329 Search Results for "Jansen, Klaus"


Volume

LIPIcs, Volume 116

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)

APPROX/RANDOM 2018, August 20-22, 2018, Princeton, NJ, USA

Editors: Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer

Volume

LIPIcs, Volume 81

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)

APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA

Editors: Klaus Jansen, José D. P. Rolim, David P. Williamson, and Santosh S. Vempala

Volume

LIPIcs, Volume 60

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)

APPROX/RANDOM 2016, September 7-9, 2016, Paris, France

Editors: Klaus Jansen, Claire Mathieu, José D. P. Rolim, and Chris Umans

Volume

LIPIcs, Volume 40

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)

APPROX/RANDOM 2015, August 24-26, 2015, Princeton, USA

Editors: Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim

Volume

LIPIcs, Volume 28

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)

APPROX/RANDOM 2014, September 4-6, 2014, Barcelona, Spain

Editors: Klaus Jansen, José Rolim, Nikhil R. Devanur, and Cristopher Moore

Document
Solving Unique Games over Globally Hypercontractive Graphs

Authors: Mitali Bafna and Dor Minzer

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We study the complexity of affine Unique-Games (UG) over globally hypercontractive graphs, which are graphs that are not small set expanders but admit a useful and succinct characterization of all small sets that violate the small-set expansion property. This class of graphs includes the Johnson and Grassmann graphs, which have played a pivotal role in recent PCP constructions for UG, and their generalizations via high-dimensional expanders. We show new rounding techniques for higher degree sum-of-squares (SoS) relaxations for worst-case optimization. In particular, our algorithm shows how to round "low-entropy" pseudodistributions, broadly extending the algorithmic framework of [Mitali Bafna et al., 2021]. At a high level, [Mitali Bafna et al., 2021] showed how to round pseudodistributions for problems where there is a "unique" good solution. We extend their framework by exhibiting a rounding for problems where there might be "few good solutions". Our result suggests that UG is easy on globally hypercontractive graphs, and therefore highlights the importance of graphs that lack such a characterization in the context of PCP reductions for UG.

Cite as

Mitali Bafna and Dor Minzer. Solving Unique Games over Globally Hypercontractive Graphs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bafna_et_al:LIPIcs.CCC.2024.3,
  author =	{Bafna, Mitali and Minzer, Dor},
  title =	{{Solving Unique Games over Globally Hypercontractive Graphs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.3},
  URN =		{urn:nbn:de:0030-drops-203996},
  doi =		{10.4230/LIPIcs.CCC.2024.3},
  annote =	{Keywords: unique games, approximation algorithms}
}
Document
Derandomizing Logspace with a Small Shared Hard Drive

Authors: Edward Pyne

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We obtain new catalytic algorithms for space-bounded derandomization. In the catalytic computation model introduced by (Buhrman, Cleve, Koucký, Loff, and Speelman STOC 2013), we are given a small worktape, and a larger catalytic tape that has an arbitrary initial configuration. We may edit this tape, but it must be exactly restored to its initial configuration at the completion of the computation. We prove that BPSPACE[S] ⊆ CSPACE[S,S²] where BPSPACE[S] corresponds to randomized space S computation, and CSPACE[S,C] corresponds to catalytic algorithms that use O(S) bits of workspace and O(C) bits of catalytic space. Previously, only BPSPACE[S] ⊆ CSPACE[S,2^O(S)] was known. In fact, we prove a general tradeoff, that for every α ∈ [1,1.5], BPSPACE[S] ⊆ CSPACE[S^α,S^(3-α)]. We do not use the algebraic techniques of prior work on catalytic computation. Instead, we develop an algorithm that branches based on if the catalytic tape is conditionally random, and instantiate this primitive in a recursive framework. Our result gives an alternate proof of the best known time-space tradeoff for BPSPACE[S], due to (Cai, Chakaravarthy, and van Melkebeek, Theory Comput. Sys. 2006). As a final application, we extend our results to solve search problems in CSPACE[S,S²]. As far as we are aware, this constitutes the first study of search problems in the catalytic computing model.

Cite as

Edward Pyne. Derandomizing Logspace with a Small Shared Hard Drive. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{pyne:LIPIcs.CCC.2024.4,
  author =	{Pyne, Edward},
  title =	{{Derandomizing Logspace with a Small Shared Hard Drive}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.4},
  URN =		{urn:nbn:de:0030-drops-204006},
  doi =		{10.4230/LIPIcs.CCC.2024.4},
  annote =	{Keywords: Catalytic computation, space-bounded computation, derandomization}
}
Document
Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy

Authors: Sepehr Assadi, Prantar Ghosh, Bruno Loff, Parth Mittal, and Sagnik Mukhopadhyay

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The following question arises naturally in the study of graph streaming algorithms: Is there any graph problem which is "not too hard", in that it can be solved efficiently with total communication (nearly) linear in the number n of vertices, and for which, nonetheless, any streaming algorithm with Õ(n) space (i.e., a semi-streaming algorithm) needs a polynomial n^Ω(1) number of passes? Assadi, Chen, and Khanna [STOC 2019] were the first to prove that this is indeed the case. However, the lower bounds that they obtained are for rather non-standard graph problems. Our first main contribution is to present the first polynomial-pass lower bounds for natural "not too hard" graph problems studied previously in the streaming model: k-cores and degeneracy. We devise a novel communication protocol for both problems with near-linear communication, thus showing that k-cores and degeneracy are natural examples of "not too hard" problems. Indeed, previous work have developed single-pass semi-streaming algorithms for approximating these problems. In contrast, we prove that any semi-streaming algorithm for exactly solving these problems requires (almost) Ω(n^{1/3}) passes. The lower bound follows by a reduction from a generalization of the hidden pointer chasing (HPC) problem of Assadi, Chen, and Khanna, which is also the basis of their earlier semi-streaming lower bounds. Our second main contribution is improved round-communication lower bounds for the underlying communication problems at the basis of these reductions: - We improve the previous lower bound of Assadi, Chen, and Khanna for HPC to achieve optimal bounds for this problem. - We further observe that all current reductions from HPC can also work with a generalized version of this problem that we call MultiHPC, and prove an even stronger and optimal lower bound for this generalization. These two results collectively allow us to improve the resulting pass lower bounds for semi-streaming algorithms by a polynomial factor, namely, from n^{1/5} to n^{1/3} passes.

Cite as

Sepehr Assadi, Prantar Ghosh, Bruno Loff, Parth Mittal, and Sagnik Mukhopadhyay. Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 7:1-7:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{assadi_et_al:LIPIcs.CCC.2024.7,
  author =	{Assadi, Sepehr and Ghosh, Prantar and Loff, Bruno and Mittal, Parth and Mukhopadhyay, Sagnik},
  title =	{{Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{7:1--7:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.7},
  URN =		{urn:nbn:de:0030-drops-204035},
  doi =		{10.4230/LIPIcs.CCC.2024.7},
  annote =	{Keywords: Graph streaming, Lower bounds, Communication complexity, k-Cores and degeneracy}
}
Document
Explicit Directional Affine Extractors and Improved Hardness for Linear Branching Programs

Authors: Xin Li and Yan Zhong

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Affine extractors give some of the best-known lower bounds for various computational models, such as AC⁰ circuits, parity decision trees, and general Boolean circuits. However, they are not known to give strong lower bounds for read-once branching programs (ROBPs). In a recent work, Gryaznov, Pudlák, and Talebanfard (CCC' 22) introduced a stronger version of affine extractors known as directional affine extractors, together with a generalization of ROBPs where each node can make linear queries, and showed that the former implies strong lower bound for a certain type of the latter known as strongly read-once linear branching programs (SROLBPs). Their main result gives explicit constructions of directional affine extractors for entropy k > 2n/3, which implies average-case complexity 2^{n/3-o(n)} against SROLBPs with exponentially small correlation. A follow-up work by Chattopadhyay and Liao (CCC' 23) improves the hardness to 2^{n-o(n)} at the price of increasing the correlation to polynomially large, via a new connection to sumset extractors introduced by Chattopadhyay and Li (STOC' 16) and explicit constructions of such extractors by Chattopadhyay and Liao (STOC' 22). Both works left open the questions of better constructions of directional affine extractors and improved average-case complexity against SROLBPs in the regime of small correlation. This paper provides a much more in-depth study of directional affine extractors, SROLBPs, and ROBPs. Our main results include: - An explicit construction of directional affine extractors with k = o(n) and exponentially small error, which gives average-case complexity 2^{n-o(n)} against SROLBPs with exponentially small correlation, thus answering the two open questions raised in previous works. - An explicit function in AC⁰ that gives average-case complexity 2^{(1-δ)n} against ROBPs with negligible correlation, for any constant δ > 0. Previously, no such average-case hardness is known, and the best size lower bound for any function in AC⁰ against ROBPs is 2^Ω(n). One of the key ingredients in our constructions is a new linear somewhere condenser for affine sources, which is based on dimension expanders. The condenser also leads to an unconditional improvement of the entropy requirement of explicit affine extractors with negligible error. We further show that the condenser also works for general weak random sources, under the Polynomial Freiman-Ruzsa Theorem in 𝖥₂ⁿ, recently proved by Gowers, Green, Manners, and Tao (arXiv' 23).

Cite as

Xin Li and Yan Zhong. Explicit Directional Affine Extractors and Improved Hardness for Linear Branching Programs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.CCC.2024.10,
  author =	{Li, Xin and Zhong, Yan},
  title =	{{Explicit Directional Affine Extractors and Improved Hardness for Linear Branching Programs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{10:1--10:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.10},
  URN =		{urn:nbn:de:0030-drops-204060},
  doi =		{10.4230/LIPIcs.CCC.2024.10},
  annote =	{Keywords: Randomness Extractors, Affine, Read-once Linear Branching Programs, Low-degree polynomials, AC⁰ circuits}
}
Document
Pseudorandomness, Symmetry, Smoothing: I

Authors: Harm Derksen, Peter Ivanov, Chin Ho Lee, and Emanuele Viola

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We prove several new results about bounded uniform and small-bias distributions. A main message is that, small-bias, even perturbed with noise, does not fool several classes of tests better than bounded uniformity. We prove this for threshold tests, small-space algorithms, and small-depth circuits. In particular, we obtain small-bias distributions that - achieve an optimal lower bound on their statistical distance to any bounded-uniform distribution. This closes a line of research initiated by Alon, Goldreich, and Mansour in 2003, and improves on a result by O'Donnell and Zhao. - have heavier tail mass than the uniform distribution. This answers a question posed by several researchers including Bun and Steinke. - rule out a popular paradigm for constructing pseudorandom generators, originating in a 1989 work by Ajtai and Wigderson. This again answers a question raised by several researchers. For branching programs, our result matches a bound by Forbes and Kelley. Our small-bias distributions above are symmetric. We show that the xor of any two symmetric small-bias distributions fools any bounded function. Hence our examples cannot be extended to the xor of two small-bias distributions, another popular paradigm whose power remains unknown. We also generalize and simplify the proof of a result of Bazzi.

Cite as

Harm Derksen, Peter Ivanov, Chin Ho Lee, and Emanuele Viola. Pseudorandomness, Symmetry, Smoothing: I. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 18:1-18:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{derksen_et_al:LIPIcs.CCC.2024.18,
  author =	{Derksen, Harm and Ivanov, Peter and Lee, Chin Ho and Viola, Emanuele},
  title =	{{Pseudorandomness, Symmetry, Smoothing: I}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{18:1--18:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.18},
  URN =		{urn:nbn:de:0030-drops-204144},
  doi =		{10.4230/LIPIcs.CCC.2024.18},
  annote =	{Keywords: pseudorandomness, k-wise uniform distributions, small-bias distributions, noise, symmetric tests, thresholds, Krawtchouk polynomials}
}
Document
Distribution-Free Proofs of Proximity

Authors: Hugo Aaronson, Tom Gur, Ninad Rajgopal, and Ron D. Rothblum

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Motivated by the fact that input distributions are often unknown in advance, distribution-free property testing considers a setting in which the algorithmic task is to accept functions f: [n] → {0,1} having a certain property Π and reject functions that are ε-far from Π, where the distance is measured according to an arbitrary and unknown input distribution 𝒟 ∼ [n]. As usual in property testing, the tester is required to do so while making only a sublinear number of input queries, but as the distribution is unknown, we also allow a sublinear number of samples from the distribution 𝒟. In this work we initiate the study of distribution-free interactive proofs of proximity (df-IPPs) in which the distribution-free testing algorithm is assisted by an all powerful but untrusted prover. Our main result is that for any problem Π ∈ NC, any proximity parameter ε > 0, and any (trade-off) parameter τ ≤ √n, we construct a df-IPP for Π with respect to ε, that has query and sample complexities τ+O(1/ε), and communication complexity Õ(n/τ + 1/ε). For τ as above and sufficiently large ε (namely, when ε > τ/n), this result matches the parameters of the best-known general purpose IPPs in the standard uniform setting. Moreover, for such τ, its parameters are optimal up to poly-logarithmic factors under reasonable cryptographic assumptions for the same regime of ε as the uniform setting, i.e., when ε ≥ 1/τ. For smaller values of ε (i.e., when ε < τ/n), our protocol has communication complexity Ω(1/ε), which is worse than the Õ(n/τ) communication complexity of the uniform IPPs (with the same query complexity). With the aim of improving on this gap, we further show that for IPPs over specialised, but large distribution families, such as sufficiently smooth distributions and product distributions, the communication complexity can be reduced to Õ(n/τ^{1-o(1)}). In addition, we show that for certain natural families of languages, such as symmetric and (relaxed) self-correctable languages, it is possible to further improve the efficiency of distribution-free IPPs.

Cite as

Hugo Aaronson, Tom Gur, Ninad Rajgopal, and Ron D. Rothblum. Distribution-Free Proofs of Proximity. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 24:1-24:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aaronson_et_al:LIPIcs.CCC.2024.24,
  author =	{Aaronson, Hugo and Gur, Tom and Rajgopal, Ninad and Rothblum, Ron D.},
  title =	{{Distribution-Free Proofs of Proximity}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{24:1--24:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.24},
  URN =		{urn:nbn:de:0030-drops-204204},
  doi =		{10.4230/LIPIcs.CCC.2024.24},
  annote =	{Keywords: Property Testing, Interactive Proofs, Distribution-Free Property Testing}
}
Document
Baby PIH: Parameterized Inapproximability of Min CSP

Authors: Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The Parameterized Inapproximability Hypothesis (PIH) is the analog of the PCP theorem in the world of parameterized complexity. It asserts that no FPT algorithm can distinguish a satisfiable 2CSP instance from one which is only (1-ε)-satisfiable (where the parameter is the number of variables) for some constant 0 < ε < 1. We consider a minimization version of CSPs (Min-CSP), where one may assign r values to each variable, and the goal is to ensure that every constraint is satisfied by some choice among the r × r pairs of values assigned to its variables (call such a CSP instance r-list-satisfiable). We prove the following strong parameterized inapproximability for Min CSP: For every r ≥ 1, it is W[1]-hard to tell if a 2CSP instance is satisfiable or is not even r-list-satisfiable. We refer to this statement as "Baby PIH", following the recently proved Baby PCP Theorem (Barto and Kozik, 2021). Our proof adapts the combinatorial arguments underlying the Baby PCP theorem, overcoming some basic obstacles that arise in the parameterized setting. Furthermore, our reduction runs in time polynomially bounded in both the number of variables and the alphabet size, and thus implies the Baby PCP theorem as well.

Cite as

Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep. Baby PIH: Parameterized Inapproximability of Min CSP. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 27:1-27:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{guruswami_et_al:LIPIcs.CCC.2024.27,
  author =	{Guruswami, Venkatesan and Ren, Xuandi and Sandeep, Sai},
  title =	{{Baby PIH: Parameterized Inapproximability of Min CSP}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{27:1--27:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.27},
  URN =		{urn:nbn:de:0030-drops-204237},
  doi =		{10.4230/LIPIcs.CCC.2024.27},
  annote =	{Keywords: Parameterized Inapproximability Hypothesis, Constraint Satisfaction Problems}
}
Document
3/2-Dual Approximation for CPU/GPU Scheduling

Authors: Bernhard Sebastian Germann, Klaus Jansen, Felix Ohnesorge, and Malte Tutas

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
We present a fast and efficient 3/2 dual approximation algorithm for CPU/GPU scheduling under the objective of makespan minimization. In CPU/GPU scheduling tasks can be scheduled on two different architectures. When executed on the CPU, a task is moldable and can be assigned to multiple cores. The running time becomes a function in the assigned cores. On a GPU, the task is a classical job with a set processing time. Both settings have drawn recent independent scientific interest. For the moldable CPU scheduling, the current best known constant rate approximation is a 3/2 approximation algorithm [Wu et al. EJOR volume 306]. The best efficient algorithm for this setting is a 3/2+ε approximation [Mounie et al. SIAM '07] whereas GPU scheduling admits a 13/11 approximation [Coffman, Garey, Johnson SIAM'78]. We improve upon the current best known algorithms for CPU/GPU scheduling by Bleuse et al. by formulating a novel multidimensional multiple choice knapsack to allot tasks to either architecture and schedule them there with known algorithms. This yields an improved running time over the current state of the art. We complement our theoretical results with experimentation that shows a significant speedup by using practical optimizations and explore their efficacy.

Cite as

Bernhard Sebastian Germann, Klaus Jansen, Felix Ohnesorge, and Malte Tutas. 3/2-Dual Approximation for CPU/GPU Scheduling. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 13:1-13:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{germann_et_al:LIPIcs.SEA.2024.13,
  author =	{Germann, Bernhard Sebastian and Jansen, Klaus and Ohnesorge, Felix and Tutas, Malte},
  title =	{{3/2-Dual Approximation for CPU/GPU Scheduling}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{13:1--13:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.13},
  URN =		{urn:nbn:de:0030-drops-203782},
  doi =		{10.4230/LIPIcs.SEA.2024.13},
  annote =	{Keywords: computing, machine scheduling, moldable, CPU/GPU}
}
Document
Track A: Algorithms, Complexity and Games
Approximation Schemes for Geometric Knapsack for Packing Spheres and Fat Objects

Authors: Pritam Acharya, Sujoy Bhore, Aaryan Gupta, Arindam Khan, Bratin Mondal, and Andreas Wiese

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study the geometric knapsack problem in which we are given a set of d-dimensional objects (each with associated profits) and the goal is to find the maximum profit subset that can be packed non-overlappingly into a given d-dimensional (unit hypercube) knapsack. Even if d = 2 and all input objects are disks, this problem is known to be NP-hard [Demaine, Fekete, Lang, 2010]. In this paper, we give polynomial time (1+ε)-approximation algorithms for the following types of input objects in any constant dimension d: - disks and hyperspheres, - a class of fat convex polygons that generalizes regular k-gons for k ≥ 5 (formally, polygons with a constant number of edges, whose lengths are in a bounded range, and in which each angle is strictly larger than π/2), - arbitrary fat convex objects that are sufficiently small compared to the knapsack. We remark that in our PTAS for disks and hyperspheres, we output the computed set of objects, but for a O_ε(1) of them we determine their coordinates only up to an exponentially small error. However, it is not clear whether there always exists a (1+ε)-approximate solution that uses only rational coordinates for the disks' centers. We leave this as an open problem which is related to well-studied geometric questions in the realm of circle packing.

Cite as

Pritam Acharya, Sujoy Bhore, Aaryan Gupta, Arindam Khan, Bratin Mondal, and Andreas Wiese. Approximation Schemes for Geometric Knapsack for Packing Spheres and Fat Objects. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{acharya_et_al:LIPIcs.ICALP.2024.8,
  author =	{Acharya, Pritam and Bhore, Sujoy and Gupta, Aaryan and Khan, Arindam and Mondal, Bratin and Wiese, Andreas},
  title =	{{Approximation Schemes for Geometric Knapsack for Packing Spheres and Fat Objects}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.8},
  URN =		{urn:nbn:de:0030-drops-201511},
  doi =		{10.4230/LIPIcs.ICALP.2024.8},
  annote =	{Keywords: Approximation Algorithms, Polygon Packing, Circle Packing, Sphere Packing, Geometric Knapsack, Resource Augmentation}
}
Document
Track A: Algorithms, Complexity and Games
Exponential Lower Bounds via Exponential Sums

Authors: Somnath Bhattacharjee, Markus Bläser, Pranjal Dutta, and Saswata Mukherjee

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Valiant’s famous VP vs. VNP conjecture states that the symbolic permanent polynomial does not have polynomial-size algebraic circuits. However, the best upper bound on the size of the circuits computing the permanent is exponential. Informally, VNP is an exponential sum of VP-circuits. In this paper we study whether, in general, exponential sums (of algebraic circuits) require exponential-size algebraic circuits. We show that the famous Shub-Smale τ-conjecture indeed implies such an exponential lower bound for an exponential sum. Our main tools come from parameterized complexity. Along the way, we also prove an exponential fpt (fixed-parameter tractable) lower bound for the parameterized algebraic complexity class VW⁰_{nb}[𝖯], assuming the same conjecture. VW⁰_{nb}[𝖯] can be thought of as the weighted sums of (unbounded-degree) circuits, where only ± 1 constants are cost-free. To the best of our knowledge, this is the first time the Shub-Smale τ-conjecture has been applied to prove explicit exponential lower bounds. Furthermore, we prove that when this class is fpt, then a variant of the counting hierarchy, namely the linear counting hierarchy collapses. Moreover, if a certain type of parameterized exponential sums is fpt, then integers, as well as polynomials with coefficients being definable in the linear counting hierarchy have subpolynomial τ-complexity. Finally, we characterize a related class VW[𝖥], in terms of permanents, where we consider an exponential sum of algebraic formulas instead of circuits. We show that when we sum over cycle covers that have one long cycle and all other cycles have constant length, then the resulting family of polynomials is complete for VW[𝖥] on certain types of graphs.

Cite as

Somnath Bhattacharjee, Markus Bläser, Pranjal Dutta, and Saswata Mukherjee. Exponential Lower Bounds via Exponential Sums. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 24:1-24:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bhattacharjee_et_al:LIPIcs.ICALP.2024.24,
  author =	{Bhattacharjee, Somnath and Bl\"{a}ser, Markus and Dutta, Pranjal and Mukherjee, Saswata},
  title =	{{Exponential Lower Bounds via Exponential Sums}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{24:1--24:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.24},
  URN =		{urn:nbn:de:0030-drops-201677},
  doi =		{10.4230/LIPIcs.ICALP.2024.24},
  annote =	{Keywords: Algebraic complexity, parameterized complexity, exponential sums, counting hierarchy, tau conjecture}
}
  • Refine by Author
  • 36 Jansen, Klaus
  • 14 Guruswami, Venkatesan
  • 7 Coja-Oghlan, Amin
  • 7 Rolim, José D. P.
  • 7 Woodruff, David P.
  • Show More...

  • Refine by Classification
  • 11 Theory of computation → Scheduling algorithms
  • 9 Theory of computation → Approximation algorithms analysis
  • 7 Theory of computation → Pseudorandomness and derandomization
  • 6 Theory of computation → Design and analysis of algorithms
  • 6 Theory of computation → Random walks and Markov chains
  • Show More...

  • Refine by Keyword
  • 18 approximation algorithms
  • 14 Approximation Algorithms
  • 9 Approximation algorithms
  • 9 approximation algorithm
  • 7 Streaming Algorithms
  • Show More...

  • Refine by Type
  • 324 document
  • 5 volume

  • Refine by Publication Year
  • 64 2014
  • 62 2018
  • 60 2015
  • 52 2016
  • 52 2017
  • Show More...