30 Search Results for "Cai, Chen"


Document
Open the Chests: An Environment for Activity Recognition and Sequential Decision Problems Using Temporal Logic

Authors: Ivelina Stoyanova, Nicolas Museux, Sao Mai Nguyen, and David Filliat

Published in: LIPIcs, Volume 318, 31st International Symposium on Temporal Representation and Reasoning (TIME 2024)


Abstract
This article presents Open the Chests, a novel benchmark environment designed for simulating and testing activity recognition and reactive decision-making algorithms. By leveraging temporal logic, Open the Chests offers a dynamic, event-driven simulation platform that illustrates the complexities of real-world systems. The environment contains multiple chests, each representing an activity pattern that an interacting agent must identify and respond to by pressing a corresponding button. The agent must analyze sequences of asynchronous events generated by the environment to recognize these patterns and make informed decisions. With the aim of theoretically grounding the environment, the Activity-Based Markov Decision Process (AB-MDP) is defined, allowing to model the context-dependent interaction with activities. Our goal is to propose a robust tool for the development, testing, and bench-marking of algorithms that is illustrative of realistic scenarios and allows for the isolation of specific complexities in event-driven environments.

Cite as

Ivelina Stoyanova, Nicolas Museux, Sao Mai Nguyen, and David Filliat. Open the Chests: An Environment for Activity Recognition and Sequential Decision Problems Using Temporal Logic. In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{stoyanova_et_al:LIPIcs.TIME.2024.5,
  author =	{Stoyanova, Ivelina and Museux, Nicolas and Nguyen, Sao Mai and Filliat, David},
  title =	{{Open the Chests: An Environment for Activity Recognition and Sequential Decision Problems Using Temporal Logic}},
  booktitle =	{31st International Symposium on Temporal Representation and Reasoning (TIME 2024)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-349-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{318},
  editor =	{Sala, Pietro and Sioutis, Michael and Wang, Fusheng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2024.5},
  URN =		{urn:nbn:de:0030-drops-212128},
  doi =		{10.4230/LIPIcs.TIME.2024.5},
  annote =	{Keywords: Event-Based Decision Making, Activity Recognition, Temporal Logic, Reinforcement Learning, Dynamic Systems, Complex Event Processing, Benchmark Environment, Real-Time Simulation}
}
Document
FastMinTC+: A Fast and Effective Heuristic for Minimum Timeline Cover on Temporal Networks

Authors: Giorgio Lazzarinetti, Sara Manzoni, Italo Zoppis, and Riccardo Dondi

Published in: LIPIcs, Volume 318, 31st International Symposium on Temporal Representation and Reasoning (TIME 2024)


Abstract
The analysis and summarization of temporal networks are crucial for understanding complex interactions over time, yet pose significant computational challenges. This paper introduces FastMinTC+, an innovative heuristic approach designed to efficiently solve the Minimum Timeline Cover (MinTCover) problem in temporal networks. Our approach focuses on the optimization of activity timelines within temporal networks, aiming to provide both effective and computationally feasible solutions. By employing a low-complexity approach, FastMinTC+ adeptly handles massive temporal graphs, improving upon existing methods. Indeed, comparative evaluations on both synthetic and real-world datasets demonstrate that our algorithm outperforms established benchmarks with remarkable efficiency and accuracy. The results highlight the potential of heuristic approaches in the domain of temporal network analysis and open up new avenues for further research incorporating other computational techniques, for example deep learning, to enhance the adaptability and precision of such heuristics.

Cite as

Giorgio Lazzarinetti, Sara Manzoni, Italo Zoppis, and Riccardo Dondi. FastMinTC+: A Fast and Effective Heuristic for Minimum Timeline Cover on Temporal Networks. In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 20:1-20:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lazzarinetti_et_al:LIPIcs.TIME.2024.20,
  author =	{Lazzarinetti, Giorgio and Manzoni, Sara and Zoppis, Italo and Dondi, Riccardo},
  title =	{{FastMinTC+: A Fast and Effective Heuristic for Minimum Timeline Cover on Temporal Networks}},
  booktitle =	{31st International Symposium on Temporal Representation and Reasoning (TIME 2024)},
  pages =	{20:1--20:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-349-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{318},
  editor =	{Sala, Pietro and Sioutis, Michael and Wang, Fusheng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2024.20},
  URN =		{urn:nbn:de:0030-drops-212275},
  doi =		{10.4230/LIPIcs.TIME.2024.20},
  annote =	{Keywords: Temporal Networks, Activity Timeline, Timeline Cover, Vertex Cover, Optimization, Heuristic}
}
Document
Hypergraph Connectivity Augmentation in Strongly Polynomial Time

Authors: Kristóf Bérczi, Karthekeyan Chandrasekaran, Tamás Király, and Shubhang Kulkarni

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We consider hypergraph network design problems where the goal is to construct a hypergraph that satisfies certain connectivity requirements. For graph network design problems where the goal is to construct a graph that satisfies certain connectivity requirements, the number of edges in every feasible solution is at most quadratic in the number of vertices. In contrast, for hypergraph network design problems, we might have feasible solutions in which the number of hyperedges is exponential in the number of vertices. This presents an additional technical challenge in hypergraph network design problems compared to graph network design problems: in order to solve the problem in polynomial time, we first need to show that there exists a feasible solution in which the number of hyperedges is polynomial in the input size. The central theme of this work is to overcome this additional technical challenge for certain hypergraph network design problems. We show that these hypergraph network design problems admit solutions in which the number of hyperedges is polynomial in the number of vertices and moreover, can be solved in strongly polynomial time. Our work improves on the previous fastest pseudo-polynomial run-time for these problems. As applications of our results, we derive the first strongly polynomial time algorithms for (i) degree-specified hypergraph connectivity augmentation using hyperedges and (ii) degree-specified hypergraph node-to-area connectivity augmentation using hyperedges.

Cite as

Kristóf Bérczi, Karthekeyan Chandrasekaran, Tamás Király, and Shubhang Kulkarni. Hypergraph Connectivity Augmentation in Strongly Polynomial Time. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 22:1-22:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berczi_et_al:LIPIcs.ESA.2024.22,
  author =	{B\'{e}rczi, Krist\'{o}f and Chandrasekaran, Karthekeyan and Kir\'{a}ly, Tam\'{a}s and Kulkarni, Shubhang},
  title =	{{Hypergraph Connectivity Augmentation in Strongly Polynomial Time}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{22:1--22:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.22},
  URN =		{urn:nbn:de:0030-drops-210938},
  doi =		{10.4230/LIPIcs.ESA.2024.22},
  annote =	{Keywords: Hypergraphs, Hypergraph Connectivity, Submodular Functions, Combinatorial Optimization}
}
Document
Exact Minimum Weight Spanners via Column Generation

Authors: Fritz Bökler, Markus Chimani, Henning Jasper, and Mirko H. Wagner

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Given a weighted graph G, a minimum weight α-spanner is a least-weight subgraph H ⊆ G that preserves minimum distances between all node pairs up to a factor of α. There are many results on heuristics and approximation algorithms, including a recent investigation of their practical performance [Markus Chimani and Finn Stutzenstein, 2022]. Exact approaches, in contrast, have long been denounced as impractical: The first exact ILP (integer linear program) method [Sigurd and Zachariasen, 2004] from 2004 is based on a model with exponentially many path variables, solved via column generation. A second approach [Ahmed et al., 2019], modeling via arc-based multicommodity flow, was presented in 2019. In both cases, only graphs with 40-100 nodes were reported to be solvable. In this paper, we briefly report on a theoretical comparison between these two models from a polyhedral point of view, and then concentrate on improvements and engineering aspects. We evaluate their performance in a large-scale empirical study. We report that our tuned column generation approach, based on multicriteria shortest path computations, is able to solve instances with over 16 000 nodes within 13 min. Furthermore, now knowing optimal solutions for larger graphs, we are able to investigate the quality of the strongest known heuristic on reasonably sized instances for the first time.

Cite as

Fritz Bökler, Markus Chimani, Henning Jasper, and Mirko H. Wagner. Exact Minimum Weight Spanners via Column Generation. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 30:1-30:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bokler_et_al:LIPIcs.ESA.2024.30,
  author =	{B\"{o}kler, Fritz and Chimani, Markus and Jasper, Henning and Wagner, Mirko H.},
  title =	{{Exact Minimum Weight Spanners via Column Generation}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{30:1--30:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.30},
  URN =		{urn:nbn:de:0030-drops-211012},
  doi =		{10.4230/LIPIcs.ESA.2024.30},
  annote =	{Keywords: Graph spanners, ILP, algorithm engineering, experimental study}
}
Document
Profitable Manipulations of Cryptographic Self-Selection Are Statistically Detectable

Authors: Linda Cai, Jingyi Liu, S. Matthew Weinberg, and Chenghan Zhou

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
Cryptographic Self-Selection is a common primitive underlying leader-selection for Proof-of-Stake blockchain protocols. The concept was first popularized in Algorand [Jing Chen and Silvio Micali, 2019], who also observed that the protocol might be manipulable. [Matheus V. X. Ferreira et al., 2022] provide a concrete manipulation that is strictly profitable for a staker of any size (and also prove upper bounds on the gains from manipulation). Separately, [Maryam Bahrani and S. Matthew Weinberg, 2024; Aviv Yaish et al., 2023] initiate the study of undetectable profitable manipulations of consensus protocols with a focus on the seminal Selfish Mining strategy [Eyal and Sirer, 2014] for Bitcoin’s Proof-of-Work longest-chain protocol. They design a Selfish Mining variant that, for sufficiently large miners, is strictly profitable yet also indistinguishable to an onlooker from routine latency (that is, a sufficiently large profit-maximizing miner could use their strategy to strictly profit over being honest in a way that still appears to the rest of the network as though everyone is honest but experiencing mildly higher latency. This avoids any risk of negatively impacting the value of the underlying cryptocurrency due to attack detection). We investigate the detectability of profitable manipulations of the canonical cryptographic self-selection leader selection protocol introduced in [Jing Chen and Silvio Micali, 2019] and studied in [Matheus V. X. Ferreira et al., 2022], and establish that for any player with α < (3-√5)/2 ≈ 0.38 fraction of the total stake, every strictly profitable manipulation is statistically detectable. Specifically, we consider an onlooker who sees only the random seed of each round (and does not need to see any other broadcasts by any other players). We show that the distribution of the sequence of random seeds when any player is profitably manipulating the protocol is inconsistent with any distribution that could arise by honest stakers being offline or timing out (for a natural stylized model of honest timeouts).

Cite as

Linda Cai, Jingyi Liu, S. Matthew Weinberg, and Chenghan Zhou. Profitable Manipulations of Cryptographic Self-Selection Are Statistically Detectable. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 30:1-30:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cai_et_al:LIPIcs.AFT.2024.30,
  author =	{Cai, Linda and Liu, Jingyi and Weinberg, S. Matthew and Zhou, Chenghan},
  title =	{{Profitable Manipulations of Cryptographic Self-Selection Are Statistically Detectable}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{30:1--30:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.30},
  URN =		{urn:nbn:de:0030-drops-209660},
  doi =		{10.4230/LIPIcs.AFT.2024.30},
  annote =	{Keywords: Blockchain, Cryptocurrency, Proof-of-Stake, Strategic Mining, Statistical Detection}
}
Document
APPROX
Learning-Augmented Maximum Independent Set

Authors: Vladimir Braverman, Prathamesh Dharangutte, Vihan Shah, and Chen Wang

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study the Maximum Independent Set (MIS) problem on general graphs within the framework of learning-augmented algorithms. The MIS problem is known to be NP-hard and is also NP-hard to approximate to within a factor of n^(1-δ) for any δ > 0. We show that we can break this barrier in the presence of an oracle obtained through predictions from a machine learning model that answers vertex membership queries for a fixed MIS with probability 1/2+ε. In the first setting we consider, the oracle can be queried once per vertex to know if a vertex belongs to a fixed MIS, and the oracle returns the correct answer with probability 1/2 + ε. Under this setting, we show an algorithm that obtains an Õ((√Δ)/ε)-approximation in O(m) time where Δ is the maximum degree of the graph. In the second setting, we allow multiple queries to the oracle for a vertex, each of which is correct with probability 1/2 + ε. For this setting, we show an O(1)-approximation algorithm using O(n/ε²) total queries and Õ(m) runtime.

Cite as

Vladimir Braverman, Prathamesh Dharangutte, Vihan Shah, and Chen Wang. Learning-Augmented Maximum Independent Set. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 24:1-24:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{braverman_et_al:LIPIcs.APPROX/RANDOM.2024.24,
  author =	{Braverman, Vladimir and Dharangutte, Prathamesh and Shah, Vihan and Wang, Chen},
  title =	{{Learning-Augmented Maximum Independent Set}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{24:1--24:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.24},
  URN =		{urn:nbn:de:0030-drops-210179},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.24},
  annote =	{Keywords: Learning-augmented algorithms, maximum independent set, graph algorithms}
}
Document
RANDOM
On Black-Box Meta Complexity and Function Inversion

Authors: Noam Mazor and Rafael Pass

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
The relationships between various meta-complexity problems are not well understood in the worst-case regime, including whether the search version is harder than the decision version, whether the hardness scales with the "threshold", and how the hardness of different meta-complexity problems relate to one another, and to the task of function inversion. In this work, we present resolutions to some of these questions with respect to the black-box analog of these problems. In more detail, let MK^t_M P[s] denote the language consisting of strings x with K_{M}^t(x) < s(|x|), where K_M^t(x) denotes the t-bounded Kolmogorov complexity of x with M as the underlying (Universal) Turing machine, and let search-MK^t_M P[s] denote the search version of the same problem. We show that if for every Universal Turing machine U there exists a 2^{α n}poly(n)-size U-oracle aided circuit deciding MK^t_U P[n-O(1)], then for every function s, and every not necessarily universal Turing machine M, there exists a 2^{α s(n)}poly(n)-size M-oracle aided circuit solving search-MK^t_M P[s(n)]; this in turn yields circuits of roughly the same size for both the Minimum Circuit Size Problem (MCSP), and the function inversion problem, as they can be thought of as instantiating MK^t_M P with particular choices of (a non-universal) TMs M (the circuit emulator for the case of MCSP, and the function evaluation in the case of function inversion). As a corollary of independent interest, we get that the complexity of black-box function inversion is (roughly) the same as the complexity of black-box deciding MK^t_U P[n-O(1)] for any universal TM U; that is, also in the worst-case regime, black-box function inversion is "equivalent" to black-box deciding MK^t_U P.

Cite as

Noam Mazor and Rafael Pass. On Black-Box Meta Complexity and Function Inversion. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 66:1-66:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mazor_et_al:LIPIcs.APPROX/RANDOM.2024.66,
  author =	{Mazor, Noam and Pass, Rafael},
  title =	{{On Black-Box Meta Complexity and Function Inversion}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{66:1--66:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.66},
  URN =		{urn:nbn:de:0030-drops-210597},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.66},
  annote =	{Keywords: Meta Complexity, Kolmogorov complexity, function inversion}
}
Document
Rose: Composable Autodiff for the Interactive Web

Authors: Sam Estep, Wode Ni, Raven Rothkopf, and Joshua Sunshine

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Reverse-mode automatic differentiation (autodiff) has been popularized by deep learning, but its ability to compute gradients is also valuable for interactive use cases such as bidirectional computer-aided design, embedded physics simulations, visualizing causal inference, and more. Unfortunately, the web is ill-served by existing autodiff frameworks, which use autodiff strategies that perform poorly on dynamic scalar programs, and pull in heavy dependencies that would result in unacceptable webpage sizes. This work introduces Rose, a lightweight autodiff framework for the web using a new hybrid approach to reverse-mode autodiff, blending conventional tracing and transformation techniques in a way that uses the host language for metaprogramming while also allowing the programmer to explicitly define reusable functions that comprise a larger differentiable computation. We demonstrate the value of the Rose design by porting two differentiable physics simulations, and evaluate its performance on an optimization-based diagramming application, showing Rose outperforming the state-of-the-art in web-based autodiff by multiple orders of magnitude.

Cite as

Sam Estep, Wode Ni, Raven Rothkopf, and Joshua Sunshine. Rose: Composable Autodiff for the Interactive Web. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 15:1-15:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{estep_et_al:LIPIcs.ECOOP.2024.15,
  author =	{Estep, Sam and Ni, Wode and Rothkopf, Raven and Sunshine, Joshua},
  title =	{{Rose: Composable Autodiff for the Interactive Web}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{15:1--15:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.15},
  URN =		{urn:nbn:de:0030-drops-208642},
  doi =		{10.4230/LIPIcs.ECOOP.2024.15},
  annote =	{Keywords: Automatic differentiation, differentiable programming, compilers, web}
}
Document
Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations

Authors: Jie Qiu, Colin Cai, Sahil Bhatia, Niranjan Hasabnis, Sanjit A. Seshia, and Alvin Cheung

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Tensor processing infrastructures such as deep learning frameworks and specialized hardware accelerators have revolutionized how computationally intensive code from domains such as deep learning and image processing is executed and optimized. These infrastructures provide powerful and expressive abstractions while ensuring high performance. However, to utilize them, code must be written specifically using the APIs / ISAs of such software frameworks or hardware accelerators. Importantly, given the fast pace of innovation in these domains, code written today quickly becomes legacy as new frameworks and accelerators are developed, and migrating such legacy code manually is a considerable effort. To enable developers in leveraging such DSLs while preserving their current programming paradigm, we present Tenspiler, a verified-lifting-based compiler that uses program synthesis to translate sequential programs written in general-purpose programming languages (e.g., C++ or Python code that does not leverage any specialized framework or accelerator) into tensor operations. Central to Tenspiler is our carefully crafted yet simple intermediate language, named TensIR, that expresses tensor operations. TensIR enables efficient lifting, verification, and code generation. Unlike classical pattern-matching-based compilers, Tenspiler uses program synthesis to translate input code into TensIR, which is then compiled to the target API / ISA. Currently, Tenspiler already supports six DSLs, spanning a broad spectrum of software and hardware environments. Furthermore, we show that new backends can be easily supported by Tenspiler by adding simple pattern-matching rules for TensIR. Using 10 real-world code benchmark suites, our experimental evaluation shows that by translating code to be executed on 6 different software frameworks and hardware devices, Tenspiler offers on average 105× kernel and 9.65× end-to-end execution time improvement over the fully-optimized sequential implementation of the same benchmarks.

Cite as

Jie Qiu, Colin Cai, Sahil Bhatia, Niranjan Hasabnis, Sanjit A. Seshia, and Alvin Cheung. Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 32:1-32:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{qiu_et_al:LIPIcs.ECOOP.2024.32,
  author =	{Qiu, Jie and Cai, Colin and Bhatia, Sahil and Hasabnis, Niranjan and Seshia, Sanjit A. and Cheung, Alvin},
  title =	{{Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{32:1--32:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.32},
  URN =		{urn:nbn:de:0030-drops-208817},
  doi =		{10.4230/LIPIcs.ECOOP.2024.32},
  annote =	{Keywords: Program Synthesis, Code Transpilation, Tensor DSLs, Verification}
}
Document
ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization

Authors: Zhihan Chen, Peng Lin, Hao Hu, and Shaowei Cai

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
As a broadly applied technique in numerous optimization problems, recently, local search has been employed to solve Pseudo-Boolean Optimization (PBO) problem. A representative local search solver for PBO is LS-PBO. In this paper, firstly, we improve LS-PBO by a dynamic scoring mechanism, which dynamically strikes a balance between score on hard constraints and score on the objective function. Moreover, on top of this improved LS-PBO, we develop the first parallel local search PBO solver. The main idea is to share good solutions among different threads to guide the search, by maintaining a pool of feasible solutions. For evaluating solutions when updating the pool, we propose a function that considers both the solution quality and the diversity of the pool. Furthermore, we calculate the polarity density in the pool to enhance the scoring function of local search. Our empirical experiments show clear benefits of the proposed parallel approach, making it competitive with the parallel version of the famous commercial solver Gurobi.

Cite as

Zhihan Chen, Peng Lin, Hao Hu, and Shaowei Cai. ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 5:1-5:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.CP.2024.5,
  author =	{Chen, Zhihan and Lin, Peng and Hu, Hao and Cai, Shaowei},
  title =	{{ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{5:1--5:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.5},
  URN =		{urn:nbn:de:0030-drops-206900},
  doi =		{10.4230/LIPIcs.CP.2024.5},
  annote =	{Keywords: Pseudo-Boolean Optimization, Parallel Solving, Local Search, Scoring Function, Solution Pool}
}
Document
Deep Cooperation of Local Search and Unit Propagation Techniques

Authors: Xiamin Chen, Zhendong Lei, and Pinyan Lu

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Local search (LS) is an efficient method for solving combinatorial optimization problems such as MaxSAT and Pseudo Boolean Problems (PBO). However, due to a lack of reasoning power and global information, LS methods get stuck at local optima easily. In contrast to the LS, Systematic Search utilizes unit propagation and clause learning techniques with strong reasoning capabilities to avoid falling into local optima. Nevertheless, the complete search is generally time-consuming to obtain a global optimal solution. This work proposes a deep cooperation framework combining local search and unit propagation to address their inherent disadvantages. First, we design a mechanism to detect when LS gets stuck, and then a well-designed unit propagation procedure is called upon to help escape the local optima. To the best of our knowledge, we are the first to integrate unit propagation technique within LS to overcome local optima. Experiments based on a broad range of benchmarks from MaxSAT Evaluations, PBO competitions, the Mixed Integer Programming Library, and three real-life cases validate that our method significantly improves three state-of-the-art MaxSAT and PBO local search solvers.

Cite as

Xiamin Chen, Zhendong Lei, and Pinyan Lu. Deep Cooperation of Local Search and Unit Propagation Techniques. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 6:1-6:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.CP.2024.6,
  author =	{Chen, Xiamin and Lei, Zhendong and Lu, Pinyan},
  title =	{{Deep Cooperation of Local Search and Unit Propagation Techniques}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{6:1--6:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.6},
  URN =		{urn:nbn:de:0030-drops-206918},
  doi =		{10.4230/LIPIcs.CP.2024.6},
  annote =	{Keywords: PBO, Partial MaxSAT, LS, CDCL}
}
Document
An Efficient Local Search Solver for Mixed Integer Programming

Authors: Peng Lin, Mengchuan Zou, and Shaowei Cai

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Mixed integer programming (MIP) is a fundamental model in operations research. Local search is a powerful method for solving hard problems, but the development of local search solvers for MIP still needs to be explored. This work develops an efficient local search solver for solving MIP, called Local-MIP. We propose two new operators for MIP to adaptively modify variables for optimizing the objective function and satisfying constraints, respectively. Furthermore, we design a new weighting scheme to dynamically balance the priority between the objective function and each constraint, and propose a two-level scoring function structure to hierarchically guide the search for high-quality feasible solutions. Experiments are conducted on seven public benchmarks to compare Local-MIP with state-of-the-art MIP solvers, which demonstrate that Local-MIP significantly outperforms CPLEX, HiGHS, SCIP and Feasibility Jump, and is competitive with the most powerful commercial solver Gurobi. Moreover, Local-MIP establishes 4 new records for MIPLIB open instances.

Cite as

Peng Lin, Mengchuan Zou, and Shaowei Cai. An Efficient Local Search Solver for Mixed Integer Programming. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 19:1-19:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lin_et_al:LIPIcs.CP.2024.19,
  author =	{Lin, Peng and Zou, Mengchuan and Cai, Shaowei},
  title =	{{An Efficient Local Search Solver for Mixed Integer Programming}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{19:1--19:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.19},
  URN =		{urn:nbn:de:0030-drops-207041},
  doi =		{10.4230/LIPIcs.CP.2024.19},
  annote =	{Keywords: Mixed Integer Programming, Local Search, Operator, Scoring Function}
}
Document
Structure-Guided Local Improvement for Maximum Satisfiability

Authors: André Schidler and Stefan Szeider

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
The enhanced performance of today’s MaxSAT solvers has elevated their appeal for many large-scale applications, notably in software analysis and computer-aided design. Our research delves into refining anytime MaxSAT solving by repeatedly identifying and solving with an exact solver smaller subinstances that are chosen based on the graphical structure of the instance. We investigate various strategies to pinpoint these subinstances. This structure-guided selection of subinstances provides an exact solver with a high potential for improving the current solution. Our exhaustive experimental analyses contrast our methodology as instantiated in our tool MaxSLIM with previous studies and benchmark it against leading-edge MaxSAT solvers.

Cite as

André Schidler and Stefan Szeider. Structure-Guided Local Improvement for Maximum Satisfiability. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 26:1-26:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{schidler_et_al:LIPIcs.CP.2024.26,
  author =	{Schidler, Andr\'{e} and Szeider, Stefan},
  title =	{{Structure-Guided Local Improvement for Maximum Satisfiability}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{26:1--26:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.26},
  URN =		{urn:nbn:de:0030-drops-207112},
  doi =		{10.4230/LIPIcs.CP.2024.26},
  annote =	{Keywords: maximum satisfiability, large neighborhood search (LNS), SAT-based local improvement (SLIM), incomplete MaxSAT, graphical structure, metaheuristic}
}
Document
Learning Precedences for Scheduling Problems with Graph Neural Networks

Authors: Hélène Verhaeghe, Quentin Cappart, Gilles Pesant, and Claude-Guy Quimper

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
The resource constrained project scheduling problem (RCPSP) consists of scheduling a finite set of resource-consuming tasks within a temporal horizon subject to resource capacities and precedence relations between pairs of tasks. It is NP-hard and many techniques have been introduced to improve the efficiency of CP solvers to solve it. The problem is naturally represented as a directed graph, commonly referred to as the precedence graph, by linking pairs of tasks subject to a precedence. In this paper, we propose to leverage the ability of graph neural networks to extract knowledge from precedence graphs. This is carried out by learning new precedences that can be used either to add new constraints or to design a dedicated variable-selection heuristic. Experiments carried out on RCPSP instances from PSPLIB show the potential of learning to predict precedences and how they can help speed up the search for solutions by a CP solver.

Cite as

Hélène Verhaeghe, Quentin Cappart, Gilles Pesant, and Claude-Guy Quimper. Learning Precedences for Scheduling Problems with Graph Neural Networks. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 30:1-30:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{verhaeghe_et_al:LIPIcs.CP.2024.30,
  author =	{Verhaeghe, H\'{e}l\`{e}ne and Cappart, Quentin and Pesant, Gilles and Quimper, Claude-Guy},
  title =	{{Learning Precedences for Scheduling Problems with Graph Neural Networks}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{30:1--30:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.30},
  URN =		{urn:nbn:de:0030-drops-207150},
  doi =		{10.4230/LIPIcs.CP.2024.30},
  annote =	{Keywords: Scheduling, Precedence graph, Graph neural network}
}
Document
Stochastic Error Cancellation in Analog Quantum Simulation

Authors: Yiyi Cai, Yu Tong, and John Preskill

Published in: LIPIcs, Volume 310, 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)


Abstract
Analog quantum simulation is a promising path towards solving classically intractable problems in many-body physics on near-term quantum devices. However, the presence of noise limits the size of the system and the length of time that can be simulated. In our work, we consider an error model in which the actual Hamiltonian of the simulator differs from the target Hamiltonian we want to simulate by small local perturbations, which are assumed to be random and unbiased. We analyze the error accumulated in observables in this setting and show that, due to stochastic error cancellation, with high probability the error scales as the square root of the number of qubits instead of linearly. We explore the concentration phenomenon of this error as well as its implications for local observables in the thermodynamic limit. Moreover, we show that stochastic error cancellation also manifests in the fidelity between the target state at the end of time-evolution and the actual state we obtain in the presence of noise. This indicates that, to reach a certain fidelity, more noise can be tolerated than implied by the worst-case bound if the noise comes from many statistically independent sources.

Cite as

Yiyi Cai, Yu Tong, and John Preskill. Stochastic Error Cancellation in Analog Quantum Simulation. In 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 310, pp. 2:1-2:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cai_et_al:LIPIcs.TQC.2024.2,
  author =	{Cai, Yiyi and Tong, Yu and Preskill, John},
  title =	{{Stochastic Error Cancellation in Analog Quantum Simulation}},
  booktitle =	{19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)},
  pages =	{2:1--2:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-328-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{310},
  editor =	{Magniez, Fr\'{e}d\'{e}ric and Grilo, Alex Bredariol},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2024.2},
  URN =		{urn:nbn:de:0030-drops-206720},
  doi =		{10.4230/LIPIcs.TQC.2024.2},
  annote =	{Keywords: Analog quantum simulation, error cancellation, concentration of measure}
}
  • Refine by Author
  • 3 Cai, Shaowei
  • 2 Lin, Peng
  • 2 Wang, Yusu
  • 1 Anand, Konrad
  • 1 Bhatia, Sahil
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Randomized local search
  • 2 Computing methodologies → Machine learning
  • 2 Hardware → Theorem proving and SAT solving
  • 2 Mathematics of computing → Combinatorial optimization
  • 2 Mathematics of computing → Hypergraphs
  • Show More...

  • Refine by Keyword
  • 2 Local Search
  • 2 Scoring Function
  • 2 homomorphism indistinguishability
  • 1 Activity Recognition
  • 1 Activity Timeline
  • Show More...

  • Refine by Type
  • 30 document

  • Refine by Publication Year
  • 24 2024
  • 1 2009
  • 1 2014
  • 1 2017
  • 1 2020
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail