12 Search Results for "Cai, Chen"


Document
The Recurrence/Transience of Random Walks on a Bounded Grid in an Increasing Dimension

Authors: Shuma Kumamoto, Shuji Kijima, and Tomoyuki Shirai

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
It is celebrated that a simple random walk on ℤ and ℤ² returns to the initial vertex v infinitely many times during infinitely many transitions, which is said recurrent, while it returns to v only finite times on ℤ^d for d ≥ 3, which is said transient. It is also known that a simple random walk on a growing region on ℤ^d can be recurrent depending on growing speed for any fixed d. This paper shows that a simple random walk on {0,1,…,N}ⁿ with an increasing n and a fixed N can be recurrent depending on the increasing speed of n. Precisely, we are concerned with a specific model of a random walk on a growing graph (RWoGG) and show a phase transition between the recurrence and transience of the random walk regarding the growth speed of the graph. For the proof, we develop a pausing coupling argument introducing the notion of weakly less homesick as graph growing (weakly LHaGG).

Cite as

Shuma Kumamoto, Shuji Kijima, and Tomoyuki Shirai. The Recurrence/Transience of Random Walks on a Bounded Grid in an Increasing Dimension. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 22:1-22:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kumamoto_et_al:LIPIcs.AofA.2024.22,
  author =	{Kumamoto, Shuma and Kijima, Shuji and Shirai, Tomoyuki},
  title =	{{The Recurrence/Transience of Random Walks on a Bounded Grid in an Increasing Dimension}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{22:1--22:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.22},
  URN =		{urn:nbn:de:0030-drops-204577},
  doi =		{10.4230/LIPIcs.AofA.2024.22},
  annote =	{Keywords: Random walk, dynamic graph, recurrence, transience, coupling}
}
Document
BPL ⊆ L-AC¹

Authors: Kuan Cheng and Yichuan Wang

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Whether BPL = 𝖫 (which is conjectured to be equal) or even whether BPL ⊆ NL, is a big open problem in theoretical computer science. It is well known that 𝖫 ⊆ NL ⊆ L-AC¹. In this work we show that BPL ⊆ L-AC¹ also holds. Our proof is based on a new iteration method for boosting precision in approximating matrix powering, which is inspired by the Richardson Iteration method developed in a recent line of work [AmirMahdi Ahmadinejad et al., 2020; Edward Pyne and Salil P. Vadhan, 2021; Gil Cohen et al., 2021; William M. Hoza, 2021; Gil Cohen et al., 2023; Aaron (Louie) Putterman and Edward Pyne, 2023; Lijie Chen et al., 2023]. We also improve the algorithm for approximate counting in low-depth L-AC circuits from an additive error setting to a multiplicative error setting.

Cite as

Kuan Cheng and Yichuan Wang. BPL ⊆ L-AC¹. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 32:1-32:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cheng_et_al:LIPIcs.CCC.2024.32,
  author =	{Cheng, Kuan and Wang, Yichuan},
  title =	{{BPL ⊆ L-AC¹}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{32:1--32:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.32},
  URN =		{urn:nbn:de:0030-drops-204282},
  doi =		{10.4230/LIPIcs.CCC.2024.32},
  annote =	{Keywords: Randomized Space Complexity, Circuit Complexity, Derandomization}
}
Document
Improved Cut Strategy for Tensor Network Contraction Orders

Authors: Christoph Staudt, Mark Blacher, Julien Klaus, Farin Lippmann, and Joachim Giesen

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
In the field of quantum computing, simulating quantum systems on classical computers is crucial. Tensor networks are fundamental in simulating quantum systems. A tensor network is a collection of tensors, that need to be contracted into a result tensor. Tensor contraction is a generalization of matrix multiplication to higher order tensors. The contractions can be performed in different orders, and the order has a significant impact on the number of floating point operations (flops) needed to get the result tensor. It is known that finding an optimal contraction order is NP-hard. The current state-of-the-art approach for finding efficient contraction orders is to combinine graph partitioning with a greedy strategy. Although heavily used in practice, the current approach ignores so-called free indices, chooses node weights without regarding previous computations, and requires numerous hyperparameters that need to be tuned at runtime. In this paper, we address these shortcomings by developing a novel graph cut strategy. The proposed modifications yield contraction orders that significantly reduce the number of flops in the tensor contractions compared to the current state of the art. Moreover, by removing the need for hyperparameter tuning at runtime, our approach converges to an efficient solution faster, which reduces the required optimization time by at least an order of magnitude.

Cite as

Christoph Staudt, Mark Blacher, Julien Klaus, Farin Lippmann, and Joachim Giesen. Improved Cut Strategy for Tensor Network Contraction Orders. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 27:1-27:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{staudt_et_al:LIPIcs.SEA.2024.27,
  author =	{Staudt, Christoph and Blacher, Mark and Klaus, Julien and Lippmann, Farin and Giesen, Joachim},
  title =	{{Improved Cut Strategy for Tensor Network Contraction Orders}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{27:1--27:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.27},
  URN =		{urn:nbn:de:0030-drops-203924},
  doi =		{10.4230/LIPIcs.SEA.2024.27},
  annote =	{Keywords: tensor network, contraction order, graph partitioniong, quantum simulation}
}
Document
Track A: Algorithms, Complexity and Games
Approximate Counting for Spin Systems in Sub-Quadratic Time

Authors: Konrad Anand, Weiming Feng, Graham Freifeld, Heng Guo, and Jiaheng Wang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We present two randomised approximate counting algorithms with Õ(n^{2-c}/ε²) running time for some constant c > 0 and accuracy ε: 1) for the hard-core model with fugacity λ on graphs with maximum degree Δ when λ = O(Δ^{-1.5-c₁}) where c₁ = c/(2-2c); 2) for spin systems with strong spatial mixing (SSM) on planar graphs with quadratic growth, such as ℤ². For the hard-core model, Weitz’s algorithm (STOC, 2006) achieves sub-quadratic running time when correlation decays faster than the neighbourhood growth, namely when λ = o(Δ^{-2}). Our first algorithm does not require this property and extends the range where sub-quadratic algorithms exist. Our second algorithm appears to be the first to achieve sub-quadratic running time up to the SSM threshold, albeit on a restricted family of graphs. It also extends to (not necessarily planar) graphs with polynomial growth, such as ℤ^d, but with a running time of the form Õ(n²ε^{-2}/2^{c(log n)^{1/d}}) where d is the exponent of the polynomial growth and c > 0 is some constant.

Cite as

Konrad Anand, Weiming Feng, Graham Freifeld, Heng Guo, and Jiaheng Wang. Approximate Counting for Spin Systems in Sub-Quadratic Time. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{anand_et_al:LIPIcs.ICALP.2024.11,
  author =	{Anand, Konrad and Feng, Weiming and Freifeld, Graham and Guo, Heng and Wang, Jiaheng},
  title =	{{Approximate Counting for Spin Systems in Sub-Quadratic Time}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.11},
  URN =		{urn:nbn:de:0030-drops-201543},
  doi =		{10.4230/LIPIcs.ICALP.2024.11},
  annote =	{Keywords: Randomised algorithm, Approximate counting, Spin system, Sub-quadratic algorithm}
}
Document
Track A: Algorithms, Complexity and Games
Bayesian Calibrated Click-Through Auctions

Authors: Junjie Chen, Minming Li, Haifeng Xu, and Song Zuo

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study information design in click-through auctions, in which the bidders/advertisers bid for winning an opportunity to show their ads but only pay for realized clicks. The payment may or may not happen, and its probability is called the click-through rate (CTR). This auction format is widely used in the industry of online advertising. Bidders have private values, whereas the seller has private information about each bidder’s CTRs. We are interested in the seller’s problem of partially revealing CTR information to maximize revenue. Information design in click-through auctions turns out to be intriguingly different from almost all previous studies in this space since any revealed information about CTRs will never affect bidders' bidding behaviors - they will always bid their true value per click - but only affect the auction’s allocation and payment rule. In some sense, this makes information design effectively a constrained mechanism design problem. Our first result is an FPTAS to compute an approximately optimal mechanism under a constant number of bidders. The design of this algorithm leverages Bayesian bidder values which help to "smooth" the seller’s revenue function and lead to better tractability. The design of this FPTAS is complex and primarily algorithmic. Our second main result pursues the design of "simple" mechanisms that are approximately optimal yet more practical. We primarily focus on the two-bidder situation, which is already notoriously challenging as demonstrated in recent works. When bidders' CTR distribution is symmetric, we develop a simple prior-free signaling scheme, whose construction relies on a parameter termed optimal signal ratio. The constructed scheme provably obtains a good approximation as long as the maximum and minimum of bidders' value density functions do not differ much.

Cite as

Junjie Chen, Minming Li, Haifeng Xu, and Song Zuo. Bayesian Calibrated Click-Through Auctions. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 44:1-44:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2024.44,
  author =	{Chen, Junjie and Li, Minming and Xu, Haifeng and Zuo, Song},
  title =	{{Bayesian Calibrated Click-Through Auctions}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{44:1--44:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.44},
  URN =		{urn:nbn:de:0030-drops-201878},
  doi =		{10.4230/LIPIcs.ICALP.2024.44},
  annote =	{Keywords: information design, ad auctions, online advertising, mechanism design}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
On Homomorphism Indistinguishability and Hypertree Depth

Authors: Benjamin Scheidt

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
GC^k is a logic introduced by Scheidt and Schweikardt (2023) to express properties of hypergraphs. It is similar to first-order logic with counting quantifiers (C) adapted to the hypergraph setting. It has distinct sets of variables for vertices and for hyperedges and requires vertex variables to be guarded by hyperedge variables on every quantification. We prove that two hypergraphs G, H satisfy the same sentences in the logic GC^k with guard depth at most k if, and only if, they are homomorphism indistinguishable over the class of hypergraphs of strict hypertree depth at most k. This lifts the analogous result for tree depth ≤ k and sentences of first-order logic with counting quantifiers of quantifier rank at most k due to Grohe (2020) from graphs to hypergraphs. The guard depth of a formula is the quantifier rank with respect to hyperedge variables, and strict hypertree depth is a restriction of hypertree depth as defined by Adler, Gavenčiak and Klimošová (2012). To justify this restriction, we show that for every H, the strict hypertree depth of H is at most 1 larger than its hypertree depth, and we give additional evidence that strict hypertree depth can be viewed as a reasonable generalisation of tree depth for hypergraphs.

Cite as

Benjamin Scheidt. On Homomorphism Indistinguishability and Hypertree Depth. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 152:1-152:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{scheidt:LIPIcs.ICALP.2024.152,
  author =	{Scheidt, Benjamin},
  title =	{{On Homomorphism Indistinguishability and Hypertree Depth}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{152:1--152:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.152},
  URN =		{urn:nbn:de:0030-drops-202958},
  doi =		{10.4230/LIPIcs.ICALP.2024.152},
  annote =	{Keywords: homomorphism indistinguishability, counting logics, guarded logics, hypergraphs, incidence graphs, tree depth, elimination forest, hypertree width}
}
Document
Effective Resistances in Non-Expander Graphs

Authors: Dongrun Cai, Xue Chen, and Pan Peng

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Effective resistances are ubiquitous in graph algorithms and network analysis. For an undirected graph G, its effective resistance R_G(s,t) between two vertices s and t is defined as the equivalent resistance between s and t if G is thought of as an electrical network with unit resistance on each edge. If we use L_G to denote the Laplacian matrix of G and L_G^† to denote its pseudo-inverse, we have R_G(s,t) = (𝟏_s-𝟏_t)^⊤ L^† (𝟏_s-𝟏_t) such that classical Laplacian solvers [Daniel A. Spielman and Shang{-}Hua Teng, 2014] provide almost-linear time algorithms to approximate R_G(s,t). In this work, we study sublinear time algorithms to approximate the effective resistance of an adjacent pair s and t. We consider the classical adjacency list model [Ron, 2019] for local algorithms. While recent works [Andoni et al., 2018; Peng et al., 2021; Li and Sachdeva, 2023] have provided sublinear time algorithms for expander graphs, we prove several lower bounds for general graphs of n vertices and m edges: 1) It needs Ω(n) queries to obtain 1.01-approximations of the effective resistance of an adjacent pair s and t, even for graphs of degree at most 3 except s and t. 2) For graphs of degree at most d and any parameter 𝓁, it needs Ω(m/𝓁) queries to obtain c ⋅ min{d,𝓁}-approximations where c > 0 is a universal constant. Moreover, we supplement the first lower bound by providing a sublinear time (1+ε)-approximation algorithm for graphs of degree 2 except the pair s and t. One of our technical ingredients is to bound the expansion of a graph in terms of the smallest non-trivial eigenvalue of its Laplacian matrix after removing edges. We discover a new lower bound on the eigenvalues of perturbed graphs (resp. perturbed matrices) by incorporating the effective resistance of the removed edge (resp. the leverage scores of the removed rows), which may be of independent interest.

Cite as

Dongrun Cai, Xue Chen, and Pan Peng. Effective Resistances in Non-Expander Graphs. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 29:1-29:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cai_et_al:LIPIcs.ESA.2023.29,
  author =	{Cai, Dongrun and Chen, Xue and Peng, Pan},
  title =	{{Effective Resistances in Non-Expander Graphs}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{29:1--29:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.29},
  URN =		{urn:nbn:de:0030-drops-186823},
  doi =		{10.4230/LIPIcs.ESA.2023.29},
  annote =	{Keywords: Sublinear Time Algorithm, Effective Resistance, Leverage Scores, Matrix Perturbation}
}
Document
Approximation Algorithms for 1-Wasserstein Distance Between Persistence Diagrams

Authors: Samantha Chen and Yusu Wang

Published in: LIPIcs, Volume 190, 19th International Symposium on Experimental Algorithms (SEA 2021)


Abstract
Recent years have witnessed a tremendous growth using topological summaries, especially the persistence diagrams (encoding the so-called persistent homology) for analyzing complex shapes. Intuitively, persistent homology maps a potentially complex input object (be it a graph, an image, or a point set and so on) to a unified type of feature summary, called the persistence diagrams. One can then carry out downstream data analysis tasks using such persistence diagram representations. A key problem is to compute the distance between two persistence diagrams efficiently. In particular, a persistence diagram is essentially a multiset of points in the plane, and one popular distance is the so-called 1-Wasserstein distance between persistence diagrams. In this paper, we present two algorithms to approximate the 1-Wasserstein distance for persistence diagrams in near-linear time. These algorithms primarily follow the same ideas as two existing algorithms to approximate optimal transport between two finite point-sets in Euclidean spaces via randomly shifted quadtrees. We show how these algorithms can be effectively adapted for the case of persistence diagrams. Our algorithms are much more efficient than previous exact and approximate algorithms, both in theory and in practice, and we demonstrate its efficiency via extensive experiments. They are conceptually simple and easy to implement, and the code is publicly available in github.

Cite as

Samantha Chen and Yusu Wang. Approximation Algorithms for 1-Wasserstein Distance Between Persistence Diagrams. In 19th International Symposium on Experimental Algorithms (SEA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 190, pp. 14:1-14:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.SEA.2021.14,
  author =	{Chen, Samantha and Wang, Yusu},
  title =	{{Approximation Algorithms for 1-Wasserstein Distance Between Persistence Diagrams}},
  booktitle =	{19th International Symposium on Experimental Algorithms (SEA 2021)},
  pages =	{14:1--14:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-185-6},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{190},
  editor =	{Coudert, David and Natale, Emanuele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2021.14},
  URN =		{urn:nbn:de:0030-drops-137861},
  doi =		{10.4230/LIPIcs.SEA.2021.14},
  annote =	{Keywords: persistence diagrams, approximation algorithms, Wasserstein distance, optimal transport}
}
Document
Elder-Rule-Staircodes for Augmented Metric Spaces

Authors: Chen Cai, Woojin Kim, Facundo Mémoli, and Yusu Wang

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
An augmented metric space (X, d_X, f_X) is a metric space (X, d_X) equipped with a function f_X: X → ℝ. It arises commonly in practice, e.g, a point cloud X in ℝ^d where each point x∈ X has a density function value f_X(x) associated to it. Such an augmented metric space naturally gives rise to a 2-parameter filtration. However, the resulting 2-parameter persistence module could still be of wild representation type, and may not have simple indecomposables. In this paper, motivated by the elder-rule for the zeroth homology of a 1-parameter filtration, we propose a barcode-like summary, called the elder-rule-staircode, as a way to encode the zeroth homology of the 2-parameter filtration induced by a finite augmented metric space. Specifically, given a finite (X, d_X, f_X), its elder-rule-staircode consists of n = |X| number of staircase-like blocks in the plane. We show that the fibered barcode, the fibered merge tree, and the graded Betti numbers associated to the zeroth homology of the 2-parameter filtration induced by (X, d_X, f_X) can all be efficiently computed once the elder-rule-staircode is given. Furthermore, for certain special cases, this staircode corresponds exactly to the set of indecomposables of the zeroth homology of the 2-parameter filtration. Finally, we develop and implement an efficient algorithm to compute the elder-rule-staircode in O(n²log n) time, which can be improved to O(n²α(n)) if X is from a fixed dimensional Euclidean space ℝ^d, where α(n) is the inverse Ackermann function.

Cite as

Chen Cai, Woojin Kim, Facundo Mémoli, and Yusu Wang. Elder-Rule-Staircodes for Augmented Metric Spaces. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 26:1-26:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cai_et_al:LIPIcs.SoCG.2020.26,
  author =	{Cai, Chen and Kim, Woojin and M\'{e}moli, Facundo and Wang, Yusu},
  title =	{{Elder-Rule-Staircodes for Augmented Metric Spaces}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{26:1--26:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.26},
  URN =		{urn:nbn:de:0030-drops-121848},
  doi =		{10.4230/LIPIcs.SoCG.2020.26},
  annote =	{Keywords: Persistent homology, Multiparameter persistence, Barcodes, Elder rule, Hierarchical clustering, Graded Betti numbers}
}
Document
A Quadratic Lower Bound for Homogeneous Algebraic Branching Programs

Authors: Mrinal Kumar

Published in: LIPIcs, Volume 79, 32nd Computational Complexity Conference (CCC 2017)


Abstract
An algebraic branching program (ABP) is a directed acyclic graph, with a start vertex s, and end vertex t and each edge having a weight which is an affine form in variables x_1, x_2, ..., x_n over an underlying field. An ABP computes a polynomial in a natural way, as the sum of weights of all paths from s to t, where the weight of a path is the product of the weights of the edges in the path. An ABP is said to be homogeneous if the polynomial computed at every vertex is homogeneous. In this paper, we show that any homogeneous algebraic branching program which computes the polynomial x_1^n + x_2^n + ... + x_n^n has at least Omega(n^2) vertices (and edges). To the best of our knowledge, this seems to be the first non-trivial super-linear lower bound on the number of vertices for a general homogeneous ABP and slightly improves the known lower bound of Omega(n log n) on the number of edges in a general (possibly non-homogeneous) ABP, which follows from the classical results of Strassen (1973) and Baur--Strassen (1983). On the way, we also get an alternate and unified proof of an Omega(n log n) lower bound on the size of a homogeneous arithmetic circuit (follows from [Strassen, 1973] and [Baur-Strassen, 1983]), and an n/2 lower bound (n over reals) on the determinantal complexity of an explicit polynomial [Mignon-Ressayre, 2004], [Cai, Chen, Li, 2010], [Yabe, 2015]. These are currently the best lower bounds known for these problems for any explicit polynomial, and were originally proved nearly two decades apart using seemingly different proof techniques.

Cite as

Mrinal Kumar. A Quadratic Lower Bound for Homogeneous Algebraic Branching Programs. In 32nd Computational Complexity Conference (CCC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 79, pp. 19:1-19:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{kumar:LIPIcs.CCC.2017.19,
  author =	{Kumar, Mrinal},
  title =	{{A Quadratic Lower Bound for Homogeneous Algebraic Branching Programs}},
  booktitle =	{32nd Computational Complexity Conference (CCC 2017)},
  pages =	{19:1--19:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-040-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{79},
  editor =	{O'Donnell, Ryan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2017.19},
  URN =		{urn:nbn:de:0030-drops-75134},
  doi =		{10.4230/LIPIcs.CCC.2017.19},
  annote =	{Keywords: algebraic branching programs, arithmetic circuits, determinantal complexity, lower bounds}
}
Document
Depth-4 Lower Bounds, Determinantal Complexity: A Unified Approach

Authors: Suryajith Chillara and Partha Mukhopadhyay

Published in: LIPIcs, Volume 25, 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)


Abstract
Tavenas has recently proved that any n^{O(1)}-variate and degree n polynomial in VP can be computed by a depth-4 SigmaPi^[O(sqrt{n})]SigmaPi^{[sqrt{n}]} circuit of size 2^{O(n^{1/2}.log(n))} [Tavenas, 2013]. So, to prove that VP is not equal to VNP it is sufficient to show that an explicit polynomial in VNP of degree n requires 2^{omega(n^{1/2}.log(n))} size depth-4 circuits. Soon after Tavenas' result, for two different explicit polynomials, depth-4 circuit size lower bounds of 2^{Omega(n^{1/2}.log(n))} have been proved (see [Kayal, Saha, and Saptharishi, 2013] and [Fournier et al., 2013]). In particular, using combinatorial design [Kayal et al., 2013] construct an explicit polynomial in VNP that requires depth-4 circuits of size 2^{Omega(n^{1/2}.log(n))} and [Fournier et al., 2013] show that the iterated matrix multiplication polynomial (which is in VP) also requires 2^{Omega(n^{1/2}.log(n))} size depth-4 circuits. In this paper, we identify a simple combinatorial property such that any polynomial f that satisfies this property would achieve a similar depth-4 circuit size lower bound. In particular, it does not matter whether f is in VP or in VNP. As a result, we get a simple unified lower bound analysis for the above mentioned polynomials. Another goal of this paper is to compare our current knowledge of the depth-4 circuit size lower bounds and the determinantal complexity lower bounds. Currently the best known determinantal complexity lower bound is Omega(n^2) for Permanent of a nxn matrix (which is a n^2-variate and degree n polynomial) [Cai, Chen, and Li, 2008]. We prove that the determinantal complexity of the iterated matrix multiplication polynomial is Omega(dn) where d is the number of matrices and n is the dimension of the matrices. So for d=n, we get that the iterated matrix multiplication polynomial achieves the current best known lower bounds in both fronts: depth-4 circuit size and determinantal complexity. Our result also settles the determinantal complexity of the iterated matrix multiplication polynomial to Theta(dn). To the best of our knowledge, a Theta(n) bound for the determinantal complexity for the iterated matrix multiplication polynomial was known only for any constant d>1 [Jansen, 2011].

Cite as

Suryajith Chillara and Partha Mukhopadhyay. Depth-4 Lower Bounds, Determinantal Complexity: A Unified Approach. In 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 25, pp. 239-250, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{chillara_et_al:LIPIcs.STACS.2014.239,
  author =	{Chillara, Suryajith and Mukhopadhyay, Partha},
  title =	{{Depth-4 Lower Bounds, Determinantal Complexity: A Unified Approach}},
  booktitle =	{31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)},
  pages =	{239--250},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-65-1},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{25},
  editor =	{Mayr, Ernst W. and Portier, Natacha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2014.239},
  URN =		{urn:nbn:de:0030-drops-44610},
  doi =		{10.4230/LIPIcs.STACS.2014.239},
  annote =	{Keywords: Arithmetic Circuits, Determinantal Complexity, Depth-4 Lower Bounds}
}
Document
Polynomial Kernelizations for MIN F^+Pi_1 and MAX NP

Authors: Stefan Kratsch

Published in: LIPIcs, Volume 3, 26th International Symposium on Theoretical Aspects of Computer Science (2009)


Abstract
The relation of constant-factor approximability to fixed-parameter tractability and kernelization is a long-standing open question. We prove that two large classes of constant-factor approximable problems, namely~$\textsc{MIN F}^+\Pi_1$ and~$\textsc{MAX NP}$, including the well-known subclass~$\textsc{MAX SNP}$, admit polynomial kernelizations for their natural decision versions. This extends results of Cai and Chen (JCSS 1997), stating that the standard parameterizations of problems in~$\textsc{MAX SNP}$ and~$\textsc{MIN F}^+\Pi_1$ are fixed-parameter tractable, and complements recent research on problems that do not admit polynomial kernelizations (Bodlaender et al.\ ICALP 2008).

Cite as

Stefan Kratsch. Polynomial Kernelizations for MIN F^+Pi_1 and MAX NP. In 26th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 3, pp. 601-612, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{kratsch:LIPIcs.STACS.2009.1851,
  author =	{Kratsch, Stefan},
  title =	{{Polynomial Kernelizations for MIN F^+Pi\underline1 and MAX NP}},
  booktitle =	{26th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{601--612},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-09-5},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{3},
  editor =	{Albers, Susanne and Marion, Jean-Yves},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2009.1851},
  URN =		{urn:nbn:de:0030-drops-18511},
  doi =		{10.4230/LIPIcs.STACS.2009.1851},
  annote =	{Keywords: Parameterized complexity, Kernelization, Approximation algorithms}
}
  • Refine by Author
  • 2 Wang, Yusu
  • 1 Anand, Konrad
  • 1 Blacher, Mark
  • 1 Cai, Chen
  • 1 Cai, Dongrun
  • Show More...

  • Refine by Classification
  • 1 Applied computing → Physics
  • 1 Mathematics of computing → Hypergraphs
  • 1 Mathematics of computing → Solvers
  • 1 Mathematics of computing → Topology
  • 1 Theory of computation → Algorithm design techniques
  • Show More...

  • Refine by Keyword
  • 1 Approximate counting
  • 1 Approximation algorithms
  • 1 Arithmetic Circuits
  • 1 Barcodes
  • 1 Circuit Complexity
  • Show More...

  • Refine by Type
  • 12 document

  • Refine by Publication Year
  • 6 2024
  • 1 2009
  • 1 2014
  • 1 2017
  • 1 2020
  • Show More...