29 Search Results for "Garg, Ankit"


Document
Lifting Dichotomies

Authors: Yaroslav Alekseev, Yuval Filmus, and Alexander Smal

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Lifting theorems are used for transferring lower bounds between Boolean function complexity measures. Given a lower bound on a complexity measure A for some function f, we compose f with a carefully chosen gadget function g and get essentially the same lower bound on a complexity measure B for the lifted function f ⋄ g. Lifting theorems have a number of applications in many different areas such as circuit complexity, communication complexity, proof complexity, etc. One of the main question in the context of lifting is how to choose a suitable gadget g. Generally, to get better results, i.e., to minimize the losses when transferring lower bounds, we need the gadget to be of a constant size (number of inputs). Unfortunately, in many settings we know lifting results only for gadgets of size that grows with the size of f, and it is unclear whether it can be improved to a constant size gadget. This motivates us to identify the properties of gadgets that make lifting possible. In this paper, we systematically study the question "For which gadgets does the lifting result hold?" in the following four settings: lifting from decision tree depth to decision tree size, lifting from conjunction DAG width to conjunction DAG size, lifting from decision tree depth to parity decision tree depth and size, and lifting from block sensitivity to deterministic and randomized communication complexities. In all the cases, we prove the complete classification of gadgets by exposing the properties of gadgets that make lifting results hold. The structure of the results shows that there is no intermediate cases - for every gadget there is either a polynomial lifting or no lifting at all. As a byproduct of our studies, we prove the log-rank conjecture for the class of functions that can be represented as f ⋄ OR ⋄ XOR for some function f. In this extended abstract, the proofs are omitted. Full proofs are given in the full version [Yaroslav Alekseev et al., 2024].

Cite as

Yaroslav Alekseev, Yuval Filmus, and Alexander Smal. Lifting Dichotomies. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alekseev_et_al:LIPIcs.CCC.2024.9,
  author =	{Alekseev, Yaroslav and Filmus, Yuval and Smal, Alexander},
  title =	{{Lifting Dichotomies}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.9},
  URN =		{urn:nbn:de:0030-drops-204051},
  doi =		{10.4230/LIPIcs.CCC.2024.9},
  annote =	{Keywords: decision trees, log-rank conjecture, lifting, parity decision trees}
}
Document
Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

Authors: Peter Bürgisser, Mahmut Levent Doğan, Visu Makam, Michael Walter, and Avi Wigderson

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
When a group acts on a set, it naturally partitions it into orbits, giving rise to orbit problems. These are natural algorithmic problems, as symmetries are central in numerous questions and structures in physics, mathematics, computer science, optimization, and more. Accordingly, it is of high interest to understand their computational complexity. Recently, Bürgisser et al. (2021) gave the first polynomial-time algorithms for orbit problems of torus actions, that is, actions of commutative continuous groups on Euclidean space. In this work, motivated by theoretical and practical applications, we study the computational complexity of robust generalizations of these orbit problems, which amount to approximating the distance of orbits in ℂⁿ up to a factor γ ≥ 1. In particular, this allows deciding whether two inputs are approximately in the same orbit or far from being so. On the one hand, we prove the NP-hardness of this problem for γ = n^Ω(1/log log n) by reducing the closest vector problem for lattices to it. On the other hand, we describe algorithms for solving this problem for an approximation factor γ = exp(poly(n)). Our algorithms combine tools from invariant theory and algorithmic lattice theory, and they also provide group elements witnessing the proximity of the given orbits (in contrast to the algebraic algorithms of prior work). We prove that they run in polynomial time if and only if a version of the famous number-theoretic abc-conjecture holds - establishing a new and surprising connection between computational complexity and number theory.

Cite as

Peter Bürgisser, Mahmut Levent Doğan, Visu Makam, Michael Walter, and Avi Wigderson. Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 14:1-14:48, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{burgisser_et_al:LIPIcs.CCC.2024.14,
  author =	{B\"{u}rgisser, Peter and Do\u{g}an, Mahmut Levent and Makam, Visu and Walter, Michael and Wigderson, Avi},
  title =	{{Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{14:1--14:48},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.14},
  URN =		{urn:nbn:de:0030-drops-204100},
  doi =		{10.4230/LIPIcs.CCC.2024.14},
  annote =	{Keywords: computational invariant theory, geometric complexity theory, orbit problems, abc-conjecture, closest vector problem}
}
Document
Exponential Separation Between Powers of Regular and General Resolution over Parities

Authors: Sreejata Kishor Bhattacharya, Arkadev Chattopadhyay, and Pavel Dvořák

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Proving super-polynomial lower bounds on the size of proofs of unsatisfiability of Boolean formulas using resolution over parities is an outstanding problem that has received a lot of attention after its introduction by Itsykson and Sokolov [Dmitry Itsykson and Dmitry Sokolov, 2014]. Very recently, Efremenko, Garlík and Itsykson [Klim Efremenko et al., 2023] proved the first exponential lower bounds on the size of ResLin proofs that were additionally restricted to be bottom-regular. We show that there are formulas for which such regular ResLin proofs of unsatisfiability continue to have exponential size even though there exist short proofs of their unsatisfiability in ordinary, non-regular resolution. This is the first super-polynomial separation between the power of general ResLin and that of regular ResLin for any natural notion of regularity. Our argument, while building upon the work of Efremenko et al. [Klim Efremenko et al., 2023], uses additional ideas from the literature on lifting theorems.

Cite as

Sreejata Kishor Bhattacharya, Arkadev Chattopadhyay, and Pavel Dvořák. Exponential Separation Between Powers of Regular and General Resolution over Parities. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 23:1-23:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bhattacharya_et_al:LIPIcs.CCC.2024.23,
  author =	{Bhattacharya, Sreejata Kishor and Chattopadhyay, Arkadev and Dvo\v{r}\'{a}k, Pavel},
  title =	{{Exponential Separation Between Powers of Regular and General Resolution over Parities}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{23:1--23:32},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.23},
  URN =		{urn:nbn:de:0030-drops-204191},
  doi =		{10.4230/LIPIcs.CCC.2024.23},
  annote =	{Keywords: Proof Complexity, Regular Reslin, Branching Programs, Lifting}
}
Document
Low-Depth Algebraic Circuit Lower Bounds over Any Field

Authors: Michael A. Forbes

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The recent breakthrough of Limaye, Srinivasan and Tavenas [Limaye et al., 2022] (LST) gave the first super-polynomial lower bounds against low-depth algebraic circuits, for any field of zero (or sufficiently large) characteristic. It was an open question to extend this result to small-characteristic ([Limaye et al., 2022; Govindasamy et al., 2022; Fournier et al., 2023]), which in particular is relevant for an approach to prove superpolynomial AC⁰[p]-Frege lower bounds ([Govindasamy et al., 2022]). In this work, we prove super-polynomial algebraic circuit lower bounds against low-depth algebraic circuits over any field, with the same parameters as LST (or even matching the improved parameters of Bhargav, Dutta, and Saxena [Bhargav et al., 2022]). We give two proofs. The first is logical, showing that even though the proof of LST naively fails in small characteristic, the proof is sufficiently algebraic that generic transfer results imply the result over characteristic zero implies the result over all fields. Motivated by this indirect proof, we then proceed to give a second constructive proof, replacing the field-dependent set-multilinearization result of LST with a set-multilinearization that works over any field, by using the Binet-Minc identity [Minc, 1979].

Cite as

Michael A. Forbes. Low-Depth Algebraic Circuit Lower Bounds over Any Field. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{forbes:LIPIcs.CCC.2024.31,
  author =	{Forbes, Michael A.},
  title =	{{Low-Depth Algebraic Circuit Lower Bounds over Any Field}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{31:1--31:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.31},
  URN =		{urn:nbn:de:0030-drops-204271},
  doi =		{10.4230/LIPIcs.CCC.2024.31},
  annote =	{Keywords: algebraic circuits, lower bounds, low-depth circuits, positive characteristic}
}
Document
Track A: Algorithms, Complexity and Games
From Proof Complexity to Circuit Complexity via Interactive Protocols

Authors: Noel Arteche, Erfan Khaniki, Ján Pich, and Rahul Santhanam

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Folklore in complexity theory suspects that circuit lower bounds against NC¹ or P/poly, currently out of reach, are a necessary step towards proving strong proof complexity lower bounds for systems like Frege or Extended Frege. Establishing such a connection formally, however, is already daunting, as it would imply the breakthrough separation NEXP ⊈ P/poly, as recently observed by Pich and Santhanam [Pich and Santhanam, 2023]. We show such a connection conditionally for the Implicit Extended Frege proof system (iEF) introduced by Krajíček [Krajíček, 2004], capable of formalizing most of contemporary complexity theory. In particular, we show that if iEF proves efficiently the standard derandomization assumption that a concrete Boolean function is hard on average for subexponential-size circuits, then any superpolynomial lower bound on the length of iEF proofs implies #P ⊈ FP/poly (which would in turn imply, for example, PSPACE ⊈ P/poly). Our proof exploits the formalization inside iEF of the soundness of the sum-check protocol of Lund, Fortnow, Karloff, and Nisan [Lund et al., 1992]. This has consequences for the self-provability of circuit upper bounds in iEF. Interestingly, further improving our result seems to require progress in constructing interactive proof systems with more efficient provers.

Cite as

Noel Arteche, Erfan Khaniki, Ján Pich, and Rahul Santhanam. From Proof Complexity to Circuit Complexity via Interactive Protocols. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 12:1-12:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arteche_et_al:LIPIcs.ICALP.2024.12,
  author =	{Arteche, Noel and Khaniki, Erfan and Pich, J\'{a}n and Santhanam, Rahul},
  title =	{{From Proof Complexity to Circuit Complexity via Interactive Protocols}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{12:1--12:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.12},
  URN =		{urn:nbn:de:0030-drops-201557},
  doi =		{10.4230/LIPIcs.ICALP.2024.12},
  annote =	{Keywords: proof complexity, circuit complexity, interactive protocols}
}
Document
Track A: Algorithms, Complexity and Games
A Multivariate to Bivariate Reduction for Noncommutative Rank and Related Results

Authors: Vikraman Arvind and Pushkar S. Joglekar

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study the noncommutative rank problem, ncRANK, of computing the rank of matrices with linear entries in n noncommuting variables and the problem of noncommutative Rational Identity Testing, RIT, which is to decide if a given rational formula in n noncommuting variables is zero on its domain of definition. Motivated by the question whether these problems have deterministic NC algorithms, we revisit their interrelationship from a parallel complexity point of view. We show the following results: 1) Based on Cohn’s embedding theorem [Cohn, 1990; Cohn, 2006] we show deterministic NC reductions from multivariate ncRANK to bivariate ncRANK and from multivariate RIT to bivariate RIT. 2) We obtain a deterministic NC-Turing reduction from bivariate RIT to bivariate ncRANK, thereby proving that a deterministic NC algorithm for bivariate ncRANK would imply that both multivariate RIT and multivariate ncRANK are in deterministic NC.

Cite as

Vikraman Arvind and Pushkar S. Joglekar. A Multivariate to Bivariate Reduction for Noncommutative Rank and Related Results. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 14:1-14:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arvind_et_al:LIPIcs.ICALP.2024.14,
  author =	{Arvind, Vikraman and Joglekar, Pushkar S.},
  title =	{{A Multivariate to Bivariate Reduction for Noncommutative Rank and Related Results}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{14:1--14:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.14},
  URN =		{urn:nbn:de:0030-drops-201571},
  doi =		{10.4230/LIPIcs.ICALP.2024.14},
  annote =	{Keywords: noncommutative rank, rational formulas, identity testing, parallel complexity}
}
Document
Track A: Algorithms, Complexity and Games
NP-Hardness of Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials

Authors: Omkar Baraskar, Agrim Dewan, Chandan Saha, and Pulkit Sinha

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
An s-sparse polynomial has at most s monomials with nonzero coefficients. The Equivalence Testing problem for sparse polynomials (ETsparse) asks to decide if a given polynomial f is equivalent to (i.e., in the orbit of) some s-sparse polynomial. In other words, given f ∈ 𝔽[𝐱] and s ∈ ℕ, ETsparse asks to check if there exist A ∈ GL(|𝐱|, 𝔽) and 𝐛 ∈ 𝔽^|𝐱| such that f(A𝐱 + 𝐛) is s-sparse. We show that ETsparse is NP-hard over any field 𝔽, if f is given in the sparse representation, i.e., as a list of nonzero coefficients and exponent vectors. This answers a question posed by Gupta, Saha and Thankey (SODA 2023) and also, more explicitly, by Baraskar, Dewan and Saha (STACS 2024). The result implies that the Minimum Circuit Size Problem (MCSP) is NP-hard for a dense subclass of depth-3 arithmetic circuits if the input is given in sparse representation. We also show that approximating the smallest s₀ such that a given s-sparse polynomial f is in the orbit of some s₀-sparse polynomial to within a factor of s^{1/3 - ε} is NP-hard for any ε > 0; observe that s-factor approximation is trivial as the input is s-sparse. Finally, we show that for any constant σ ≥ 6, checking if a polynomial (given in sparse representation) is in the orbit of some support-σ polynomial is NP-hard. Support of a polynomial f is the maximum number of variables present in any monomial of f. These results are obtained via direct reductions from the 3-SAT problem.

Cite as

Omkar Baraskar, Agrim Dewan, Chandan Saha, and Pulkit Sinha. NP-Hardness of Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 16:1-16:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{baraskar_et_al:LIPIcs.ICALP.2024.16,
  author =	{Baraskar, Omkar and Dewan, Agrim and Saha, Chandan and Sinha, Pulkit},
  title =	{{NP-Hardness of Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{16:1--16:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.16},
  URN =		{urn:nbn:de:0030-drops-201598},
  doi =		{10.4230/LIPIcs.ICALP.2024.16},
  annote =	{Keywords: Equivalence testing, MCSP, sparse polynomials, 3SAT}
}
Document
Track A: Algorithms, Complexity and Games
Fully-Scalable MPC Algorithms for Clustering in High Dimension

Authors: Artur Czumaj, Guichen Gao, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We design new parallel algorithms for clustering in high-dimensional Euclidean spaces. These algorithms run in the Massively Parallel Computation (MPC) model, and are fully scalable, meaning that the local memory in each machine may be n^σ for arbitrarily small fixed σ > 0. Importantly, the local memory may be substantially smaller than the number of clusters k, yet all our algorithms are fast, i.e., run in O(1) rounds. We first devise a fast MPC algorithm for O(1)-approximation of uniform Facility Location. This is the first fully-scalable MPC algorithm that achieves O(1)-approximation for any clustering problem in general geometric setting; previous algorithms only provide poly(log n)-approximation or apply to restricted inputs, like low dimension or small number of clusters k; e.g. [Bhaskara and Wijewardena, ICML'18; Cohen-Addad et al., NeurIPS'21; Cohen-Addad et al., ICML'22]. We then build on this Facility Location result and devise a fast MPC algorithm that achieves O(1)-bicriteria approximation for k-Median and for k-Means, namely, it computes (1+ε)k clusters of cost within O(1/ε²)-factor of the optimum for k clusters. A primary technical tool that we introduce, and may be of independent interest, is a new MPC primitive for geometric aggregation, namely, computing for every data point a statistic of its approximate neighborhood, for statistics like range counting and nearest-neighbor search. Our implementation of this primitive works in high dimension, and is based on consistent hashing (aka sparse partition), a technique that was recently used for streaming algorithms [Czumaj et al., FOCS'22].

Cite as

Artur Czumaj, Guichen Gao, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý. Fully-Scalable MPC Algorithms for Clustering in High Dimension. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 50:1-50:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{czumaj_et_al:LIPIcs.ICALP.2024.50,
  author =	{Czumaj, Artur and Gao, Guichen and Jiang, Shaofeng H.-C. and Krauthgamer, Robert and Vesel\'{y}, Pavel},
  title =	{{Fully-Scalable MPC Algorithms for Clustering in High Dimension}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{50:1--50:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.50},
  URN =		{urn:nbn:de:0030-drops-201938},
  doi =		{10.4230/LIPIcs.ICALP.2024.50},
  annote =	{Keywords: Massively parallel computing, high dimension, facility location, k-median, k-means}
}
Document
Track A: Algorithms, Complexity and Games
Refuting Approaches to the Log-Rank Conjecture for XOR Functions

Authors: Hamed Hatami, Kaave Hosseini, Shachar Lovett, and Anthony Ostuni

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The log-rank conjecture, a longstanding problem in communication complexity, has persistently eluded resolution for decades. Consequently, some recent efforts have focused on potential approaches for establishing the conjecture in the special case of XOR functions, where the communication matrix is lifted from a boolean function, and the rank of the matrix equals the Fourier sparsity of the function, which is the number of its nonzero Fourier coefficients. In this note, we refute two conjectures. The first has origins in Montanaro and Osborne (arXiv'09) and is considered in Tsang, Wong, Xie, and Zhang (FOCS'13), and the second is due to Mande and Sanyal (FSTTCS'20). These conjectures were proposed in order to improve the best-known bound of Lovett (STOC'14) regarding the log-rank conjecture in the special case of XOR functions. Both conjectures speculate that the set of nonzero Fourier coefficients of the boolean function has some strong additive structure. We refute these conjectures by constructing two specific boolean functions tailored to each.

Cite as

Hamed Hatami, Kaave Hosseini, Shachar Lovett, and Anthony Ostuni. Refuting Approaches to the Log-Rank Conjecture for XOR Functions. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 82:1-82:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hatami_et_al:LIPIcs.ICALP.2024.82,
  author =	{Hatami, Hamed and Hosseini, Kaave and Lovett, Shachar and Ostuni, Anthony},
  title =	{{Refuting Approaches to the Log-Rank Conjecture for XOR Functions}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{82:1--82:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.82},
  URN =		{urn:nbn:de:0030-drops-202252},
  doi =		{10.4230/LIPIcs.ICALP.2024.82},
  annote =	{Keywords: Communication complexity, log-rank conjecture, XOR functions, additive structure}
}
Document
Track A: Algorithms, Complexity and Games
One-Way Communication Complexity of Partial XOR Functions

Authors: Vladimir V. Podolskii and Dmitrii Sluch

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Boolean function F(x,y) for x,y ∈ {0,1}ⁿ is an XOR function if F(x,y) = f(x⊕ y) for some function f on n input bits, where ⊕ is a bit-wise XOR. XOR functions are relevant in communication complexity, partially for allowing the Fourier analytic technique. For total XOR functions, it is known that deterministic communication complexity of F is closely related to parity decision tree complexity of f. Montanaro and Osbourne (2009) observed that one-way communication complexity D_{cc}^{→}(F) of F is exactly equal to non-adaptive parity decision tree complexity NADT^{⊕}(f) of f. Hatami et al. (2018) showed that unrestricted communication complexity of F is polynomially related to parity decision tree complexity of f. We initiate the study of a similar connection for partial functions. We show that in the case of one-way communication complexity whether these measures are equal, depends on the number of undefined inputs of f. More precisely, if D_{cc}^{→}(F) = t and f is undefined on at most O((2^{n-t})/(√{n-t})) inputs, then NADT^{⊕}(f) = t. We also provide stronger bounds in extreme cases of small and large complexity. We show that the restriction on the number of undefined inputs in these results is unavoidable. That is, for a wide range of values of D_{cc}^{→}(F) and NADT^{⊕}(f) (from constant to n-2) we provide partial functions (with more than Ω((2^{n-t})/(√{n-t})) undefined inputs, where t = D_{cc}^{→}) for which D_{cc}^{→}(F) < NADT^{⊕}(f). In particular, we provide a function with an exponential gap between the two measures. Our separation results translate to the case of two-way communication complexity as well, in particular showing that the result of Hatami et al. (2018) cannot be generalized to partial functions. Previous results for total functions heavily rely on the Boolean Fourier analysis and thus, the technique does not translate to partial functions. For the proofs of our results we build a linear algebraic framework instead. Separation results are proved through the reduction to covering codes.

Cite as

Vladimir V. Podolskii and Dmitrii Sluch. One-Way Communication Complexity of Partial XOR Functions. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 116:1-116:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{podolskii_et_al:LIPIcs.ICALP.2024.116,
  author =	{Podolskii, Vladimir V. and Sluch, Dmitrii},
  title =	{{One-Way Communication Complexity of Partial XOR Functions}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{116:1--116:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.116},
  URN =		{urn:nbn:de:0030-drops-202591},
  doi =		{10.4230/LIPIcs.ICALP.2024.116},
  annote =	{Keywords: Partial functions, XOR functions, communication complexity, decision trees, covering codes}
}
Document
Learning Arithmetic Formulas in the Presence of Noise: A General Framework and Applications to Unsupervised Learning

Authors: Pritam Chandra, Ankit Garg, Neeraj Kayal, Kunal Mittal, and Tanmay Sinha

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We present a general framework for designing efficient algorithms for unsupervised learning problems, such as mixtures of Gaussians and subspace clustering. Our framework is based on a meta algorithm that learns arithmetic formulas in the presence of noise, using lower bounds. This builds upon the recent work of Garg, Kayal and Saha (FOCS '20), who designed such a framework for learning arithmetic formulas without any noise. A key ingredient of our meta algorithm is an efficient algorithm for a novel problem called Robust Vector Space Decomposition. We show that our meta algorithm works well when certain matrices have sufficiently large smallest non-zero singular values. We conjecture that this condition holds for smoothed instances of our problems, and thus our framework would yield efficient algorithms for these problems in the smoothed setting.

Cite as

Pritam Chandra, Ankit Garg, Neeraj Kayal, Kunal Mittal, and Tanmay Sinha. Learning Arithmetic Formulas in the Presence of Noise: A General Framework and Applications to Unsupervised Learning. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 25:1-25:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chandra_et_al:LIPIcs.ITCS.2024.25,
  author =	{Chandra, Pritam and Garg, Ankit and Kayal, Neeraj and Mittal, Kunal and Sinha, Tanmay},
  title =	{{Learning Arithmetic Formulas in the Presence of Noise: A General Framework and Applications to Unsupervised Learning}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{25:1--25:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.25},
  URN =		{urn:nbn:de:0030-drops-195537},
  doi =		{10.4230/LIPIcs.ITCS.2024.25},
  annote =	{Keywords: Arithmetic Circuits, Robust Vector Space Decomposition, Subspace Clustering, Mixtures of Gaussians}
}
Document
Track A: Algorithms, Complexity and Games
Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization

Authors: Prashanth Amireddy, Ankit Garg, Neeraj Kayal, Chandan Saha, and Bhargav Thankey

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
A recent breakthrough work of Limaye, Srinivasan and Tavenas [Nutan Limaye et al., 2021] proved superpolynomial lower bounds for low-depth arithmetic circuits via a "hardness escalation" approach: they proved lower bounds for low-depth set-multilinear circuits and then lifted the bounds to low-depth general circuits. In this work, we prove superpolynomial lower bounds for low-depth circuits by bypassing the hardness escalation, i.e., the set-multilinearization, step. As set-multilinearization comes with an exponential blow-up in circuit size, our direct proof opens up the possibility of proving an exponential lower bound for low-depth homogeneous circuits by evading a crucial bottleneck. Our bounds hold for the iterated matrix multiplication and the Nisan-Wigderson design polynomials. We also define a subclass of unrestricted depth homogeneous formulas which we call unique parse tree (UPT) formulas, and prove superpolynomial lower bounds for these. This significantly generalizes the superpolynomial lower bounds for regular formulas [Neeraj Kayal et al., 2014; Hervé Fournier et al., 2015].

Cite as

Prashanth Amireddy, Ankit Garg, Neeraj Kayal, Chandan Saha, and Bhargav Thankey. Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 12:1-12:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{amireddy_et_al:LIPIcs.ICALP.2023.12,
  author =	{Amireddy, Prashanth and Garg, Ankit and Kayal, Neeraj and Saha, Chandan and Thankey, Bhargav},
  title =	{{Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{12:1--12:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.12},
  URN =		{urn:nbn:de:0030-drops-180642},
  doi =		{10.4230/LIPIcs.ICALP.2023.12},
  annote =	{Keywords: arithmetic circuits, low-depth circuits, lower bounds, shifted partials}
}
Document
On Identity Testing and Noncommutative Rank Computation over the Free Skew Field

Authors: V. Arvind, Abhranil Chatterjee, Utsab Ghosal, Partha Mukhopadhyay, and C. Ramya

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
The identity testing of rational formulas (RIT) in the free skew field efficiently reduces to computing the rank of a matrix whose entries are linear polynomials in noncommuting variables [Hrubeš and Wigderson, 2015]. This rank computation problem has deterministic polynomial-time white-box algorithms [Ankit Garg et al., 2016; Ivanyos et al., 2018] and a randomized polynomial-time algorithm in the black-box setting [Harm Derksen and Visu Makam, 2017]. In this paper, we propose a new approach for efficient derandomization of black-box RIT. Additionally, we obtain results for matrix rank computation over the free skew field and construct efficient linear pencil representations for a new class of rational expressions. More precisely, we show: - Under the hardness assumption that the ABP (algebraic branching program) complexity of every polynomial identity for the k×k matrix algebra is 2^Ω(k) [Andrej Bogdanov and Hoeteck Wee, 2005], we obtain a subexponential-time black-box RIT algorithm for rational formulas of inversion height almost logarithmic in the size of the formula. This can be seen as the first "hardness implies derandomization" type theorem for rational formulas. - We show that the noncommutative rank of any matrix over the free skew field whose entries have small linear pencil representations can be computed in deterministic polynomial time. While an efficient rank computation was known for matrices with noncommutative formulas as entries [Ankit Garg et al., 2020], we obtain the first deterministic polynomial-time algorithms for rank computation of matrices whose entries are noncommutative ABPs or rational formulas. - Motivated by the definition given by Bergman [George M Bergman, 1976], we define a new class of rational functions where a rational function of inversion height at most h is defined as a composition of a noncommutative r-skewed circuit (equivalently an ABP) with inverses of rational functions of this class of inversion height at most h-1 which are also disjoint. We obtain a polynomial-size linear pencil representation for this class which gives a white-box deterministic polynomial-time identity testing algorithm for the class.

Cite as

V. Arvind, Abhranil Chatterjee, Utsab Ghosal, Partha Mukhopadhyay, and C. Ramya. On Identity Testing and Noncommutative Rank Computation over the Free Skew Field. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 6:1-6:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{arvind_et_al:LIPIcs.ITCS.2023.6,
  author =	{Arvind, V. and Chatterjee, Abhranil and Ghosal, Utsab and Mukhopadhyay, Partha and Ramya, C.},
  title =	{{On Identity Testing and Noncommutative Rank Computation over the Free Skew Field}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{6:1--6:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.6},
  URN =		{urn:nbn:de:0030-drops-175093},
  doi =		{10.4230/LIPIcs.ITCS.2023.6},
  annote =	{Keywords: Algebraic Complexity, Identity Testing, Non-commutative rank}
}
Document
RANDOM
Learning Generalized Depth Three Arithmetic Circuits in the Non-Degenerate Case

Authors: Vishwas Bhargava, Ankit Garg, Neeraj Kayal, and Chandan Saha

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
Consider a homogeneous degree d polynomial f = T₁ + ⋯ + T_s, T_i = g_i(𝓁_{i,1}, …, 𝓁_{i, m}) where g_i’s are homogeneous m-variate degree d polynomials and 𝓁_{i,j}’s are linear polynomials in n variables. We design a (randomized) learning algorithm that given black-box access to f, computes black-boxes for the T_i’s. The running time of the algorithm is poly(n, m, d, s) and the algorithm works under some non-degeneracy conditions on the linear forms and the g_i’s, and some additional technical assumptions n ≥ (md)², s ≤ n^{d/4}. The non-degeneracy conditions on 𝓁_{i,j}’s constitute non-membership in a variety, and hence are satisfied when the coefficients of 𝓁_{i,j}’s are chosen uniformly and randomly from a large enough set. The conditions on g_i’s are satisfied for random polynomials and also for natural polynomials common in the study of arithmetic complexity like determinant, permanent, elementary symmetric polynomial, iterated matrix multiplication. A particularly appealing algorithmic corollary is the following: Given black-box access to an f = Det_r(L^(1)) + … + Det_r(L^(s)), where L^(k) = (𝓁_{i,j}^(k))_{i,j} with 𝓁_{i,j}^(k)’s being linear forms in n variables chosen randomly, there is an algorithm which in time poly(n, r) outputs matrices (M^(k))_k of linear forms s.t. there exists a permutation π: [s] → [s] with Det_r(M^(k)) = Det_r(L^(π(k))). Our work follows the works [Neeraj Kayal and Chandan Saha, 2019; Garg et al., 2020] which use lower bound methods in arithmetic complexity to design average case learning algorithms. It also vastly generalizes the result in [Neeraj Kayal and Chandan Saha, 2019] about learning depth three circuits, which is a special case where each g_i is just a monomial. At the core of our algorithm is the partial derivative method which can be used to prove lower bounds for generalized depth three circuits. To apply the general framework in [Neeraj Kayal and Chandan Saha, 2019; Garg et al., 2020], we need to establish that the non-degeneracy conditions arising out of applying the framework with the partial derivative method are satisfied in the random case. We develop simple but general and powerful tools to establish this, which might be useful in designing average case learning algorithms for other arithmetic circuit models.

Cite as

Vishwas Bhargava, Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning Generalized Depth Three Arithmetic Circuits in the Non-Degenerate Case. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 21:1-21:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bhargava_et_al:LIPIcs.APPROX/RANDOM.2022.21,
  author =	{Bhargava, Vishwas and Garg, Ankit and Kayal, Neeraj and Saha, Chandan},
  title =	{{Learning Generalized Depth Three Arithmetic Circuits in the Non-Degenerate Case}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{21:1--21:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.21},
  URN =		{urn:nbn:de:0030-drops-171430},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.21},
  annote =	{Keywords: Arithemtic Circuits, Average-case Learning, Depth 3 Arithmetic Circuits, Learning Algorithms, Learning Circuits, Circuit Reconstruction}
}
Document
RANDOM
Black-Box Identity Testing of Noncommutative Rational Formulas of Inversion Height Two in Deterministic Quasipolynomial Time

Authors: V. Arvind, Abhranil Chatterjee, and Partha Mukhopadhyay

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
Hrubeš and Wigderson [Hrubeš and Wigderson, 2015] initiated the complexity-theoretic study of noncommutative formulas with inverse gates. They introduced the Rational Identity Testing (RIT) problem which is to decide whether a noncommutative rational formula computes zero in the free skew field. In the white-box setting, there are deterministic polynomial-time algorithms due to Garg, Gurvits, Oliveira, and Wigderson [Ankit Garg et al., 2016] and Ivanyos, Qiao, and Subrahmanyam [Ivanyos et al., 2018]. A central open problem in this area is to design an efficient deterministic black-box identity testing algorithm for rational formulas. In this paper, we solve this for the first nested inverse case. More precisely, we obtain a deterministic quasipolynomial-time black-box RIT algorithm for noncommutative rational formulas of inversion height two via a hitting set construction. Several new technical ideas are involved in the hitting set construction, including concepts from matrix coefficient realization theory [Volčič, 2018] and properties of cyclic division algebras [T.Y. Lam, 2001]. En route to the proof, an important step is to embed the hitting set of Forbes and Shpilka for noncommutative formulas [Michael A. Forbes and Amir Shpilka, 2013] inside a cyclic division algebra of small index.

Cite as

V. Arvind, Abhranil Chatterjee, and Partha Mukhopadhyay. Black-Box Identity Testing of Noncommutative Rational Formulas of Inversion Height Two in Deterministic Quasipolynomial Time. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 23:1-23:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{arvind_et_al:LIPIcs.APPROX/RANDOM.2022.23,
  author =	{Arvind, V. and Chatterjee, Abhranil and Mukhopadhyay, Partha},
  title =	{{Black-Box Identity Testing of Noncommutative Rational Formulas of Inversion Height Two in Deterministic Quasipolynomial Time}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{23:1--23:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.23},
  URN =		{urn:nbn:de:0030-drops-171451},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.23},
  annote =	{Keywords: Rational Identity Testing, Black-box Derandomization, Cyclic Division Algebra, Matrix coefficient realization theory}
}
  • Refine by Author
  • 11 Garg, Ankit
  • 7 Saha, Chandan
  • 4 Kayal, Neeraj
  • 4 Wigderson, Avi
  • 3 Arvind, V.
  • Show More...

  • Refine by Classification
  • 13 Theory of computation → Algebraic complexity theory
  • 4 Theory of computation → Communication complexity
  • 3 Theory of computation → Oracles and decision trees
  • 2 Computing methodologies → Algebraic algorithms
  • 2 Theory of computation
  • Show More...

  • Refine by Keyword
  • 3 XOR functions
  • 2 Algebraic Complexity
  • 2 Lower Bounds
  • 2 decision trees
  • 2 geometric complexity theory
  • Show More...

  • Refine by Type
  • 29 document

  • Refine by Publication Year
  • 11 2024
  • 4 2021
  • 3 2018
  • 3 2020
  • 2 2019
  • Show More...