Nick and Pollner, Tristan and Rubinstein, Aviad and Wang, Hongao and Weinberg, S. Matthew and Zhang, Qianfan},
  title =	{{A Bicriterion Concentration Inequality and Prophet Inequalities for k-Fold Matroid Unions}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{4:1--4:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.4},
  URN =		{urn:nbn:de:0030-drops-226329},
  doi =		{10.4230/LIPIcs.ITCS.2025.4},
  annote =	{Keywords: Prophet Inequalities, Online Contention Resolution Schemes, Concentration Inequalities}
}
Document
Query Complexity of Stochastic Minimum Vertex Cover

Authors: Mahsa Derakhshan, Mohammad Saneian, and Zhiyang Xun

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We study the stochastic minimum vertex cover problem for general graphs. In this problem, we are given a graph G = (V, E) and an existence probability p_e for each edge e ∈ E. Edges of G are realized (or exist) independently with these probabilities, forming the realized subgraph 𝒢. The existence of an edge in 𝒢 can only be verified using edge queries. The goal of this problem is to find a near-optimal vertex cover of 𝒢 using a small number of queries. Previous work by Derakhshan, Durvasula, and Haghtalab [STOC 2023] established the existence of 1.5 + ε approximation algorithms for this problem with O(n/ε) queries. They also show that, under mild correlation among edge realizations, beating this approximation ratio requires querying a subgraph of size Ω(n ⋅ RS(n)). Here, RS(n) refers to Ruzsa-Szemerédi Graphs and represents the largest number of induced edge-disjoint matchings of size Θ(n) in an n-vertex graph. In this work, we design a simple algorithm for finding a (1 + ε) approximate vertex cover by querying a subgraph of size O(n ⋅ RS(n)) for any absolute constant ε > 0. Our algorithm can tolerate up to O(n ⋅ RS(n)) correlated edges, hence effectively completing our understanding of the problem under mild correlation.

Cite as

Mahsa Derakhshan, Mohammad Saneian, and Zhiyang Xun. Query Complexity of Stochastic Minimum Vertex Cover. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 41:1-41:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{derakhshan_et_al:LIPIcs.ITCS.2025.41,
  author =	{Derakhshan, Mahsa and Saneian, Mohammad and Xun, Zhiyang},
  title =	{{Query Complexity of Stochastic Minimum Vertex Cover}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{41:1--41:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.41},
  URN =		{urn:nbn:de:0030-drops-226691},
  doi =		{10.4230/LIPIcs.ITCS.2025.41},
  annote =	{Keywords: Sublinear algorithms, Vertex cover, Query complexity}
}
  • Refine by Type
  • 25 Document/PDF
  • 17 Document/HTML

  • Refine by Publication Year
  • 17 2025
  • 1 2023
  • 1 2022
  • 1 2020
  • 1 2019
  • Show More...

  • Refine by Author
  • 4 Vondrák, Jan
  • 3 Liu, Paul
  • 3 Weinberg, S. Matthew
  • 2 Rohwedder, Lars
  • 2 Roughgarden, Tim
  • Show More...

  • Refine by Series/Journal
  • 24 LIPIcs
  • 1 OASIcs

  • Refine by Classification
  • 3 Theory of computation → Algorithmic mechanism design
  • 3 Theory of computation → Design and analysis of algorithms
  • 2 Mathematics of computing → Submodular optimization and polymatroids
  • 2 Theory of computation → Approximation algorithms analysis
  • 2 Theory of computation → Dynamic graph algorithms
  • Show More...

  • Refine by Keyword
  • 3 approximation algorithms
  • 2 Approximation Algorithms
  • 2 Concentration Inequalities
  • 2 Matching
  • 2 Submodular
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail