27 Search Results for "Chen, Jian-Jia"


Document
On the Equivalence of Maximum Reaction Time and Maximum Data Age for Cause-Effect Chains

Authors: Mario Günzel, Harun Teper, Kuan-Hsun Chen, Georg von der Brüggen, and Jian-Jia Chen

Published in: LIPIcs, Volume 262, 35th Euromicro Conference on Real-Time Systems (ECRTS 2023)


Abstract
Real-time systems require a formal guarantee of timing-constraints, not only for individual tasks but also for data-propagation. The timing behavior of data-propagation paths in a given system is typically described by its maximum reaction time and its maximum data age. This paper shows that they are equivalent. To reach this conclusion, partitioned job chains are introduced, which consist of one immediate forward and one immediate backward job chain. Such partitioned job chains are proven to describe maximum reaction time and maximum data age in a universal manner. This universal description does not only show the equivalence of maximum reaction time and maximum data age, but can also be exploited to speed up the computation of such significantly. In particular, the speed-up for synthesized task sets based on automotive benchmarks can be up to 1600. Since only very few non-restrictive assumptions are made, the equivalence of maximum data age and maximum reaction time holds for almost any scheduling mechanism and even for tasks which do not adhere to the typical periodic or sporadic task model. This observation is supported by a simulation of a ROS2 navigation system.

Cite as

Mario Günzel, Harun Teper, Kuan-Hsun Chen, Georg von der Brüggen, and Jian-Jia Chen. On the Equivalence of Maximum Reaction Time and Maximum Data Age for Cause-Effect Chains. In 35th Euromicro Conference on Real-Time Systems (ECRTS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 262, pp. 10:1-10:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gunzel_et_al:LIPIcs.ECRTS.2023.10,
  author =	{G\"{u}nzel, Mario and Teper, Harun and Chen, Kuan-Hsun and von der Br\"{u}ggen, Georg and Chen, Jian-Jia},
  title =	{{On the Equivalence of Maximum Reaction Time and Maximum Data Age for Cause-Effect Chains}},
  booktitle =	{35th Euromicro Conference on Real-Time Systems (ECRTS 2023)},
  pages =	{10:1--10:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-280-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{262},
  editor =	{Papadopoulos, Alessandro V.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2023.10},
  URN =		{urn:nbn:de:0030-drops-180392},
  doi =		{10.4230/LIPIcs.ECRTS.2023.10},
  annote =	{Keywords: End-to-End, Timing Analysis, Maximum Data Age, Maximum Reaction Time, Cause-Effect Chain, Robot Operating Systems 2 (ROS2)}
}
Document
A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

Authors: Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
Designing and modeling complex cyber-physical systems (CPS) faces the double challenge of combined discrete-continuous dynamics and concurrent behavior. Existing formal modeling and verification languages for CPS expose the underlying proof search technology. They lack high-level structuring elements and are not efficiently executable. The ensuing modeling gap renders formal CPS models hard to understand and to validate. We propose a high-level programming-based approach to formal modeling and verification of hybrid systems as a hybrid extension of an Active Objects language. Well-structured hybrid active programs and requirements allow automatic, reachability-preserving translation into differential dynamic logic, a logic for hybrid (discrete-continuous) programs. Verification is achieved by discharging the resulting formulas with the theorem prover KeYmaera X. We demonstrate the usability of our approach with case studies.

Cite as

Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle. A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 04:1-04:34, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{kamburjan_et_al:LITES.8.2.4,
  author =	{Kamburjan, Eduard and Mitsch, Stefan and H\"{a}hnle, Reiner},
  title =	{{A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{04:1--04:34},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.4},
  doi =		{10.4230/LITES.8.2.4},
  annote =	{Keywords: Active Objects, Differential Dynamic Logic, Hybrid Systems}
}
Document
Real-Time Verification for Distributed Cyber-Physical Systems

Authors: Hoang-Dung Tran, Luan Viet Nguyen, Patrick Musau, Weiming Xiang, and Taylor T. Johnson

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
Safety-critical distributed cyber-physical systems (CPSs) have been found in a wide range of applications. Notably, they have displayed a great deal of utility in intelligent transportation, where autonomous vehicles communicate and cooperate with each other via a high-speed communication network. Such systems require an ability to identify maneuvers in real-time that cause dangerous circumstances and ensure the implementation always meets safety-critical requirements. In this paper, we propose a real-time decentralized reachability approach for safety verification of a distributed multi-agent CPS with the underlying assumption that all agents are time-synchronized with a low degree of error. In the proposed approach, each agent periodically computes its local reachable set and exchanges this reachable set with the other agents with the goal of verifying the system safety. Our method, implemented in Java, takes advantages of the timing information and the reachable set information that are available in the exchanged messages to reason about the safety of the whole system in a decentralized manner. Any particular agent can also perform local safety verification tasks based on their local clocks by analyzing the messages it receives. We applied the proposed method to verify, in real-time, the safety properties of a group of quadcopters performing a distributed search mission.

Cite as

Hoang-Dung Tran, Luan Viet Nguyen, Patrick Musau, Weiming Xiang, and Taylor T. Johnson. Real-Time Verification for Distributed Cyber-Physical Systems. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 07:1-07:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{tran_et_al:LITES.8.2.7,
  author =	{Tran, Hoang-Dung and Nguyen, Luan Viet and Musau, Patrick and Xiang, Weiming and Johnson, Taylor T.},
  title =	{{Real-Time Verification for Distributed Cyber-Physical Systems}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{07:1--07:19},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.7},
  doi =		{10.4230/LITES.8.2.7},
  annote =	{Keywords: Verification, Reachability Analysis, Distributed Cyber-Physical Systems}
}
Document
Susceptibility to Image Resolution in Face Recognition and Training Strategies to Enhance Robustness

Authors: Martin Knoche, Stefan Hörmann, and Gerhard Rigoll

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
Many face recognition approaches expect the input images to have similar image resolution. However, in real-world applications, the image resolution varies due to different image capture mechanisms or sources, affecting the performance of face recognition systems. This work first analyzes the image resolution susceptibility of modern face recognition. Face verification on the very popular LFW dataset drops from 99.23% accuracy to almost 55% when image dimensions of both images are reduced to arguable very poor resolution. With cross-resolution image pairs (one HR and one LR image), face verification accuracy is even worse. This characteristic is investigated more in-depth by analyzing the feature distances utilized for face verification. To increase the robustness, we propose two training strategies applied to a state-of-the-art face recognition model: 1) Training with 50% low resolution images within each batch and 2) using the cosine distance loss between high and low resolution features in a siamese network structure. Both methods significantly boost face verification accuracy for matching training and testing image resolutions. Training a network with different resolutions simultaneously instead of adding only one specific low resolution showed improvements across all resolutions and made a single model applicable to unknown resolutions. However, models trained for one particular low resolution perform better when using the exact resolution for testing. We improve the face verification accuracy from 96.86% to 97.72% on the popular LFW database with uniformly distributed image dimensions between 112 × 112 px and 5 × 5 px. Our approaches improve face verification accuracy even more from 77.56% to 87.17% for distributions focusing on lower images resolutions. Lastly, we propose specific image dimension sets focusing on high, mid, and low resolution for five well-known datasets to benchmark face verification accuracy in cross-resolution scenarios.

Cite as

Martin Knoche, Stefan Hörmann, and Gerhard Rigoll. Susceptibility to Image Resolution in Face Recognition and Training Strategies to Enhance Robustness. In LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1, pp. 01:1-01:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{knoche_et_al:LITES.8.1.1,
  author =	{Knoche, Martin and H\"{o}rmann, Stefan and Rigoll, Gerhard},
  title =	{{Susceptibility to Image Resolution in Face Recognition and Training Strategies to Enhance Robustness}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{01:1--01:20},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.1},
  doi =		{10.4230/LITES.8.1.1},
  annote =	{Keywords: recognition, resolution, cross, face, identification}
}
Document
Micro- and Macroscopic Road Traffic Analysis using Drone Image Data

Authors: Friedrich Kruber, Eduardo Sánchez Morales, Robin Egolf, Jonas Wurst, Samarjit Chakraborty, and Michael Botsch

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
The current development in the drone technology, alongside with machine learning based image processing, open new possibilities for various applications. Thus, the market volume is expected to grow rapidly over the next years. The goal of this paper is to demonstrate the capabilities and limitations of drone based image data processing for the purpose of road traffic analysis. In the first part a method for generating microscopic traffic data is proposed. More precisely, the state of vehicles and the resulting trajectories are estimated. The method is validated by conducting experiments with reference sensors and proofs to achieve precise vehicle state estimation results. It is also shown, how the computational effort can be reduced by incorporating the tracking information into a neural network. A discussion on current limitations supplements the findings. By collecting a large number of vehicle trajectories, macroscopic statistics, such as traffic flow and density can be obtained from the data. In the second part, a publicly available drone based data set is analyzed to evaluate the suitability for macroscopic traffic modeling. The results show that the method is well suited for gaining detailed information about macroscopic statistics, such as traffic flow dependent time headway or lane change occurrences. In conclusion, this paper presents methods to exploit the remarkable opportunities of drone based image processing for joint macro- and microscopic traffic analysis.

Cite as

Friedrich Kruber, Eduardo Sánchez Morales, Robin Egolf, Jonas Wurst, Samarjit Chakraborty, and Michael Botsch. Micro- and Macroscopic Road Traffic Analysis using Drone Image Data. In LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1, pp. 02:1-02:27, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{kruber_et_al:LITES.8.1.2,
  author =	{Kruber, Friedrich and S\'{a}nchez Morales, Eduardo and Egolf, Robin and Wurst, Jonas and Chakraborty, Samarjit and Botsch, Michael},
  title =	{{Micro- and Macroscopic Road Traffic Analysis using Drone Image Data}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{02:1--02:27},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.2},
  doi =		{10.4230/LITES.8.1.2},
  annote =	{Keywords: traffic data analysis, trajectory data, drone image data}
}
Document
HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

Authors: Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri, Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
Convolutional neural networks (CNNs) have produced unprecedented accuracy for many computer vision problems in the recent past. In power and compute-constrained embedded platforms, deploying modern CNNs can present many challenges. Most CNN architectures do not run in real-time due to the high number of computational operations involved during the inference phase. This emphasizes the role of CNN optimization techniques in early design space exploration. To estimate their efficacy in satisfying the target constraints, existing techniques are either hardware (HW) agnostic, pseudo-HW-aware by considering parameter and operation counts, or HW-aware through inflexible hardware-in-the-loop (HIL) setups. In this work, we introduce HW-Flow, a framework for optimizing and exploring CNN models based on three levels of hardware abstraction: Coarse, Mid and Fine. Through these levels, CNN design and optimization can be iteratively refined towards efficient execution on the target hardware platform. We present HW-Flow in the context of CNN pruning by augmenting a reinforcement learning agent with key metrics to understand the influence of its pruning actions on the inference hardware. With 2× reduction in energy and latency, we prune ResNet56, ResNet50, and DeepLabv3 with minimal accuracy degradation on the CIFAR-10, ImageNet, and CityScapes datasets, respectively.

Cite as

Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri, Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele. HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology. In LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1, pp. 03:1-03:30, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{vemparala_et_al:LITES.8.1.3,
  author =	{Vemparala, Manoj-Rohit and Fasfous, Nael and Frickenstein, Alexander and Valpreda, Emanuele and Camalleri, Manfredi and Zhao, Qi and Unger, Christian and Nagaraja, Naveen-Shankar and Martina, Maurizio and Stechele, Walter},
  title =	{{HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{03:1--03:30},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.3},
  doi =		{10.4230/LITES.8.1.3},
  annote =	{Keywords: Convolutional Neural Networks, Optimization, Hardware Modeling, Pruning}
}
Document
LLVMTA: An LLVM-Based WCET Analysis Tool

Authors: Sebastian Hahn, Michael Jacobs, Nils Hölscher, Kuan-Hsun Chen, Jian-Jia Chen, and Jan Reineke

Published in: OASIcs, Volume 103, 20th International Workshop on Worst-Case Execution Time Analysis (WCET 2022)


Abstract
We present llvmta, an academic WCET analysis tool based on the LLVM compiler infrastructure. It aims to enable the evaluation of novel WCET analysis approaches in a state-of-the-art analysis framework without dealing with the complexity of modeling real-world hardware architectures. We discuss the main design decisions and interfaces that allow to implement new analysis approaches. Finally, we highlight various existing research projects whose evaluation has been enabled by llvmta.

Cite as

Sebastian Hahn, Michael Jacobs, Nils Hölscher, Kuan-Hsun Chen, Jian-Jia Chen, and Jan Reineke. LLVMTA: An LLVM-Based WCET Analysis Tool. In 20th International Workshop on Worst-Case Execution Time Analysis (WCET 2022). Open Access Series in Informatics (OASIcs), Volume 103, pp. 2:1-2:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{hahn_et_al:OASIcs.WCET.2022.2,
  author =	{Hahn, Sebastian and Jacobs, Michael and H\"{o}lscher, Nils and Chen, Kuan-Hsun and Chen, Jian-Jia and Reineke, Jan},
  title =	{{LLVMTA: An LLVM-Based WCET Analysis Tool}},
  booktitle =	{20th International Workshop on Worst-Case Execution Time Analysis (WCET 2022)},
  pages =	{2:1--2:17},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-244-0},
  ISSN =	{2190-6807},
  year =	{2022},
  volume =	{103},
  editor =	{Ballabriga, Cl\'{e}ment},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2022.2},
  URN =		{urn:nbn:de:0030-drops-166242},
  doi =		{10.4230/OASIcs.WCET.2022.2},
  annote =	{Keywords: WCET analysis, low-level analysis, LLVM}
}
Document
Artifact
Unikernel-Based Real-Time Virtualization Under Deferrable Servers: Analysis and Realization (Artifact)

Authors: Kuan-Hsun Chen, Mario Günzel, Boguslaw Jablkowski, Markus Buschhoff, and Jian-Jia Chen

Published in: DARTS, Volume 8, Issue 1, Special Issue of the 34th Euromicro Conference on Real-Time Systems (ECRTS 2022)


Abstract
This artifact provides the source code to validate and reproduce the numerical results of the associated paper "Unikernel-Based Real-Time Virtualization under Deferrable Servers: Analysis and Realization". Due to the nature of a close-source project with the company, i.e., EMVICORE GmbH, the source code of the case study in Section 6.2 is not included in this artifact.

Cite as

Kuan-Hsun Chen, Mario Günzel, Boguslaw Jablkowski, Markus Buschhoff, and Jian-Jia Chen. Unikernel-Based Real-Time Virtualization Under Deferrable Servers: Analysis and Realization (Artifact). In Special Issue of the 34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Dagstuhl Artifacts Series (DARTS), Volume 8, Issue 1, pp. 2:1-2:2, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{chen_et_al:DARTS.8.1.2,
  author =	{Chen, Kuan-Hsun and G\"{u}nzel, Mario and Jablkowski, Boguslaw and Buschhoff, Markus and Chen, Jian-Jia},
  title =	{{Unikernel-Based Real-Time Virtualization Under Deferrable Servers: Analysis and Realization (Artifact)}},
  pages =	{2:1--2:2},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Chen, Kuan-Hsun and G\"{u}nzel, Mario and Jablkowski, Boguslaw and Buschhoff, Markus and Chen, Jian-Jia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.8.1.2},
  URN =		{urn:nbn:de:0030-drops-164987},
  doi =		{10.4230/DARTS.8.1.2},
  annote =	{Keywords: Unikernel, Virtualization, Reservation Servers, Deferrable Servers, Cyber-Physical Systems, Real-Time Systems}
}
Document
Unikernel-Based Real-Time Virtualization Under Deferrable Servers: Analysis and Realization

Authors: Kuan-Hsun Chen, Mario Günzel, Boguslaw Jablkowski, Markus Buschhoff, and Jian-Jia Chen

Published in: LIPIcs, Volume 231, 34th Euromicro Conference on Real-Time Systems (ECRTS 2022)


Abstract
For cyber-physical systems, real-time virtualization optimizes the hardware utilization by consolidating multiple systems into the same platform, while satisfying the timing constraints of their real-time tasks. This paper considers virtualization based on unikernels, i.e., single address space kernels usually constructed by using library operating systems. Each unikernel is a guest operating system in the virtualization and hosts a single real-time task. We consider deferrable servers in the virtualization platform to schedule the unikernel-based guest operating systems and analyze the worst-case response time of a sporadic real-time task under such a virtualization architecture. Throughout synthesized tasksets, we empirically show that our analysis outperforms the restated analysis derived from the state-of-the-art, which is based on Real-Time Calculus. Furthermore, we provide insights on implementation-specific issues and offer evidence that the proposed scheduling architecture can be effectively implemented on top of the Xen hypervisor while incurring acceptable overhead.

Cite as

Kuan-Hsun Chen, Mario Günzel, Boguslaw Jablkowski, Markus Buschhoff, and Jian-Jia Chen. Unikernel-Based Real-Time Virtualization Under Deferrable Servers: Analysis and Realization. In 34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 231, pp. 6:1-6:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ECRTS.2022.6,
  author =	{Chen, Kuan-Hsun and G\"{u}nzel, Mario and Jablkowski, Boguslaw and Buschhoff, Markus and Chen, Jian-Jia},
  title =	{{Unikernel-Based Real-Time Virtualization Under Deferrable Servers: Analysis and Realization}},
  booktitle =	{34th Euromicro Conference on Real-Time Systems (ECRTS 2022)},
  pages =	{6:1--6:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-239-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{231},
  editor =	{Maggio, Martina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2022.6},
  URN =		{urn:nbn:de:0030-drops-163239},
  doi =		{10.4230/LIPIcs.ECRTS.2022.6},
  annote =	{Keywords: Unikernel, Virtualization, Reservation Servers, Deferrable Servers, Cyber-Physical Systems, Real-Time Systems}
}
Document
Hard Real-Time Stationary GANG-Scheduling

Authors: Niklas Ueter, Mario Günzel, Georg von der Brüggen, and Jian-Jia Chen

Published in: LIPIcs, Volume 196, 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021)


Abstract
The scheduling of parallel real-time tasks enables the efficient utilization of modern multiprocessor platforms for systems with real-time constrains. In this situation, the gang task model, in which each parallel sub-job has to be executed simultaneously, has shown significant performance benefits due to reduced context switches and more efficient intra-task synchronization. In this paper, we provide the first schedulability analysis for sporadic constrained-deadline gang task systems and propose a novel stationary gang scheduling algorithm. We show that the schedulability problem of gang task sets can be reduced to the uniprocessor self-suspension schedulability problem. Furthermore, we provide a class of partitioning algorithms to find a stationary gang assignment and show that it bounds the worst-case interference of each task. To demonstrate the effectiveness of our proposed approach, we evaluate it for implicit-deadline systems using randomized task sets under different settings, showing that our approach outperforms the state-of-the-art.

Cite as

Niklas Ueter, Mario Günzel, Georg von der Brüggen, and Jian-Jia Chen. Hard Real-Time Stationary GANG-Scheduling. In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 196, pp. 10:1-10:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{ueter_et_al:LIPIcs.ECRTS.2021.10,
  author =	{Ueter, Niklas and G\"{u}nzel, Mario and von der Br\"{u}ggen, Georg and Chen, Jian-Jia},
  title =	{{Hard Real-Time Stationary GANG-Scheduling}},
  booktitle =	{33rd Euromicro Conference on Real-Time Systems (ECRTS 2021)},
  pages =	{10:1--10:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-192-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{196},
  editor =	{Brandenburg, Bj\"{o}rn B.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2021.10},
  URN =		{urn:nbn:de:0030-drops-139410},
  doi =		{10.4230/LIPIcs.ECRTS.2021.10},
  annote =	{Keywords: Real-Time Systems, Gang Scheduling, Parallel Computing, Scheduling Algorithms}
}
Document
Offloading Safety- and Mission-Critical Tasks via Unreliable Connections

Authors: Lea Schönberger, Georg von der Brüggen, Kuan-Hsun Chen, Benjamin Sliwa, Hazem Youssef, Aswin Karthik Ramachandran Venkatapathy, Christian Wietfeld, Michael ten Hompel, and Jian-Jia Chen

Published in: LIPIcs, Volume 165, 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020)


Abstract
For many cyber-physical systems, e.g., IoT systems and autonomous vehicles, offloading workload to auxiliary processing units has become crucial. However, since this approach highly depends on network connectivity and responsiveness, typically only non-critical tasks are offloaded, which have less strict timing requirements than critical tasks. In this work, we provide two protocols allowing to offload critical and non-critical tasks likewise, while providing different service levels for non-critical tasks in the event of an unsuccessful offloading operation, depending on the respective system requirements. We analyze the worst-case timing behavior of the local cyber-physical system and, based on these analyses, we provide a sufficient schedulability test for each of the proposed protocols. In the course of comprehensive experiments, we show that our protocols have reasonable acceptance ratios under the provided schedulability tests. Moreover, we demonstrate that the system behavior under our proposed protocols is strongly dependent on probability of unsuccessful offloading operations, the percentage of critical tasks in the system, and the amount of offloaded workload.

Cite as

Lea Schönberger, Georg von der Brüggen, Kuan-Hsun Chen, Benjamin Sliwa, Hazem Youssef, Aswin Karthik Ramachandran Venkatapathy, Christian Wietfeld, Michael ten Hompel, and Jian-Jia Chen. Offloading Safety- and Mission-Critical Tasks via Unreliable Connections. In 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 165, pp. 18:1-18:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{schonberger_et_al:LIPIcs.ECRTS.2020.18,
  author =	{Sch\"{o}nberger, Lea and von der Br\"{u}ggen, Georg and Chen, Kuan-Hsun and Sliwa, Benjamin and Youssef, Hazem and Ramachandran Venkatapathy, Aswin Karthik and Wietfeld, Christian and ten Hompel, Michael and Chen, Jian-Jia},
  title =	{{Offloading Safety- and Mission-Critical Tasks via Unreliable Connections}},
  booktitle =	{32nd Euromicro Conference on Real-Time Systems (ECRTS 2020)},
  pages =	{18:1--18:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-152-8},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{165},
  editor =	{V\"{o}lp, Marcus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2020.18},
  URN =		{urn:nbn:de:0030-drops-123811},
  doi =		{10.4230/LIPIcs.ECRTS.2020.18},
  annote =	{Keywords: internet of things, cyber-physical systems, real-time, mixed-criticality, self-suspension, computation offloading, scheduling, communication}
}
Document
Artifact
Scheduling Self-Suspending Tasks: New and Old Results (Artifact)

Authors: Jian-Jia Chen, Tobias Hahn, Ruben Hoeksma, Nicole Megow, and Georg von der Brüggen

Published in: DARTS, Volume 5, Issue 1, Special Issue of the 31st Euromicro Conference on Real-Time Systems (ECRTS 2019)


Abstract
In computing systems, a job may suspend itself (before it finishes its execution) when it has to wait for certain results from other (usually external) activities. For real-time systems, such self-suspension behavior has been shown to induce performance degradation. Hence, the researchers in the real-time systems community have devoted themselves to the design and analysis of scheduling algorithms that can alleviate the performance penalty due to self-suspension behavior. As self-suspension and delegation of parts of a job to non-bottleneck resources is pretty natural in many applications, researchers in the operations research (OR) community have also explored scheduling algorithms for systems with such suspension behavior, called the master-slave problem in the OR community. This paper first reviews the results for the master-slave problem in the OR literature and explains their impact on several long-standing problems for scheduling self-suspending real-time tasks. For frame-based periodic real-time tasks, in which the periods of all tasks are identical and all jobs related to one frame are released synchronously, we explore different approximation metrics with respect to resource augmentation factors under different scenarios for both uniprocessor and multiprocessor systems, and demonstrate that different approximation metrics can create different levels of difficulty for the approximation. Our experimental results show that such more carefully designed schedules can significantly outperform the state-of-the-art.

Cite as

Jian-Jia Chen, Tobias Hahn, Ruben Hoeksma, Nicole Megow, and Georg von der Brüggen. Scheduling Self-Suspending Tasks: New and Old Results (Artifact). In Special Issue of the 31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Dagstuhl Artifacts Series (DARTS), Volume 5, Issue 1, pp. 6:1-6:3, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@Article{chen_et_al:DARTS.5.1.6,
  author =	{Chen, Jian-Jia and Hahn, Tobias and Hoeksma, Ruben and Megow, Nicole and von der Br\"{u}ggen, Georg},
  title =	{{Scheduling Self-Suspending Tasks: New and Old Results}},
  pages =	{6:1--6:3},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2019},
  volume =	{5},
  number =	{1},
  editor =	{Chen, Jian-Jia and Hahn, Tobias and Hoeksma, Ruben and Megow, Nicole and von der Br\"{u}ggen, Georg},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.5.1.6},
  URN =		{urn:nbn:de:0030-drops-107349},
  doi =		{10.4230/DARTS.5.1.6},
  annote =	{Keywords: Self-suspension, master-slave problem, computational complexity, speedup factors}
}
Document
Scheduling Self-Suspending Tasks: New and Old Results

Authors: Jian-Jia Chen, Tobias Hahn, Ruben Hoeksma, Nicole Megow, and Georg von der Brüggen

Published in: LIPIcs, Volume 133, 31st Euromicro Conference on Real-Time Systems (ECRTS 2019)


Abstract
In computing systems, a job may suspend itself (before it finishes its execution) when it has to wait for certain results from other (usually external) activities. For real-time systems, such self-suspension behavior has been shown to induce performance degradation. Hence, the researchers in the real-time systems community have devoted themselves to the design and analysis of scheduling algorithms that can alleviate the performance penalty due to self-suspension behavior. As self-suspension and delegation of parts of a job to non-bottleneck resources is pretty natural in many applications, researchers in the operations research (OR) community have also explored scheduling algorithms for systems with such suspension behavior, called the master-slave problem in the OR community. This paper first reviews the results for the master-slave problem in the OR literature and explains their impact on several long-standing problems for scheduling self-suspending real-time tasks. For frame-based periodic real-time tasks, in which the periods of all tasks are identical and all jobs related to one frame are released synchronously, we explore different approximation metrics with respect to resource augmentation factors under different scenarios for both uniprocessor and multiprocessor systems, and demonstrate that different approximation metrics can create different levels of difficulty for the approximation. Our experimental results show that such more carefully designed schedules can significantly outperform the state-of-the-art.

Cite as

Jian-Jia Chen, Tobias Hahn, Ruben Hoeksma, Nicole Megow, and Georg von der Brüggen. Scheduling Self-Suspending Tasks: New and Old Results. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 133, pp. 16:1-16:23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ECRTS.2019.16,
  author =	{Chen, Jian-Jia and Hahn, Tobias and Hoeksma, Ruben and Megow, Nicole and von der Br\"{u}ggen, Georg},
  title =	{{Scheduling Self-Suspending Tasks: New and Old Results}},
  booktitle =	{31st Euromicro Conference on Real-Time Systems (ECRTS 2019)},
  pages =	{16:1--16:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-110-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{133},
  editor =	{Quinton, Sophie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2019.16},
  URN =		{urn:nbn:de:0030-drops-107532},
  doi =		{10.4230/LIPIcs.ECRTS.2019.16},
  annote =	{Keywords: Self-suspension, master-slave problem, computational complexity, speedup factors}
}
Document
A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

Authors: Robert I. Davis and Liliana Cucu-Grosjean

Published in: LITES, Volume 6, Issue 1 (2019). Leibniz Transactions on Embedded Systems, Volume 6, Issue 1


Abstract
This survey covers schedulability analysis techniques for probabilistic real-time systems. It reviews the key results in the field from its origins in the late 1980s to the latest research published up to the end of August 2018. The survey outlinesfundamental concepts and highlights key issues. It provides a taxonomy of the different methods used, and a classification of existing research. A detailed review is provided covering the main subject areas as well as research on supporting techniques. The survey concludes by identifying open issues, key challenges and possible directions for future research.

Cite as

Robert I. Davis and Liliana Cucu-Grosjean. A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems. In LITES, Volume 6, Issue 1 (2019). Leibniz Transactions on Embedded Systems, Volume 6, Issue 1, pp. 04:1-04:53, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@Article{davis_et_al:LITES-v006-i001-a004,
  author =	{Davis, Robert I. and Cucu-Grosjean, Liliana},
  title =	{{A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{04:1--04:53},
  ISSN =	{2199-2002},
  year =	{2019},
  volume =	{6},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES-v006-i001-a004},
  doi =		{10.4230/LITES-v006-i001-a004},
  annote =	{Keywords: Probabilistic, real-time, schedulability analysis, scheduling, }
}
Document
Packing Sporadic Real-Time Tasks on Identical Multiprocessor Systems

Authors: Jian-Jia Chen, Nikhil Bansal, Samarjit Chakraborty, and Georg von der Brüggen

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
In real-time systems, in addition to the functional correctness recurrent tasks must fulfill timing constraints to ensure the correct behavior of the system. Partitioned scheduling is widely used in real-time systems, i.e., the tasks are statically assigned onto processors while ensuring that all timing constraints are met. The decision version of the problem, which is to check whether the deadline constraints of tasks can be satisfied on a given number of identical processors, has been known NP-complete in the strong sense. Several studies on this problem are based on approximations involving resource augmentation, i.e., speeding up individual processors. This paper studies another type of resource augmentation by allocating additional processors, a topic that has not been explored until recently. We provide polynomial-time algorithms and analysis, in which the approximation factors are dependent upon the input instances. Specifically, the factors are related to the maximum ratio of the period to the relative deadline of a task in the given task set. We also show that these algorithms unfortunately cannot achieve a constant approximation factor for general cases. Furthermore, we prove that the problem does not admit any asymptotic polynomial-time approximation scheme (APTAS) unless P=NP when the task set has constrained deadlines, i.e., the relative deadline of a task is no more than the period of the task.

Cite as

Jian-Jia Chen, Nikhil Bansal, Samarjit Chakraborty, and Georg von der Brüggen. Packing Sporadic Real-Time Tasks on Identical Multiprocessor Systems. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 71:1-71:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ISAAC.2018.71,
  author =	{Chen, Jian-Jia and Bansal, Nikhil and Chakraborty, Samarjit and von der Br\"{u}ggen, Georg},
  title =	{{Packing Sporadic Real-Time Tasks on Identical Multiprocessor Systems}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{71:1--71:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.71},
  URN =		{urn:nbn:de:0030-drops-100198},
  doi =		{10.4230/LIPIcs.ISAAC.2018.71},
  annote =	{Keywords: multiprocessor partitioned scheduling, approximation factors}
}
  • Refine by Author
  • 17 Chen, Jian-Jia
  • 10 von der Brüggen, Georg
  • 6 Chen, Kuan-Hsun
  • 4 Günzel, Mario
  • 3 Ueter, Niklas
  • Show More...

  • Refine by Classification
  • 11 Computer systems organization → Real-time systems
  • 4 Computer systems organization → Embedded and cyber-physical systems
  • 3 Computer systems organization
  • 3 Software and its engineering → Real-time systems software
  • 2 Software and its engineering → Real-time schedulability
  • Show More...

  • Refine by Keyword
  • 3 Real-Time Systems
  • 3 Self-suspension
  • 3 real-time
  • 3 scheduling
  • 3 speedup factors
  • Show More...

  • Refine by Type
  • 27 document

  • Refine by Publication Year
  • 8 2022
  • 6 2018
  • 4 2017
  • 3 2019
  • 2 2014
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail