46 Search Results for "Cheng, Yu"


Document
Drawing Planar Graphs and 1-Planar Graphs Using Cubic Bézier Curves with Bounded Curvature

Authors: David Eppstein, Michael T. Goodrich, and Abraham M. Illickan

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
We study algorithms for drawing planar graphs and 1-planar graphs using cubic Bézier curves with bounded curvature. We show that any n-vertex 1-planar graph has a 1-planar RAC drawing using a single cubic Bézier curve per edge, and this drawing can be computed in O(n) time given a combinatorial 1-planar drawing. We also show that any n-vertex planar graph G can be drawn in O(n) time with a single cubic Bézier curve per edge, in an O(n)× O(n) bounding box, such that the edges have Θ(1/degree(v)) angular resolution, for each v ∈ G, and O(√n) curvature.

Cite as

David Eppstein, Michael T. Goodrich, and Abraham M. Illickan. Drawing Planar Graphs and 1-Planar Graphs Using Cubic Bézier Curves with Bounded Curvature. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 39:1-39:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{eppstein_et_al:LIPIcs.GD.2024.39,
  author =	{Eppstein, David and Goodrich, Michael T. and Illickan, Abraham M.},
  title =	{{Drawing Planar Graphs and 1-Planar Graphs Using Cubic B\'{e}zier Curves with Bounded Curvature}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{39:1--39:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.39},
  URN =		{urn:nbn:de:0030-drops-213237},
  doi =		{10.4230/LIPIcs.GD.2024.39},
  annote =	{Keywords: graph drawing, planar graphs, B\'{e}zier curves, and RAC drawings}
}
Document
A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

Authors: Benyamin Bashari, David Yu Cheng Chan, and Philipp Woelfel

Published in: LIPIcs, Volume 319, 38th International Symposium on Distributed Computing (DISC 2024)


Abstract
An adaptive RMWable snapshot object maintains an array A[0..m-1] of m readable shared memory objects that support an arbitrary set of read-modify-write (RMW) operations, in addition to Read(). Each array entry A[i] can be accessed by any process using an operation Invoke(i,op), which simply applies a supported RMW operation op to A[i] and returns the response of op. In addition, processes can record the state of the array by calling Click(). While Click() does not return anything, a process p can call Observe(i) to determine the value of A[i] at the point of p’s latest Click(). Recently, Jayanti, Jayanti, and Jayanti [Prasad Jayanti et al., 2024] presented an RMWable adaptive snapshot object, where all operations have constant step complexity. Their algorithm is single-scanner, meaning that Click() operations cannot be executed concurrently. We present the first fully concurrent RMWable adaptive snapshot object, where all operations can be executed concurrently, assuming the the system provides atomic Fetch-And-Increment and Compare-And-Swap operations. Click() and Invoke() operations have constant step complexity, and Observe() has step complexity O(log n). The total number of base objects needed is O(mnlog n).

Cite as

Benyamin Bashari, David Yu Cheng Chan, and Philipp Woelfel. A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 7:1-7:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bashari_et_al:LIPIcs.DISC.2024.7,
  author =	{Bashari, Benyamin and Chan, David Yu Cheng and Woelfel, Philipp},
  title =	{{A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory}},
  booktitle =	{38th International Symposium on Distributed Computing (DISC 2024)},
  pages =	{7:1--7:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-352-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{319},
  editor =	{Alistarh, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.7},
  URN =		{urn:nbn:de:0030-drops-212342},
  doi =		{10.4230/LIPIcs.DISC.2024.7},
  annote =	{Keywords: Shared memory, snapshot, camera object, RMW, distributed computing}
}
Document
Hyperproperty-Preserving Register Specifications

Authors: Yoav Ben Shimon, Ori Lahav, and Sharon Shoham

Published in: LIPIcs, Volume 319, 38th International Symposium on Distributed Computing (DISC 2024)


Abstract
Reasoning about hyperproperties of concurrent implementations, such as the guarantees these implementations provide to randomized client programs, has been a long-standing challenge. Standard linearizability enables the use of atomic specifications for reasoning about standard properties, but not about hyperproperties. A stronger correctness criterion, called strong linearizability, enables such reasoning, but is rarely achievable, leaving various useful implementations with no means for reasoning about their hyperproperties. In this paper, we focus on registers and devise non-atomic specifications that capture a wide-range of well-studied register implementations and enable reasoning about their hyperproperties. First, we consider the class of write strong-linearizable implementations, a recently proposed useful weakening of strong linearizability, which allows more implementations, such as the well-studied single-writer ABD distributed implementation. We introduce a simple shared-memory register specification that can be used for reasoning about hyperproperties of programs that use write strongly-linearizable implementations. Second, we introduce a new linearizability class, which we call decisive linearizability, that is weaker than write strong-linearizability and includes multi-writer ABD, and develop a second shared-memory register specification for reasoning about hyperproperties of programs that use register implementations of this class. These results shed light on the hyperproperties guaranteed when simulating shared memory in a crash-resilient message-passing system.

Cite as

Yoav Ben Shimon, Ori Lahav, and Sharon Shoham. Hyperproperty-Preserving Register Specifications. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 8:1-8:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{benshimon_et_al:LIPIcs.DISC.2024.8,
  author =	{Ben Shimon, Yoav and Lahav, Ori and Shoham, Sharon},
  title =	{{Hyperproperty-Preserving Register Specifications}},
  booktitle =	{38th International Symposium on Distributed Computing (DISC 2024)},
  pages =	{8:1--8:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-352-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{319},
  editor =	{Alistarh, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.8},
  URN =		{urn:nbn:de:0030-drops-212630},
  doi =		{10.4230/LIPIcs.DISC.2024.8},
  annote =	{Keywords: Hyperproperties, Concurrent objects, Distributed objects, Linearizability, Strong linearizability, Simulation}
}
Document
The Power of Abstract MAC Layer: A Fault-Tolerance Perspective

Authors: Qinzi Zhang and Lewis Tseng

Published in: LIPIcs, Volume 319, 38th International Symposium on Distributed Computing (DISC 2024)


Abstract
This paper studies the power of the "abstract MAC layer" model in a single-hop asynchronous network. The model captures primitive properties of modern wireless MAC protocols. In this model, Newport [PODC '14] proves that it is impossible to achieve deterministic consensus when nodes may crash. Subsequently, Newport and Robinson [DISC '18] present randomized consensus algorithms that terminate with O(n³ log n) expected broadcasts in a system of n nodes. We are not aware of any results on other fault-tolerant distributed tasks in this model. We first study the computability aspect of the abstract MAC layer. We present a wait-free algorithm that implements an atomic register. Furthermore, we show that in general, k-set consensus is impossible. Second, we aim to minimize storage complexity. Existing algorithms require Ω(n log n) bits. We propose two wait-free approximate consensus and two wait-free randomized binary consensus algorithms that only need constant storage complexity (except for the phase index). One randomized algorithm terminates with O(n log n) expected broadcasts. All our algorithms are anonymous, meaning that at the algorithm level, nodes do not need to have a unique identifier.

Cite as

Qinzi Zhang and Lewis Tseng. The Power of Abstract MAC Layer: A Fault-Tolerance Perspective. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 39:1-39:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{zhang_et_al:LIPIcs.DISC.2024.39,
  author =	{Zhang, Qinzi and Tseng, Lewis},
  title =	{{The Power of Abstract MAC Layer: A Fault-Tolerance Perspective}},
  booktitle =	{38th International Symposium on Distributed Computing (DISC 2024)},
  pages =	{39:1--39:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-352-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{319},
  editor =	{Alistarh, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.39},
  URN =		{urn:nbn:de:0030-drops-212677},
  doi =		{10.4230/LIPIcs.DISC.2024.39},
  annote =	{Keywords: Abstract MAC Layer, Computation Power, Consensus}
}
Document
A Faster Algorithm for Finding Negative Cycles in Simple Temporal Networks with Uncertainty

Authors: Luke Hunsberger and Roberto Posenato

Published in: LIPIcs, Volume 318, 31st International Symposium on Temporal Representation and Reasoning (TIME 2024)


Abstract
Temporal constraint networks are data structures for representing and reasoning about time (e.g., temporal constraints among actions in a plan). Finding and computing negative cycles in temporal networks is important for planning and scheduling applications since it is the first step toward resolving inconsistent networks. For Simple Temporal Networks (STNs), the problem reduces to finding simple negative cycles (i.e., no repeat nodes), resulting in numerous efficient algorithms. For Simple Temporal Networks with Uncertainty (STNUs), which accommodate actions with uncertain durations, the situation is more complex because the characteristic of a non-dynamically controllable (non-DC) network is a so-called semi-reducible negative (SRN) cycle, which can have repeat edges and, in the worst case, an exponential number of occurrences of such edges. Algorithms for computing SRN cycles in non-DC STNUs that have been presented so far are based on older, less efficient DC-checking algorithms. In addition, the issue of repeated edges has either been ignored or given scant attention. This paper presents a new, faster algorithm for identifying SRN cycles in non-DC STNUs. Its worst-case time complexity is O(mn + k²n + knlog n), where n is the number of timepoints, m is the number of constraints, and k is the number of actions with uncertain durations. This complexity is the same as that of the fastest DC-checking algorithm for STNUs. It avoids an exponential blow-up by efficiently dealing with repeated structures and outputting a compact representation of the SRN cycle it finds. The space required to compactly store accumulated path information while avoiding redundant storage of repeated edges is O(mk + k²n). An empirical evaluation demonstrates the effectiveness of the new algorithm on an existing benchmark.

Cite as

Luke Hunsberger and Roberto Posenato. A Faster Algorithm for Finding Negative Cycles in Simple Temporal Networks with Uncertainty. In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 9:1-9:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hunsberger_et_al:LIPIcs.TIME.2024.9,
  author =	{Hunsberger, Luke and Posenato, Roberto},
  title =	{{A Faster Algorithm for Finding Negative Cycles in Simple Temporal Networks with Uncertainty}},
  booktitle =	{31st International Symposium on Temporal Representation and Reasoning (TIME 2024)},
  pages =	{9:1--9:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-349-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{318},
  editor =	{Sala, Pietro and Sioutis, Michael and Wang, Fusheng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2024.9},
  URN =		{urn:nbn:de:0030-drops-212160},
  doi =		{10.4230/LIPIcs.TIME.2024.9},
  annote =	{Keywords: Temporal constraint networks, overconstrained networks, negative cycles}
}
Document
Robust Execution of Probabilistic STNs

Authors: Luke Hunsberger and Roberto Posenato

Published in: LIPIcs, Volume 318, 31st International Symposium on Temporal Representation and Reasoning (TIME 2024)


Abstract
A Probabilistic Simple Temporal Network (PSTN) is a formalism for representing and reasoning about actions subject to temporal constraints, where some action durations may be uncontrollable, modeled using continuous probability density functions. Recent work aims to manage this kind of uncertainty during execution by approximating a PSTN by a Simple Temporal Network with Uncertainty (STNU) (for which well-known execution strategies exist) and using an STNU execution strategy to execute the PSTN, hoping that its probabilistic action durations will not cause any constraint violations. This paper presents significant improvements to the robust execution of PSTNs. Our approach is based on a recent, faster algorithm for finding negative cycles in non-DC STNUs. We also formally prove that many of the constraints included in others' work are unnecessary and that our algorithm can take advantage of a flexible real-time execution algorithm to react to observations of contingent durations that may fall outside the fixed STNU bounds. The paper presents an empirical evaluation of our approach that provides evidence of its effectiveness in robustly executing PSTNs derived from a publicly available benchmark.

Cite as

Luke Hunsberger and Roberto Posenato. Robust Execution of Probabilistic STNs. In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 12:1-12:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hunsberger_et_al:LIPIcs.TIME.2024.12,
  author =	{Hunsberger, Luke and Posenato, Roberto},
  title =	{{Robust Execution of Probabilistic STNs}},
  booktitle =	{31st International Symposium on Temporal Representation and Reasoning (TIME 2024)},
  pages =	{12:1--12:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-349-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{318},
  editor =	{Sala, Pietro and Sioutis, Michael and Wang, Fusheng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2024.12},
  URN =		{urn:nbn:de:0030-drops-212197},
  doi =		{10.4230/LIPIcs.TIME.2024.12},
  annote =	{Keywords: Temporal constraint networks, probabilistic durations, dispatchable networks}
}
Document
Periodic Timetabling: Travel Time vs. Regenerative Energy

Authors: Sven Jäger, Sarah Roth, and Anita Schöbel

Published in: OASIcs, Volume 123, 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)


Abstract
While it is important to provide attractive public transportation to the passengers allowing short travel times, it should also be a major concern to reduce the amount of energy used by the public transport system. Electrical trains can regenerate energy when braking, which can be used by a nearby accelerating train. Therefore, apart from the minimization of travel times, the maximization of brake-traction overlaps of nearby trains is an important objective in periodic timetabling. Recently, this has been studied in a model allowing small modifications of a nominal timetable. We investigate the problem of finding periodic timetables that are globally good in both objective functions. We show that the general problem is NP-hard, even restricted to a single transfer station and if only travel time is to be minimized, and give an algorithm with an additive error bound for maximizing the brake-traction overlap on this small network. Moreover, we identify special cases in which the problem is solvable in polynomial time. Finally, we demonstrate the trade-off between the two objective functions in an experimental study.

Cite as

Sven Jäger, Sarah Roth, and Anita Schöbel. Periodic Timetabling: Travel Time vs. Regenerative Energy. In 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs), Volume 123, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jager_et_al:OASIcs.ATMOS.2024.10,
  author =	{J\"{a}ger, Sven and Roth, Sarah and Sch\"{o}bel, Anita},
  title =	{{Periodic Timetabling: Travel Time vs. Regenerative Energy}},
  booktitle =	{24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)},
  pages =	{10:1--10:20},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-350-8},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{123},
  editor =	{Bouman, Paul C. and Kontogiannis, Spyros C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2024.10},
  URN =		{urn:nbn:de:0030-drops-211983},
  doi =		{10.4230/OASIcs.ATMOS.2024.10},
  annote =	{Keywords: periodic timetabling, regenerative braking}
}
Document
Random-Order Online Independent Set of Intervals and Hyperrectangles

Authors: Mohit Garg, Debajyoti Kar, and Arindam Khan

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the Maximum Independent Set of Hyperrectangles problem, we are given a set of n (possibly overlapping) d-dimensional axis-aligned hyperrectangles, and the goal is to find a subset of non-overlapping hyperrectangles of maximum cardinality. For d = 1, this corresponds to the classical Interval Scheduling problem, where a simple greedy algorithm returns an optimal solution. In the offline setting, for d-dimensional hyperrectangles, polynomial time (log n)^{O(d)}-approximation algorithms are known [Chalermsook and Chuzhoy, 2009]. However, the problem becomes notably challenging in the online setting, where the input objects (hyperrectangles) appear one by one in an adversarial order, and on the arrival of an object, the algorithm needs to make an immediate and irrevocable decision whether or not to select the object while maintaining the feasibility. Even for interval scheduling, an Ω(n) lower bound is known on the competitive ratio. To circumvent these negative results, in this work, we study the online maximum independent set of axis-aligned hyperrectangles in the random-order arrival model, where the adversary specifies the set of input objects which then arrive in a uniformly random order. Starting from the prototypical secretary problem, the random-order model has received significant attention to study algorithms beyond the worst-case competitive analysis (see the survey by Gupta and Singla [Anupam Gupta and Sahil Singla, 2020]). Surprisingly, we show that the problem in the random-order model almost matches the best-known offline approximation guarantees, up to polylogarithmic factors. In particular, we give a simple (log n)^{O(d)}-competitive algorithm for d-dimensional hyperrectangles in this model, which runs in O_d̃(n) time. Our approach also yields (log n)^{O(d)}-competitive algorithms in the random-order model for more general objects such as d-dimensional fat objects and ellipsoids. Furthermore, all our competitiveness guarantees hold with high probability, and not just in expectation.

Cite as

Mohit Garg, Debajyoti Kar, and Arindam Khan. Random-Order Online Independent Set of Intervals and Hyperrectangles. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 58:1-58:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{garg_et_al:LIPIcs.ESA.2024.58,
  author =	{Garg, Mohit and Kar, Debajyoti and Khan, Arindam},
  title =	{{Random-Order Online Independent Set of Intervals and Hyperrectangles}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{58:1--58:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.58},
  URN =		{urn:nbn:de:0030-drops-211298},
  doi =		{10.4230/LIPIcs.ESA.2024.58},
  annote =	{Keywords: Online Algorithms, Random-Order Model, Maximum Independent Set of Rectangles, Hyperrectangles, Fat Objects, Interval Scheduling}
}
Document
Optimizing Throughput and Makespan of Queuing Systems by Information Design

Authors: Svenja M. Griesbach, Max Klimm, Philipp Warode, and Theresa Ziemke

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study the optimal provision of information for two natural performance measures of queuing systems: throughput and makespan. A set of parallel links (queues) is equipped with deterministic capacities and stochastic offsets where the latter depend on a realized state, and the number of states is assumed to be constant. A continuum of flow particles (agents) arrives at the system at a constant rate. A system operator knows the realization of the state and may (partially) reveal this information via a public signaling scheme to the flow particles. Upon arrival, the flow particles observe the signal issued by the system operator, form an updated belief about the realized state, and decide on which link they use. Inflow into a link exceeding the link’s capacity builds up in a queue that increases the cost (total travel time) on the link. Dynamic inflow rates are in a Bayesian dynamic equilibrium when the expected cost along all links with positive inflow is equal at every point in time and not larger than the expected cost of any unused link. For a given time horizon T, the throughput induced by a signaling scheme is the total volume of flow that leaves the links in the interval [0,T]. The public signaling scheme maximizing the throughput may involve irrational numbers. We provide an additive polynomial time approximation scheme (PTAS) that approximates the optimal throughput by an arbitrary additive constant ε > 0. The algorithm solves a Lagrangian dual of the signaling problem with the Ellipsoid method whose separation oracle is implemented by a cell decomposition technique. We also provide a multiplicative fully polynomial time approximation scheme (FPTAS) that does not rely on strong duality and, thus, allows to compute the optimal signals. It uses a different cell decomposition technique together with a piecewise convex under-estimator of the optimal value function. Finally, we consider the makespan of a Bayesian dynamic equilibrium which is defined as the last point in time when a total given value of flow leaves the system. Using a variational inequality argument, we show that full information revelation is a public signaling scheme that minimizes the makespan.

Cite as

Svenja M. Griesbach, Max Klimm, Philipp Warode, and Theresa Ziemke. Optimizing Throughput and Makespan of Queuing Systems by Information Design. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 62:1-62:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{griesbach_et_al:LIPIcs.ESA.2024.62,
  author =	{Griesbach, Svenja M. and Klimm, Max and Warode, Philipp and Ziemke, Theresa},
  title =	{{Optimizing Throughput and Makespan of Queuing Systems by Information Design}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{62:1--62:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.62},
  URN =		{urn:nbn:de:0030-drops-211336},
  doi =		{10.4230/LIPIcs.ESA.2024.62},
  annote =	{Keywords: Information Design, Dynamic Flows, Public Signals, Convex Envelope}
}
Document
Many-To-Many Polygon Matching à La Jaccard

Authors: Alexander Naumann, Annika Bonerath, and Jan-Henrik Haunert

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Integration of spatial data is a major field of research. An important task of data integration is finding correspondences between entities. Here, we focus on combining building footprint data from cadastre and from volunteered geographic information, in particular OpenStreetMap. Previous research on this topic has led to exact 1:1 matching approaches and heuristic m:n matching approaches, most of which are lacking a mathematical problem definition. We introduce a model for many-to-many polygon matching based on the well-established Jaccard index. This is a natural extension to the existing 1:1 matching approaches. We show that the problem is NP-complete and a naive approach via integer programming fails easily. By analyzing the structure of the problem in detail, we can reduce the number of variables significantly. This approach yields an optimal m:n matching even for large real-world instances with appropriate running time. In particular, for the set of all building footprints of the city of Bonn (119,300 / 97,284 polygons) it yielded an optimal solution in approximately 1 hour.

Cite as

Alexander Naumann, Annika Bonerath, and Jan-Henrik Haunert. Many-To-Many Polygon Matching à La Jaccard. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 90:1-90:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{naumann_et_al:LIPIcs.ESA.2024.90,
  author =	{Naumann, Alexander and Bonerath, Annika and Haunert, Jan-Henrik},
  title =	{{Many-To-Many Polygon Matching \`{a} La Jaccard}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{90:1--90:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.90},
  URN =		{urn:nbn:de:0030-drops-211614},
  doi =		{10.4230/LIPIcs.ESA.2024.90},
  annote =	{Keywords: polygon matching, exact algorithm, Jaccard index}
}
Document
Cornucopia: Distributed Randomness at Scale

Authors: Miranda Christ, Kevin Choi, and Joseph Bonneau

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
We propose Cornucopia, a protocol framework for distributed randomness beacons combining accumulators and verifiable delay functions. Cornucopia generalizes the Unicorn protocol, using an accumulator to enable efficient verification by each participant that their contribution has been included. The output is unpredictable as long as at least one participant is honest, yielding a scalable distributed randomness beacon with strong security properties. Proving this approach secure requires developing a novel property of accumulators, insertion security, which we show is both necessary and sufficient for Cornucopia-style protocols. We show that not all accumulators are insertion-secure, then prove that common constructions (Merkle trees, RSA accumulators, and bilinear accumulators) are either naturally insertion-secure or can be made so with trivial modifications.

Cite as

Miranda Christ, Kevin Choi, and Joseph Bonneau. Cornucopia: Distributed Randomness at Scale. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 17:1-17:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{christ_et_al:LIPIcs.AFT.2024.17,
  author =	{Christ, Miranda and Choi, Kevin and Bonneau, Joseph},
  title =	{{Cornucopia: Distributed Randomness at Scale}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{17:1--17:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.17},
  URN =		{urn:nbn:de:0030-drops-209533},
  doi =		{10.4230/LIPIcs.AFT.2024.17},
  annote =	{Keywords: Randomness beacons, accumulators}
}
Document
A Shortfall in Investor Expectations of Leveraged Tokens

Authors: Reza Rahimian and Jeremy Clark

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
Leveraged tokens (LVTs) are emerging crypto-assets primarily issued by centralized exchanges. The concept is borrowed from leveraged ETFs (LETFs) in traditional financial markets, which offer higher gains (and higher losses) relative to price movements in the underlying asset. Leverage is commonly used by short-term traders to amplify returns from daily market shifts. However, LVTs have been implemented differently from LETFs by exchanges in the crypto market, with variations across platforms. We examine the mechanics and constituent components of LVTs, demonstrating that the lack of a standard has resulted in deficiencies and unexpected technical and economic outcomes. To identify existing problems, we analyze more than 1,600 leveraged tokens from 10 issuers. Our analysis reveals that 99.9% of LVTs are centralized, with 80% lacking blockchain interaction, leading to transparency issues. Total supply information is difficult to access for 53% of them, and 41% appear inadequately backed at launch. Additionally, 97% of LVTs are vulnerable to front-running during well-known events, and they deviate from their stated leverage ratios more than LETFs, partly due to inconsistent re-leveraging processes and higher management fees. This work provides a framework for crypto investors, blockchain developers, and data analysts to gain a deep understanding of leveraged tokens and their impact on market dynamics, liquidity, and price movements. It also offers insights for crypto exchanges and auditors into the internal functionalities and financial performance of LVTs under varying market conditions.

Cite as

Reza Rahimian and Jeremy Clark. A Shortfall in Investor Expectations of Leveraged Tokens. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 23:1-23:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{rahimian_et_al:LIPIcs.AFT.2024.23,
  author =	{Rahimian, Reza and Clark, Jeremy},
  title =	{{A Shortfall in Investor Expectations of Leveraged Tokens}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{23:1--23:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.23},
  URN =		{urn:nbn:de:0030-drops-209599},
  doi =		{10.4230/LIPIcs.AFT.2024.23},
  annote =	{Keywords: crypto-assets, ethereum, leverage, derivatives}
}
Document
APPROX
Scheduling Splittable Jobs on Configurable Machines

Authors: Matthew Casey, Rajmohan Rajaraman, David Stalfa, and Cheng Tan

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
Motivated by modern architectures allowing for the partitioning of a GPU into hardware separated instances, we initiate the study of scheduling splittable jobs on configurable machines. We consider machines that can be configured into smaller instances, which we call blocks, in multiple ways, each of which is referred to as a configuration. We introduce the Configurable Machine Scheduling (cms) problem, where we are given n jobs and a set C of configurations. A schedule consists of a set of machines, each assigned some configuration in C with each block in the configuration assigned to process one job. The amount of a job’s demand that is satisfied by a block is given by an arbitrary function of the job and block. The objective is to construct a schedule using as few machines as possible. We provide a tight logarithmic factor approximation algorithm for this problem in the general setting, a factor (3 + ε) approximation algorithm for arbitrary ε > 0 when there are O(1) input configurations, and a polynomial time approximation scheme when both the number and size of configurations are O(1). Finally, we utilize a technique for finding conic integer combinations in fixed dimension to develop an optimal polynomial time algorithm in the case with O(1) jobs, O(1) blocks, and every configuration up to a given size.

Cite as

Matthew Casey, Rajmohan Rajaraman, David Stalfa, and Cheng Tan. Scheduling Splittable Jobs on Configurable Machines. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 22:1-22:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{casey_et_al:LIPIcs.APPROX/RANDOM.2024.22,
  author =	{Casey, Matthew and Rajaraman, Rajmohan and Stalfa, David and Tan, Cheng},
  title =	{{Scheduling Splittable Jobs on Configurable Machines}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{22:1--22:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.22},
  URN =		{urn:nbn:de:0030-drops-210157},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.22},
  annote =	{Keywords: Scheduling algorithms, Approximation algorithms, Configurable machines, Splittable jobs, Linear programming}
}
Document
APPROX
Learning-Augmented Maximum Independent Set

Authors: Vladimir Braverman, Prathamesh Dharangutte, Vihan Shah, and Chen Wang

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study the Maximum Independent Set (MIS) problem on general graphs within the framework of learning-augmented algorithms. The MIS problem is known to be NP-hard and is also NP-hard to approximate to within a factor of n^(1-δ) for any δ > 0. We show that we can break this barrier in the presence of an oracle obtained through predictions from a machine learning model that answers vertex membership queries for a fixed MIS with probability 1/2+ε. In the first setting we consider, the oracle can be queried once per vertex to know if a vertex belongs to a fixed MIS, and the oracle returns the correct answer with probability 1/2 + ε. Under this setting, we show an algorithm that obtains an Õ((√Δ)/ε)-approximation in O(m) time where Δ is the maximum degree of the graph. In the second setting, we allow multiple queries to the oracle for a vertex, each of which is correct with probability 1/2 + ε. For this setting, we show an O(1)-approximation algorithm using O(n/ε²) total queries and Õ(m) runtime.

Cite as

Vladimir Braverman, Prathamesh Dharangutte, Vihan Shah, and Chen Wang. Learning-Augmented Maximum Independent Set. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 24:1-24:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{braverman_et_al:LIPIcs.APPROX/RANDOM.2024.24,
  author =	{Braverman, Vladimir and Dharangutte, Prathamesh and Shah, Vihan and Wang, Chen},
  title =	{{Learning-Augmented Maximum Independent Set}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{24:1--24:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.24},
  URN =		{urn:nbn:de:0030-drops-210179},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.24},
  annote =	{Keywords: Learning-augmented algorithms, maximum independent set, graph algorithms}
}
Document
RANDOM
Approximating the Number of Relevant Variables in a Parity Implies Proper Learning

Authors: Nader H. Bshouty and George Haddad

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
Consider the model where we can access a parity function through random uniform labeled examples in the presence of random classification noise. In this paper, we show that approximating the number of relevant variables in the parity function is as hard as properly learning parities. More specifically, let γ:ℝ^+ → ℝ^+, where γ(x) ≥ x, be any strictly increasing function. In our first result, we show that from any polynomial-time algorithm that returns a γ-approximation, D (i.e., γ^{-1}(d(f)) ≤ D ≤ γ(d(f))), of the number of relevant variables d(f) for any parity f, we can, in polynomial time, construct a solution to the long-standing open problem of polynomial-time learning k(n)-sparse parities (parities with k(n) ≤ n relevant variables), where k(n) = ω_n(1). In our second result, we show that from any T(n)-time algorithm that, for any parity f, returns a γ-approximation of the number of relevant variables d(f) of f, we can, in polynomial time, construct a poly(Γ(n))T(Γ(n)²)-time algorithm that properly learns parities, where Γ(x) = γ(γ(x)). If T(Γ(n)²) = exp({o(n/log n)}), this would resolve another long-standing open problem of properly learning parities in the presence of random classification noise in time exp(o(n/log n)).

Cite as

Nader H. Bshouty and George Haddad. Approximating the Number of Relevant Variables in a Parity Implies Proper Learning. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 38:1-38:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bshouty_et_al:LIPIcs.APPROX/RANDOM.2024.38,
  author =	{Bshouty, Nader H. and Haddad, George},
  title =	{{Approximating the Number of Relevant Variables in a Parity Implies Proper Learning}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{38:1--38:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.38},
  URN =		{urn:nbn:de:0030-drops-210316},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.38},
  annote =	{Keywords: PAC Learning, Random Classification Noise, Uniform Distribution, Parity, Sparcity Approximation}
}
  • Refine by Author
  • 4 Li, Xin
  • 4 Zheng, Yu
  • 3 Cheng, Kuan
  • 3 Hadzilacos, Vassos
  • 3 Toueg, Sam
  • Show More...

  • Refine by Classification
  • 3 Theory of computation
  • 3 Theory of computation → Error-correcting codes
  • 3 Theory of computation → Lower bounds and information complexity
  • 3 Theory of computation → Scheduling algorithms
  • 2 Applied computing → Transportation
  • Show More...

  • Refine by Keyword
  • 2 Asynchronous System
  • 2 Consensus
  • 2 Edit Distance
  • 2 Genome assembly
  • 2 Longest Common Subsequence
  • Show More...

  • Refine by Type
  • 46 document

  • Refine by Publication Year
  • 36 2024
  • 3 2017
  • 3 2021
  • 3 2023
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail