72 Search Results for "Chen, Jian-Jia"


Document
The Perception of Stress in Graph Drawings

Authors: Gavin J. Mooney, Helen C. Purchase, Michael Wybrow, Stephen G. Kobourov, and Jacob Miller

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Most of the common graph layout principles (a.k.a. "aesthetics") on which many graph drawing algorithms are based are easy to define and to perceive. For example, the number of pairs of edges that cross each other, how symmetric a drawing looks, the aspect ratio of the bounding box, or the angular resolution at the nodes. The extent to which a graph drawing conforms to these principles can be determined by looking at how it is drawn - that is, by looking at the marks on the page - without consideration for the underlying structure of the graph. A key layout principle is that of optimising "stress", the basis for many algorithms such as the popular Kamada & Kawai algorithm and several force-directed algorithms. The stress of a graph drawing is, loosely speaking, the extent to which the geometric distance between each pair of nodes is proportional to the shortest path between them - over the whole graph drawing. The definition of stress therefore relies on the underlying structure of the graph (the "paths") in a way that other layout principles do not, making stress difficult to describe to novices unfamiliar with graph drawing principles, and, we believe, difficult to perceive. We conducted an experiment to see whether people (novices as well as experts) can see stress in graph drawings, and found that it is possible to train novices to "see" stress - even if their perception strategies are not based on the definitional concepts.

Cite as

Gavin J. Mooney, Helen C. Purchase, Michael Wybrow, Stephen G. Kobourov, and Jacob Miller. The Perception of Stress in Graph Drawings. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 21:1-21:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mooney_et_al:LIPIcs.GD.2024.21,
  author =	{Mooney, Gavin J. and Purchase, Helen C. and Wybrow, Michael and Kobourov, Stephen G. and Miller, Jacob},
  title =	{{The Perception of Stress in Graph Drawings}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{21:1--21:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.21},
  URN =		{urn:nbn:de:0030-drops-213051},
  doi =		{10.4230/LIPIcs.GD.2024.21},
  annote =	{Keywords: Stress, Graph Drawing, Visual Perception}
}
Document
Improved Algorithms for the Capacitated Team Orienteering Problem

Authors: Gianlorenzo D'Angelo, Mattia D'Emidio, Esmaeil Delfaraz, and Gabriele Di Stefano

Published in: OASIcs, Volume 123, 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)


Abstract
We study the Capacitated Team Orienteering Problem, where a fleet of vehicles with capacities have to meet customers with known demands and prizes for a single commodity. The objective is to maximize the total prize and to assign a sequence of customers to each vehicle while keeping the total distance traveled within a given budget and such that the total demand served by each vehicle does not exceed its capacity. The problem has been widely studied both from a theoretical and a practical point of view. The contribution of this paper is twofold: (1) We advance the theoretical knowledge on the problem by providing new approximation algorithms that achieve, under some natural assumption, improved approximation ratios compared to the current best algorithms; (2) We propose four efficient heuristics that outperform the current state-of-the-art practical methods in the sense that they compute solutions that collect nearly the same prize in a significantly smaller running time. We also experimentally test the scalability of the new heuristics, showing that their running time increases approximately linearly with the size of the input, allowing us to process large graphs which were not possible to analyze before.

Cite as

Gianlorenzo D'Angelo, Mattia D'Emidio, Esmaeil Delfaraz, and Gabriele Di Stefano. Improved Algorithms for the Capacitated Team Orienteering Problem. In 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs), Volume 123, pp. 7:1-7:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dangelo_et_al:OASIcs.ATMOS.2024.7,
  author =	{D'Angelo, Gianlorenzo and D'Emidio, Mattia and Delfaraz, Esmaeil and Di Stefano, Gabriele},
  title =	{{Improved Algorithms for the Capacitated Team Orienteering Problem}},
  booktitle =	{24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)},
  pages =	{7:1--7:17},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-350-8},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{123},
  editor =	{Bouman, Paul C. and Kontogiannis, Spyros C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2024.7},
  URN =		{urn:nbn:de:0030-drops-211957},
  doi =		{10.4230/OASIcs.ATMOS.2024.7},
  annote =	{Keywords: Vehicle Routing, Approximation algorithms, Algorithm Engineering}
}
Document
Client-Side Gamification Engine for Enhanced Programming Learning

Authors: Ricardo Queirós, Robertas Damaševičius, Rytis Maskeliūnas, and Jakub Swacha

Published in: OASIcs, Volume 122, 5th International Computer Programming Education Conference (ICPEC 2024)


Abstract
This study introduces the development of a client-based software layer within the FGPE project, aimed at enhancing the usability of the FGPE programming learning environment through client-side processing. The primary goal is to enable the evaluation of programming exercises and the application of gamification rules directly on the client-side, thereby facilitating offline functionality. This approach is particularly beneficial in regions with unreliable internet connectivity, as it allows continuous student interaction and feedback without the need for a constant server connection. The implementation promises to reduce server load significantly by shifting the evaluation workload to the client-side. This not only improves response times but also alleviates the burden on server resources, enhancing overall system efficiency. Two main strategies are explored: 1) caching the gamification service interface on the client-side, and 2) implementing a complete client-side gamification service that synchronizes with the server when online. Each approach is evaluated in terms of its impact on user experience, system performance, and potential security concerns. The findings suggest that while client-side processing offers considerable benefits in terms of scalability and user engagement, it also introduces challenges such as increased system complexity and potential data synchronization issues. The study concludes with recommendations for balancing these factors to optimize the design and implementation of client-based systems for educational environments.

Cite as

Ricardo Queirós, Robertas Damaševičius, Rytis Maskeliūnas, and Jakub Swacha. Client-Side Gamification Engine for Enhanced Programming Learning. In 5th International Computer Programming Education Conference (ICPEC 2024). Open Access Series in Informatics (OASIcs), Volume 122, pp. 11:1-11:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{queiros_et_al:OASIcs.ICPEC.2024.11,
  author =	{Queir\'{o}s, Ricardo and Dama\v{s}evi\v{c}ius, Robertas and Maskeli\={u}nas, Rytis and Swacha, Jakub},
  title =	{{Client-Side Gamification Engine for Enhanced Programming Learning}},
  booktitle =	{5th International Computer Programming Education Conference (ICPEC 2024)},
  pages =	{11:1--11:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-347-8},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{122},
  editor =	{Santos, Andr\'{e} L. and Pinto-Albuquerque, Maria},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ICPEC.2024.11},
  URN =		{urn:nbn:de:0030-drops-209809},
  doi =		{10.4230/OASIcs.ICPEC.2024.11},
  annote =	{Keywords: Code generation, Computer Programming, Gamification}
}
Document
Bicriterial Approximation for the Incremental Prize-Collecting Steiner-Tree Problem

Authors: Yann Disser, Svenja M. Griesbach, Max Klimm, and Annette Lutz

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We consider an incremental variant of the rooted prize-collecting Steiner-tree problem with a growing budget constraint. While no incremental solution exists that simultaneously approximates the optimum for all budgets, we show that a bicriterial (α,μ)-approximation is possible, i.e., a solution that with budget B+α for all B ∈ ℝ_{≥ 0} is a multiplicative μ-approximation compared to the optimum solution with budget B. For the case that the underlying graph is a tree, we present a polynomial-time density-greedy algorithm that computes a (χ,1)-approximation, where χ denotes the eccentricity of the root vertex in the underlying graph, and show that this is best possible. An adaptation of the density-greedy algorithm for general graphs is (γ,2)-competitive where γ is the maximal length of a vertex-disjoint path starting in the root. While this algorithm does not run in polynomial time, it can be adapted to a (γ,3)-competitive algorithm that runs in polynomial time. We further devise a capacity-scaling algorithm that guarantees a (3χ,8)-approximation and, more generally, a ((4𝓁 - 1)χ, (2^{𝓁 + 2})/(2^𝓁 -1))-approximation for every fixed 𝓁 ∈ ℕ.

Cite as

Yann Disser, Svenja M. Griesbach, Max Klimm, and Annette Lutz. Bicriterial Approximation for the Incremental Prize-Collecting Steiner-Tree Problem. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 47:1-47:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{disser_et_al:LIPIcs.ESA.2024.47,
  author =	{Disser, Yann and Griesbach, Svenja M. and Klimm, Max and Lutz, Annette},
  title =	{{Bicriterial Approximation for the Incremental Prize-Collecting Steiner-Tree Problem}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{47:1--47:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.47},
  URN =		{urn:nbn:de:0030-drops-211188},
  doi =		{10.4230/LIPIcs.ESA.2024.47},
  annote =	{Keywords: incremental optimization, competitive analysis, prize-collecting Steiner-tree}
}
Document
Semi-Streaming Algorithms for Weighted k-Disjoint Matchings

Authors: S M Ferdous, Bhargav Samineni, Alex Pothen, Mahantesh Halappanavar, and Bala Krishnamoorthy

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We design and implement two single-pass semi-streaming algorithms for the maximum weight k-disjoint matching (k-DM) problem. Given an integer k, the k-DM problem is to find k pairwise edge-disjoint matchings such that the sum of the weights of the matchings is maximized. For k ≥ 2, this problem is NP-hard. Our first algorithm is based on the primal-dual framework of a linear programming relaxation of the problem and is 1/(3+ε)-approximate. We also develop an approximation preserving reduction from k-DM to the maximum weight b-matching problem. Leveraging this reduction and an existing semi-streaming b-matching algorithm, we design a (1/(2+ε))(1 - 1/(k+1))-approximate semi-streaming algorithm for k-DM. For any constant ε > 0, both of these algorithms require O(nk log_{1+ε}² n) bits of space. To the best of our knowledge, this is the first study of semi-streaming algorithms for the k-DM problem. We compare our two algorithms to state-of-the-art offline algorithms on 95 real-world and synthetic test problems, including thirteen graphs generated from data center network traces. On these instances, our streaming algorithms used significantly less memory (ranging from 6× to 512× less) and were faster in runtime than the offline algorithms. Our solutions were often within 5% of the best weights from the offline algorithms. We highlight that the existing offline algorithms run out of 1 TB memory for most of the large instances (> 1 billion edges), whereas our streaming algorithms can solve these problems using only 100 GB memory for k = 8.

Cite as

S M Ferdous, Bhargav Samineni, Alex Pothen, Mahantesh Halappanavar, and Bala Krishnamoorthy. Semi-Streaming Algorithms for Weighted k-Disjoint Matchings. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 53:1-53:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ferdous_et_al:LIPIcs.ESA.2024.53,
  author =	{Ferdous, S M and Samineni, Bhargav and Pothen, Alex and Halappanavar, Mahantesh and Krishnamoorthy, Bala},
  title =	{{Semi-Streaming Algorithms for Weighted k-Disjoint Matchings}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{53:1--53:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.53},
  URN =		{urn:nbn:de:0030-drops-211245},
  doi =		{10.4230/LIPIcs.ESA.2024.53},
  annote =	{Keywords: Matchings, Semi-Streaming Algorithms, Approximation Algorithms}
}
Document
New Algorithms and Lower Bounds for Streaming Tournaments

Authors: Prantar Ghosh and Sahil Kuchlous

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study fundamental directed graph (digraph) problems in the streaming model. An initial investigation by Chakrabarti, Ghosh, McGregor, and Vorotnikova [SODA'20] on streaming digraphs showed that while most of these problems are provably hard in general, some of them become tractable when restricted to the well-studied class of tournament graphs where every pair of nodes shares exactly one directed edge. Thus, we focus on tournaments and improve the state of the art for multiple problems in terms of both upper and lower bounds. Our primary upper bound is a deterministic single-pass semi-streaming algorithm (using Õ(n) space for n-node graphs, where Õ(.) hides polylog(n) factors) for decomposing a tournament into strongly connected components (SCC). It improves upon the previously best-known algorithm by Baweja, Jia, and Woodruff [ITCS'22] in terms of both space and passes: for p ⩾ 1, they used (p+1) passes and Õ(n^{1+1/p}) space. We further extend our algorithm to digraphs that are close to tournaments and establish tight bounds demonstrating that the problem’s complexity grows smoothly with the "distance" from tournaments. Applying our SCC-decomposition framework, we obtain improved - and in some cases, optimal - tournament algorithms for s,t-reachability, strong connectivity, Hamiltonian paths and cycles, and feedback arc set. On the other hand, we prove lower bounds exhibiting that some well-studied problems - such as (exact) feedback arc set and s,t-distance - remain hard (require Ω(n²) space) on tournaments. Moreover, we generalize the former problem’s lower bound to establish space-approximation tradeoffs: any single-pass (1± ε)-approximation algorithm requires Ω(n/√{ε}) space. Finally, we settle the streaming complexities of two basic digraph problems studied by prior work: acyclicity testing of tournaments and sink finding in DAGs. As a whole, our collection of results contributes significantly to the growing literature on streaming digraphs.

Cite as

Prantar Ghosh and Sahil Kuchlous. New Algorithms and Lower Bounds for Streaming Tournaments. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 60:1-60:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ghosh_et_al:LIPIcs.ESA.2024.60,
  author =	{Ghosh, Prantar and Kuchlous, Sahil},
  title =	{{New Algorithms and Lower Bounds for Streaming Tournaments}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{60:1--60:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.60},
  URN =		{urn:nbn:de:0030-drops-211318},
  doi =		{10.4230/LIPIcs.ESA.2024.60},
  annote =	{Keywords: tournaments, streaming algorithms, graph algorithms, communication complexity, strongly connected components, reachability, feedback arc set}
}
Document
Parameterized Quantum Query Algorithms for Graph Problems

Authors: Tatsuya Terao and Ryuhei Mori

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In this paper, we consider the parameterized quantum query complexity for graph problems. We design parameterized quantum query algorithms for k-vertex cover and k-matching problems, and present lower bounds on the parameterized quantum query complexity. Then, we show that our quantum query algorithms are optimal up to a constant factor when the parameters are small. Our main results are as follows. Parameterized quantum query complexity of vertex cover. In the k-vertex cover problem, we are given an undirected graph G with n vertices and an integer k, and the objective is to determine whether G has a vertex cover of size at most k. We show that the quantum query complexity of the k-vertex cover problem is O(√kn + k^{3/2}√n) in the adjacency matrix model. For the design of the quantum query algorithm, we use the method of kernelization, a well-known tool for the design of parameterized classical algorithms, combined with Grover’s search. Parameterized quantum query complexity of matching. In the k-matching problem, we are given an undirected graph G with n vertices and an integer k, and the objective is to determine whether G has a matching of size at least k. We show that the quantum query complexity of the k-matching problem is O(√kn + k²) in the adjacency matrix model. We obtain this upper bound by using Grover’s search carefully and analyzing the number of Grover’s searches by making use of potential functions. We also show that the quantum query complexity of the maximum matching problem is O(√pn + p²) where p is the size of the maximum matching. For small p, it improves known bounds Õ(n^{3/2}) for bipartite graphs [Blikstad-v.d.Brand-Efron-Mukhopadhyay-Nanongkai, FOCS 2022] and O(n^{7/4}) for general graphs [Kimmel-Witter, WADS 2021]. Lower bounds on parameterized quantum query complexity. We also present lower bounds on the quantum query complexities of the k-vertex cover and k-matching problems. The lower bounds prove the optimality of the above parameterized quantum query algorithms up to a constant factor when k is small. Indeed, the quantum query complexities of the k-vertex cover and k-matching problems are both Θ(√k n) when k = O(√n) and k = O(n^{2/3}), respectively.

Cite as

Tatsuya Terao and Ryuhei Mori. Parameterized Quantum Query Algorithms for Graph Problems. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 99:1-99:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{terao_et_al:LIPIcs.ESA.2024.99,
  author =	{Terao, Tatsuya and Mori, Ryuhei},
  title =	{{Parameterized Quantum Query Algorithms for Graph Problems}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{99:1--99:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.99},
  URN =		{urn:nbn:de:0030-drops-211707},
  doi =		{10.4230/LIPIcs.ESA.2024.99},
  annote =	{Keywords: Quantum query complexity, parameterized algorithms, vertex cover, matching, kernelization}
}
Document
Cornucopia: Distributed Randomness at Scale

Authors: Miranda Christ, Kevin Choi, and Joseph Bonneau

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
We propose Cornucopia, a protocol framework for distributed randomness beacons combining accumulators and verifiable delay functions. Cornucopia generalizes the Unicorn protocol, using an accumulator to enable efficient verification by each participant that their contribution has been included. The output is unpredictable as long as at least one participant is honest, yielding a scalable distributed randomness beacon with strong security properties. Proving this approach secure requires developing a novel property of accumulators, insertion security, which we show is both necessary and sufficient for Cornucopia-style protocols. We show that not all accumulators are insertion-secure, then prove that common constructions (Merkle trees, RSA accumulators, and bilinear accumulators) are either naturally insertion-secure or can be made so with trivial modifications.

Cite as

Miranda Christ, Kevin Choi, and Joseph Bonneau. Cornucopia: Distributed Randomness at Scale. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 17:1-17:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{christ_et_al:LIPIcs.AFT.2024.17,
  author =	{Christ, Miranda and Choi, Kevin and Bonneau, Joseph},
  title =	{{Cornucopia: Distributed Randomness at Scale}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{17:1--17:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.17},
  URN =		{urn:nbn:de:0030-drops-209533},
  doi =		{10.4230/LIPIcs.AFT.2024.17},
  annote =	{Keywords: Randomness beacons, accumulators}
}
Document
APPROX
Online Time-Windows TSP with Predictions

Authors: Shuchi Chawla and Dimitris Christou

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
In the Time-Windows TSP (TW-TSP) we are given requests at different locations on a network; each request is endowed with a reward and an interval of time; the goal is to find a tour that visits as much reward as possible during the corresponding time window. For the online version of this problem, where each request is revealed at the start of its time window, no finite competitive ratio can be obtained. We consider a version of the problem where the algorithm is presented with predictions of where and when the online requests will appear, without any knowledge of the quality of this side information. Vehicle routing problems such as the TW-TSP can be very sensitive to errors or changes in the input due to the hard time-window constraints, and it is unclear whether imperfect predictions can be used to obtain a finite competitive ratio. We show that good performance can be achieved by explicitly building slack into the solution. Our main result is an online algorithm that achieves a competitive ratio logarithmic in the diameter of the underlying network, matching the performance of the best offline algorithm to within factors that depend on the quality of the provided predictions. The competitive ratio degrades smoothly as a function of the quality and we show that this dependence is tight within constant factors.

Cite as

Shuchi Chawla and Dimitris Christou. Online Time-Windows TSP with Predictions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 2:1-2:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chawla_et_al:LIPIcs.APPROX/RANDOM.2024.2,
  author =	{Chawla, Shuchi and Christou, Dimitris},
  title =	{{Online Time-Windows TSP with Predictions}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{2:1--2:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.2},
  URN =		{urn:nbn:de:0030-drops-209954},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.2},
  annote =	{Keywords: Travelling Salesman Problem, Predictions, Learning-Augmented Algorithms, Approximation}
}
Document
APPROX
Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

Authors: Tomer Ezra, Stefano Leonardi, Michał Pawłowski, Matteo Russo, and Seeun William Umboh

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
The online joint replenishment problem (JRP) is a fundamental problem in the area of online problems with delay. Over the last decade, several works have studied generalizations of JRP with different cost functions for servicing requests. Most prior works on JRP and its generalizations have focused on the clairvoyant setting. Recently, Touitou [Noam Touitou, 2023] developed a non-clairvoyant framework that provided an O(√{n log n}) upper bound for a wide class of generalized JRP, where n is the number of request types. We advance the study of non-clairvoyant algorithms by providing a simpler, modular framework that matches the competitive ratio established by Touitou for the same class of generalized JRP. Our key insight is to leverage universal algorithms for Set Cover to approximate arbitrary monotone subadditive functions using a simple class of functions termed disjoint. This allows us to reduce the problem to several independent instances of the TCP Acknowledgement problem, for which a simple 2-competitive non-clairvoyant algorithm is known. The modularity of our framework is a major advantage as it allows us to tailor the reduction to specific problems and obtain better competitive ratios. In particular, we obtain tight O(√n)-competitive algorithms for two significant problems: Multi-Level Aggregation and Weighted Symmetric Subadditive Joint Replenishment. We also show that, in contrast, Touitou’s algorithm is Ω(√{n log n})-competitive for both of these problems.

Cite as

Tomer Ezra, Stefano Leonardi, Michał Pawłowski, Matteo Russo, and Seeun William Umboh. Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 12:1-12:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ezra_et_al:LIPIcs.APPROX/RANDOM.2024.12,
  author =	{Ezra, Tomer and Leonardi, Stefano and Paw{\l}owski, Micha{\l} and Russo, Matteo and Umboh, Seeun William},
  title =	{{Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{12:1--12:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.12},
  URN =		{urn:nbn:de:0030-drops-210050},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.12},
  annote =	{Keywords: Set Cover, Joint Replenishment, TCP-Acknowledgment, Subadditive Function Approximation, Multi-Level Aggregation}
}
Document
APPROX
Weighted Matching in the Random-Order Streaming and Robust Communication Models

Authors: Diba Hashemi and Weronika Wrzos-Kaminska

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study the maximum weight matching problem in the random-order semi-streaming model and in the robust communication model. Unlike many other sublinear models, in these two frameworks, there is a large gap between the guarantees of the best known algorithms for the unweighted and weighted versions of the problem. In the random-order semi-streaming setting, the edges of an n-vertex graph arrive in a stream in a random order. The goal is to compute an approximate maximum weight matching with a single pass over the stream using O(npolylog n) space. Our main result is a (2/3-ε)-approximation algorithm for maximum weight matching in random-order streams, using space O(n log n log R), where R is the ratio between the heaviest and the lightest edge in the graph. Our result nearly matches the best known unweighted (2/3+ε₀)-approximation (where ε₀ ∼ 10^{-14} is a small constant) achieved by Assadi and Behnezhad [Assadi and Behnezhad, 2021], and significantly improves upon previous weighted results. Our techniques also extend to the related robust communication model, in which the edges of a graph are partitioned randomly between Alice and Bob. Alice sends a single message of size O(npolylog n) to Bob, who must compute an approximate maximum weight matching. We achieve a (5/6-ε)-approximation using O(n log n log R) words of communication, matching the results of Azarmehr and Behnezhad [Azarmehr and Behnezhad, 2023] for unweighted graphs.

Cite as

Diba Hashemi and Weronika Wrzos-Kaminska. Weighted Matching in the Random-Order Streaming and Robust Communication Models. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 16:1-16:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hashemi_et_al:LIPIcs.APPROX/RANDOM.2024.16,
  author =	{Hashemi, Diba and Wrzos-Kaminska, Weronika},
  title =	{{Weighted Matching in the Random-Order Streaming and Robust Communication Models}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{16:1--16:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.16},
  URN =		{urn:nbn:de:0030-drops-210097},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.16},
  annote =	{Keywords: Maximum Weight Matching, Streaming, Random-Order Streaming, Robust Communication Complexity}
}
Document
APPROX
Scheduling Splittable Jobs on Configurable Machines

Authors: Matthew Casey, Rajmohan Rajaraman, David Stalfa, and Cheng Tan

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
Motivated by modern architectures allowing for the partitioning of a GPU into hardware separated instances, we initiate the study of scheduling splittable jobs on configurable machines. We consider machines that can be configured into smaller instances, which we call blocks, in multiple ways, each of which is referred to as a configuration. We introduce the Configurable Machine Scheduling (cms) problem, where we are given n jobs and a set C of configurations. A schedule consists of a set of machines, each assigned some configuration in C with each block in the configuration assigned to process one job. The amount of a job’s demand that is satisfied by a block is given by an arbitrary function of the job and block. The objective is to construct a schedule using as few machines as possible. We provide a tight logarithmic factor approximation algorithm for this problem in the general setting, a factor (3 + ε) approximation algorithm for arbitrary ε > 0 when there are O(1) input configurations, and a polynomial time approximation scheme when both the number and size of configurations are O(1). Finally, we utilize a technique for finding conic integer combinations in fixed dimension to develop an optimal polynomial time algorithm in the case with O(1) jobs, O(1) blocks, and every configuration up to a given size.

Cite as

Matthew Casey, Rajmohan Rajaraman, David Stalfa, and Cheng Tan. Scheduling Splittable Jobs on Configurable Machines. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 22:1-22:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{casey_et_al:LIPIcs.APPROX/RANDOM.2024.22,
  author =	{Casey, Matthew and Rajaraman, Rajmohan and Stalfa, David and Tan, Cheng},
  title =	{{Scheduling Splittable Jobs on Configurable Machines}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{22:1--22:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.22},
  URN =		{urn:nbn:de:0030-drops-210157},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.22},
  annote =	{Keywords: Scheduling algorithms, Approximation algorithms, Configurable machines, Splittable jobs, Linear programming}
}
Document
APPROX
Learning-Augmented Maximum Independent Set

Authors: Vladimir Braverman, Prathamesh Dharangutte, Vihan Shah, and Chen Wang

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study the Maximum Independent Set (MIS) problem on general graphs within the framework of learning-augmented algorithms. The MIS problem is known to be NP-hard and is also NP-hard to approximate to within a factor of n^(1-δ) for any δ > 0. We show that we can break this barrier in the presence of an oracle obtained through predictions from a machine learning model that answers vertex membership queries for a fixed MIS with probability 1/2+ε. In the first setting we consider, the oracle can be queried once per vertex to know if a vertex belongs to a fixed MIS, and the oracle returns the correct answer with probability 1/2 + ε. Under this setting, we show an algorithm that obtains an Õ((√Δ)/ε)-approximation in O(m) time where Δ is the maximum degree of the graph. In the second setting, we allow multiple queries to the oracle for a vertex, each of which is correct with probability 1/2 + ε. For this setting, we show an O(1)-approximation algorithm using O(n/ε²) total queries and Õ(m) runtime.

Cite as

Vladimir Braverman, Prathamesh Dharangutte, Vihan Shah, and Chen Wang. Learning-Augmented Maximum Independent Set. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 24:1-24:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{braverman_et_al:LIPIcs.APPROX/RANDOM.2024.24,
  author =	{Braverman, Vladimir and Dharangutte, Prathamesh and Shah, Vihan and Wang, Chen},
  title =	{{Learning-Augmented Maximum Independent Set}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{24:1--24:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.24},
  URN =		{urn:nbn:de:0030-drops-210179},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.24},
  annote =	{Keywords: Learning-augmented algorithms, maximum independent set, graph algorithms}
}
Document
RANDOM
On Sampling from Ising Models with Spectral Constraints

Authors: Andreas Galanis, Alkis Kalavasis, and Anthimos Vardis Kandiros

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We consider the problem of sampling from the Ising model when the underlying interaction matrix has eigenvalues lying within an interval of length γ. Recent work in this setting has shown various algorithmic results that apply roughly when γ < 1, notably with nearly-linear running times based on the classical Glauber dynamics. However, the optimality of the range of γ was not clear since previous inapproximability results developed for the antiferromagnetic case (where the matrix has entries ≤ 0) apply only for γ > 2. To this end, Kunisky (SODA'24) recently provided evidence that the problem becomes hard already when γ > 1 based on the low-degree hardness for an inference problem on random matrices. Based on this, he conjectured that sampling from the Ising model in the same range of γ is NP-hard. Here we confirm this conjecture, complementing in particular the known algorithmic results by showing NP-hardness results for approximately counting and sampling when γ > 1, with strong inapproximability guarantees; we also obtain a more refined hardness result for matrices where only a constant number of entries per row are allowed to be non-zero. The main observation in our reductions is that, for γ > 1, Glauber dynamics mixes slowly when the interactions are all positive (ferromagnetic) for the complete and random regular graphs, due to a bimodality in the underlying distribution. While ferromagnetic interactions typically preclude NP-hardness results, here we work around this by introducing in an appropriate way mild antiferromagnetism, keeping the spectrum roughly within the same range. This allows us to exploit the bimodality of the aforementioned graphs and show the target NP-hardness by adapting suitably previous inapproximability techniques developed for antiferromagnetic systems.

Cite as

Andreas Galanis, Alkis Kalavasis, and Anthimos Vardis Kandiros. On Sampling from Ising Models with Spectral Constraints. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 70:1-70:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{galanis_et_al:LIPIcs.APPROX/RANDOM.2024.70,
  author =	{Galanis, Andreas and Kalavasis, Alkis and Kandiros, Anthimos Vardis},
  title =	{{On Sampling from Ising Models with Spectral Constraints}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{70:1--70:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.70},
  URN =		{urn:nbn:de:0030-drops-210638},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.70},
  annote =	{Keywords: Ising model, spectral constraints, Glauber dynamics, mean-field Ising, random regular graphs}
}
Document
DeFiAligner: Leveraging Symbolic Analysis and Large Language Models for Inconsistency Detection in Decentralized Finance

Authors: Rundong Gan, Liyi Zhou, Le Wang, Kaihua Qin, and Xiaodong Lin

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
Decentralized Finance (DeFi) has witnessed a monumental surge, reaching 53.039 billion USD in total value locked. As this sector continues to expand, ensuring the reliability of DeFi smart contracts becomes increasingly crucial. While some users are adept at reading code or the compiled bytecode to understand smart contracts, many rely on documentation. Therefore, discrepancies between the documentation and the deployed code can pose significant risks, whether these discrepancies are due to errors or intentional fraud. To tackle these challenges, we developed DeFiAligner, an end-to-end system to identify inconsistencies between documentation and smart contracts. DeFiAligner incorporates a symbolic execution tool, SEVM, which explores execution paths of on-chain binary code, recording memory and stack states. It automatically generates symbolic expressions for token balance changes and branch conditions, which, along with related project documents, are processed by LLMs. Using structured prompts, the LLMs evaluate the alignment between the symbolic expressions and the documentation. Our tests across three distinct scenarios demonstrate DeFiAligner’s capability to automate inconsistency detection in DeFi, achieving recall rates of 92% and 90% on two public datasets respectively.

Cite as

Rundong Gan, Liyi Zhou, Le Wang, Kaihua Qin, and Xiaodong Lin. DeFiAligner: Leveraging Symbolic Analysis and Large Language Models for Inconsistency Detection in Decentralized Finance. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 7:1-7:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gan_et_al:LIPIcs.AFT.2024.7,
  author =	{Gan, Rundong and Zhou, Liyi and Wang, Le and Qin, Kaihua and Lin, Xiaodong},
  title =	{{DeFiAligner: Leveraging Symbolic Analysis and Large Language Models for Inconsistency Detection in Decentralized Finance}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{7:1--7:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.7},
  URN =		{urn:nbn:de:0030-drops-209431},
  doi =		{10.4230/LIPIcs.AFT.2024.7},
  annote =	{Keywords: Decentralized Finance Security, Large Language Models, Project Review, Symbolic Analysis, Smart Contracts}
}
  • Refine by Author
  • 18 Chen, Jian-Jia
  • 11 von der Brüggen, Georg
  • 6 Chen, Kuan-Hsun
  • 5 Günzel, Mario
  • 3 Ueter, Niklas
  • Show More...

  • Refine by Classification
  • 17 Computer systems organization → Real-time systems
  • 7 Theory of computation → Graph algorithms analysis
  • 6 Computer systems organization → Embedded and cyber-physical systems
  • 4 Computer systems organization → Embedded systems
  • 4 Software and its engineering → Compilers
  • Show More...

  • Refine by Keyword
  • 4 Approximation algorithms
  • 4 Real-Time Systems
  • 3 Real-time systems
  • 3 Self-suspension
  • 3 speedup factors
  • Show More...

  • Refine by Type
  • 72 document

  • Refine by Publication Year
  • 54 2024
  • 6 2018
  • 3 2022
  • 2 2014
  • 2 2017
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail