61 Search Results for "Krauthgamer, Robert"


Document
From Donkeys to Kings in Tournaments

Authors: Amir Abboud, Tomer Grossman, Moni Naor, and Tomer Solomon

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
A tournament is an orientation of a complete graph. A vertex that can reach every other vertex within two steps is called a king. We study the complexity of finding k kings in a tournament graph. We show that the randomized query complexity of finding k ≤ 3 kings is O(n), and for the deterministic case it takes the same amount of queries (up to a constant) as finding a single king (the best known deterministic algorithm makes O(n^{3/2}) queries). On the other hand, we show that finding k ≥ 4 kings requires Ω(n²) queries, even in the randomized case. We consider the RAM model for k ≥ 4. We show an algorithm that finds k kings in time O(kn²), which is optimal for constant values of k. Alternatively, one can also find k ≥ 4 kings in time n^{ω} (the time for matrix multiplication). We provide evidence that this is optimal for large k by suggesting a fine-grained reduction from a variant of the triangle detection problem.

Cite as

Amir Abboud, Tomer Grossman, Moni Naor, and Tomer Solomon. From Donkeys to Kings in Tournaments. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 3:1-3:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abboud_et_al:LIPIcs.ESA.2024.3,
  author =	{Abboud, Amir and Grossman, Tomer and Naor, Moni and Solomon, Tomer},
  title =	{{From Donkeys to Kings in Tournaments}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{3:1--3:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.3},
  URN =		{urn:nbn:de:0030-drops-210740},
  doi =		{10.4230/LIPIcs.ESA.2024.3},
  annote =	{Keywords: Tournament Graphs, Kings, Query Complexity, Fine Grained Complexity}
}
Document
Worst-Case to Expander-Case Reductions: Derandomized and Generalized

Authors: Amir Abboud and Nathan Wallheimer

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
A recent paper by Abboud and Wallheimer [ITCS 2023] presents self-reductions for various fundamental graph problems, which transform worst-case instances to expanders, thus proving that the complexity remains unchanged if the input is assumed to be an expander. An interesting corollary of their self-reductions is that if some problem admits such reduction, then the popular algorithmic paradigm based on expander-decompositions is useless against it. In this paper, we improve their core gadget, which augments a graph to make it an expander while retaining its important structure. Our new core construction has the benefit of being simple to analyze and generalize while obtaining the following results: - A derandomization of the self-reductions, showing that the equivalence between worst-case and expander-case holds even for deterministic algorithms, and ruling out the use of expander-decompositions as a derandomization tool. - An extension of the results to other models of computation, such as the Fully Dynamic model and the Congested Clique model. In the former, we either improve or provide an alternative approach to some recent hardness results for dynamic expander graphs by Henzinger, Paz, and Sricharan [ESA 2022]. In addition, we continue this line of research by designing new self-reductions for more problems, such as Max-Cut and dynamic Densest Subgraph, and demonstrating that the core gadget can be utilized to lift lower bounds based on the OMv Conjecture to expanders.

Cite as

Amir Abboud and Nathan Wallheimer. Worst-Case to Expander-Case Reductions: Derandomized and Generalized. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 4:1-4:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abboud_et_al:LIPIcs.ESA.2024.4,
  author =	{Abboud, Amir and Wallheimer, Nathan},
  title =	{{Worst-Case to Expander-Case Reductions: Derandomized and Generalized}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{4:1--4:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.4},
  URN =		{urn:nbn:de:0030-drops-210751},
  doi =		{10.4230/LIPIcs.ESA.2024.4},
  annote =	{Keywords: Fine-grained complexity, expander graphs, self-reductions, worst-case to expander-case, expander decomposition, dynamic algorithms, exact and parameterized complexity, max-cut, maximum matching, k-clique detection, densest subgraph}
}
Document
Interval Selection in Sliding Windows

Authors: Cezar-Mihail Alexandru and Christian Konrad

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We initiate the study of the Interval Selection problem in the (streaming) sliding window model of computation. In this problem, an algorithm receives a potentially infinite stream of intervals on the line, and the objective is to maintain at every moment an approximation to a largest possible subset of disjoint intervals among the L most recent intervals, for some integer L. We give the following results: 1) In the unit-length intervals case, we give a 2-approximation sliding window algorithm with space Õ(|OPT|), and we show that any sliding window algorithm that computes a (2-ε)-approximation requires space Ω(L), for any ε > 0. 2) In the arbitrary-length case, we give a (11/3+ε)-approximation sliding window algorithm with space Õ(|OPT|), for any constant ε > 0, which constitutes our main result. We also show that space Ω(L) is needed for algorithms that compute a (2.5-ε)-approximation, for any ε > 0. Our main technical contribution is an improvement over the smooth histogram technique, which consists of running independent copies of a traditional streaming algorithm with different start times. By employing the one-pass 2-approximation streaming algorithm by Cabello and Pérez-Lantero [Theor. Comput. Sci. '17] for Interval Selection on arbitrary-length intervals as the underlying algorithm, the smooth histogram technique immediately yields a (4+ε)-approximation in this setting. Our improvement is obtained by forwarding the structure of the intervals identified in a run to the subsequent run, which constrains the shape of an optimal solution and allows us to target optimal intervals differently.

Cite as

Cezar-Mihail Alexandru and Christian Konrad. Interval Selection in Sliding Windows. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 8:1-8:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alexandru_et_al:LIPIcs.ESA.2024.8,
  author =	{Alexandru, Cezar-Mihail and Konrad, Christian},
  title =	{{Interval Selection in Sliding Windows}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{8:1--8:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.8},
  URN =		{urn:nbn:de:0030-drops-210795},
  doi =		{10.4230/LIPIcs.ESA.2024.8},
  annote =	{Keywords: Sliding window algorithms, Streaming algorithms, Interval selection}
}
Document
On Connections Between k-Coloring and Euclidean k-Means

Authors: Enver Aman, Karthik C. S., and Sharath Punna

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the Euclidean k-means problems we are given as input a set of n points in ℝ^d and the goal is to find a set of k points C ⊆ ℝ^d, so as to minimize the sum of the squared Euclidean distances from each point in P to its closest center in C. In this paper, we formally explore connections between the k-coloring problem on graphs and the Euclidean k-means problem. Our results are as follows: - For all k ≥ 3, we provide a simple reduction from the k-coloring problem on regular graphs to the Euclidean k-means problem. Moreover, our technique extends to enable a reduction from a structured max-cut problem (which may be considered as a partial 2-coloring problem) to the Euclidean 2-means problem. Thus, we have a simple and alternate proof of the NP-hardness of Euclidean 2-means problem. - In the other direction, we mimic the O(1.7297ⁿ) time algorithm of Williams [TCS'05] for the max-cut of problem on n vertices to obtain an algorithm for the Euclidean 2-means problem with the same runtime, improving on the naive exhaustive search running in 2ⁿ⋅ poly(n,d) time. - We prove similar results and connections as above for the Euclidean k-min-sum problem.

Cite as

Enver Aman, Karthik C. S., and Sharath Punna. On Connections Between k-Coloring and Euclidean k-Means. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aman_et_al:LIPIcs.ESA.2024.9,
  author =	{Aman, Enver and Karthik C. S. and Punna, Sharath},
  title =	{{On Connections Between k-Coloring and Euclidean k-Means}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.9},
  URN =		{urn:nbn:de:0030-drops-210808},
  doi =		{10.4230/LIPIcs.ESA.2024.9},
  annote =	{Keywords: k-means, k-minsum, Euclidean space, fine-grained complexity}
}
Document
A (5/3+ε)-Approximation for Tricolored Non-Crossing Euclidean TSP

Authors: Júlia Baligács, Yann Disser, Andreas Emil Feldmann, and Anna Zych-Pawlewicz

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the Tricolored Euclidean Traveling Salesperson problem, we are given k = 3 sets of points in the plane and are looking for disjoint tours, each covering one of the sets. Arora (1998) famously gave a PTAS based on "patching" for the case k = 1 and, recently, Dross et al. (2023) generalized this result to k = 2. Our contribution is a (5/3+ε)-approximation algorithm for k = 3 that further generalizes Arora’s approach. It is believed that patching is generally no longer possible for more than two tours. We circumvent this issue by either applying a conditional patching scheme for three tours or using an alternative approach based on a weighted solution for k = 2.

Cite as

Júlia Baligács, Yann Disser, Andreas Emil Feldmann, and Anna Zych-Pawlewicz. A (5/3+ε)-Approximation for Tricolored Non-Crossing Euclidean TSP. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 15:1-15:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{baligacs_et_al:LIPIcs.ESA.2024.15,
  author =	{Balig\'{a}cs, J\'{u}lia and Disser, Yann and Feldmann, Andreas Emil and Zych-Pawlewicz, Anna},
  title =	{{A (5/3+\epsilon)-Approximation for Tricolored Non-Crossing Euclidean TSP}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{15:1--15:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.15},
  URN =		{urn:nbn:de:0030-drops-210862},
  doi =		{10.4230/LIPIcs.ESA.2024.15},
  annote =	{Keywords: Approximation Algorithms, geometric Network Optimization, Euclidean TSP, non-crossing Structures}
}
Document
Graph Spanners for Group Steiner Distances

Authors: Davide Bilò, Luciano Gualà, Stefano Leucci, and Alessandro Straziota

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
A spanner is a sparse subgraph of a given graph G which preserves distances, measured w.r.t. some distance metric, up to a multiplicative stretch factor. This paper addresses the problem of constructing graph spanners w.r.t. the group Steiner metric, which generalizes the recently introduced beer distance metric. In such a metric we are given a collection of groups of required vertices, and we measure the distance between two vertices as the length of the shortest path between them that traverses at least one required vertex from each group. We discuss the relation between group Steiner spanners and classic spanners and we show that they exhibit strong ties with sourcewise spanners w.r.t. the shortest path metric. Nevertheless, group Steiner spanners capture several interesting scenarios that are not encompassed by existing spanners. This happens, e.g., for the singleton case, in which each group consists of a single required vertex, thus modeling the setting in which routes need to traverse certain points of interests (in any order). We provide several constructions of group Steiner spanners for both the all-pairs and single-source case, which exhibit various size-stretch trade-offs. Notably, we provide spanners with almost-optimal trade-offs for the singleton case. Moreover, some of our spanners also yield novel trade-offs for classical sourcewise spanners. Finally, we also investigate the query times that can be achieved when our spanners are turned into group Steiner distance oracles with the same size, stretch, and building time.

Cite as

Davide Bilò, Luciano Gualà, Stefano Leucci, and Alessandro Straziota. Graph Spanners for Group Steiner Distances. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bilo_et_al:LIPIcs.ESA.2024.25,
  author =	{Bil\`{o}, Davide and Gual\`{a}, Luciano and Leucci, Stefano and Straziota, Alessandro},
  title =	{{Graph Spanners for Group Steiner Distances}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.25},
  URN =		{urn:nbn:de:0030-drops-210968},
  doi =		{10.4230/LIPIcs.ESA.2024.25},
  annote =	{Keywords: Network sparsification, Graph spanners, Group Steiner tree, Distance oracles}
}
Document
A Faster Algorithm for the Fréchet Distance in 1D for the Imbalanced Case

Authors: Lotte Blank and Anne Driemel

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The fine-grained complexity of computing the {Fréchet distance } has been a topic of much recent work, starting with the quadratic SETH-based conditional lower bound by Bringmann from 2014. Subsequent work established largely the same complexity lower bounds for the {Fréchet distance } in 1D. However, the imbalanced case, which was shown by Bringmann to be tight in dimensions d ≥ 2, was still left open. Filling in this gap, we show that a faster algorithm for the {Fréchet distance } in the imbalanced case is possible: Given two 1-dimensional curves of complexity n and n^{α} for some α ∈ (0,1), we can compute their {Fréchet distance } in O(n^{2α} log² n + n log n) time. This rules out a conditional lower bound of the form O((nm)^{1-ε}) that Bringmann showed for d ≥ 2 and any ε > 0 in turn showing a strict separation with the setting d = 1. At the heart of our approach lies a data structure that stores a 1-dimensional curve P of complexity n, and supports queries with a curve Q of complexity m for the continuous {Fréchet distance } between P and Q. The data structure has size in 𝒪(nlog n) and uses query time in 𝒪(m² log² n). Our proof uses a key lemma that is based on the concept of visiting orders and may be of independent interest. We demonstrate this by substantially simplifying the correctness proof of a clustering algorithm by Driemel, Krivošija and Sohler from 2015.

Cite as

Lotte Blank and Anne Driemel. A Faster Algorithm for the Fréchet Distance in 1D for the Imbalanced Case. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 28:1-28:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{blank_et_al:LIPIcs.ESA.2024.28,
  author =	{Blank, Lotte and Driemel, Anne},
  title =	{{A Faster Algorithm for the Fr\'{e}chet Distance in 1D for the Imbalanced Case}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{28:1--28:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.28},
  URN =		{urn:nbn:de:0030-drops-210999},
  doi =		{10.4230/LIPIcs.ESA.2024.28},
  annote =	{Keywords: \{Fr\'{e}chet distance\}, distance oracle, data structures, time series}
}
Document
List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs

Authors: Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The goal of this paper is to investigate a family of optimization problems arising from list homomorphisms, and to understand what the best possible algorithms are if we restrict the problem to bounded-treewidth graphs. Given graphs G, H, and lists L(v) ⊆ V(H) for every v ∈ V(G), a list homomorphism from (G,L) to H is a function f:V(G) → V(H) that preserves the edges (i.e., uv ∈ E(G) implies f(u)f(v) ∈ E(H)) and respects the lists (i.e., f(v) ∈ L(v)). The graph H may have loops. For a fixed H, the input of the optimization problem LHomVD(H) is a graph G with lists L(v), and the task is to find a set X of vertices having minimum size such that (G-X,L) has a list homomorphism to H. We define analogously the edge-deletion variant LHomED(H), where we have to delete as few edges as possible from G to obtain a graph that has a list homomorphism. This expressive family of problems includes members that are essentially equivalent to fundamental problems such as Vertex Cover, Max Cut, Odd Cycle Transversal, and Edge/Vertex Multiway Cut. For both variants, we first characterize those graphs H that make the problem polynomial-time solvable and show that the problem is NP-hard for every other fixed H. Second, as our main result, we determine for every graph H for which the problem is NP-hard, the smallest possible constant c_H such that the problem can be solved in time c^t_H⋅ n^{𝒪(1)} if a tree decomposition of G having width t is given in the input. Let i(H) be the maximum size of a set of vertices in H that have pairwise incomparable neighborhoods. For the vertex-deletion variant LHomVD(H), we show that the smallest possible constant is i(H)+1 for every H: - Given a tree decomposition of width t of G, LHomVD(H) can be solved in time (i(H)+1)^t⋅ n^{𝒪(1)}. - For any ε > 0 and H, an (i(H)+1-ε)^t⋅ n^{𝒪(1)} algorithm would violate the Strong Exponential-Time Hypothesis (SETH). The situation is more complex for the edge-deletion version. For every H, one can solve LHomED(H) in time i(H)^t⋅ n^{𝒪(1)} if a tree decomposition of width t is given. However, the existence of a specific type of decomposition of H shows that there are graphs H where LHomED(H) can be solved significantly more efficiently and the best possible constant can be arbitrarily smaller than i(H). Nevertheless, we determine this best possible constant and (assuming the SETH) prove tight bounds for every fixed H.

Cite as

Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 39:1-39:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{canesmer_et_al:LIPIcs.ESA.2024.39,
  author =	{Can Esmer, Bar{\i}\c{s} and Focke, Jacob and Marx, D\'{a}niel and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{39:1--39:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.39},
  URN =		{urn:nbn:de:0030-drops-211103},
  doi =		{10.4230/LIPIcs.ESA.2024.39},
  annote =	{Keywords: Graph Homomorphism, List Homomorphism, Vertex Deletion, Edge Deletion, Multiway Cut, Parameterized Complexity, Tight Bounds, Treewidth, SETH}
}
Document
Approximation Algorithms for Hop Constrained and Buy-At-Bulk Network Design via Hop Constrained Oblivious Routing

Authors: Chandra Chekuri and Rhea Jain

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We consider two-cost network design models in which edges of the input graph have an associated cost and length. We build upon recent advances in hop-constrained oblivious routing to obtain two sets of results. We address multicommodity buy-at-bulk network design in the nonuniform setting. Existing poly-logarithmic approximations are based on the junction tree approach [Chekuri et al., 2010; Guy Kortsarz and Zeev Nutov, 2011]. We obtain a new polylogarithmic approximation via a natural LP relaxation. This establishes an upper bound on its integrality gap and affirmatively answers an open question raised in [Chekuri et al., 2010]. The rounding is based on recent results in hop-constrained oblivious routing [Ghaffari et al., 2021], and this technique yields a polylogarithmic approximation in more general settings such as set connectivity. Our algorithm for buy-at-bulk network design is based on an LP-based reduction to h-hop constrained network design for which we obtain LP-based bicriteria approximation algorithms. We also consider a fault-tolerant version of h-hop constrained network design where one wants to design a low-cost network to guarantee short paths between a given set of source-sink pairs even when k-1 edges can fail. This model has been considered in network design [Luis Gouveia and Markus Leitner, 2017; Gouveia et al., 2018; Arslan et al., 2020] but no approximation algorithms were known. We obtain polylogarithmic bicriteria approximation algorithms for the single-source setting for any fixed k. We build upon the single-source algorithm and the junction-tree approach to obtain an approximation algorithm for the multicommodity setting when at most one edge can fail.

Cite as

Chandra Chekuri and Rhea Jain. Approximation Algorithms for Hop Constrained and Buy-At-Bulk Network Design via Hop Constrained Oblivious Routing. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 41:1-41:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chekuri_et_al:LIPIcs.ESA.2024.41,
  author =	{Chekuri, Chandra and Jain, Rhea},
  title =	{{Approximation Algorithms for Hop Constrained and Buy-At-Bulk Network Design via Hop Constrained Oblivious Routing}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{41:1--41:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.41},
  URN =		{urn:nbn:de:0030-drops-211124},
  doi =		{10.4230/LIPIcs.ESA.2024.41},
  annote =	{Keywords: Buy-at-bulk, Hop-constrained network design, LP integrality gap, Fault-tolerant network design}
}
Document
From Directed Steiner Tree to Directed Polymatroid Steiner Tree in Planar Graphs

Authors: Chandra Chekuri, Rhea Jain, Shubhang Kulkarni, Da Wei Zheng, and Weihao Zhu

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the Directed Steiner Tree (DST) problem the input is a directed edge-weighted graph G = (V,E), a root vertex r and a set S ⊆ V of k terminals. The goal is to find a min-cost subgraph that connects r to each of the terminals. DST admits an O(log² k/log log k)-approximation in quasi-polynomial time [Grandoni et al., 2022; Rohan Ghuge and Viswanath Nagarajan, 2022], and an O(k^{ε})-approximation for any fixed ε > 0 in polynomial-time [Alexander Zelikovsky, 1997; Moses Charikar et al., 1999]. Resolving the existence of a polynomial-time poly-logarithmic approximation is a major open problem in approximation algorithms. In a recent work, Friggstad and Mousavi [Zachary Friggstad and Ramin Mousavi, 2023] obtained a simple and elegant polynomial-time O(log k)-approximation for DST in planar digraphs via Thorup’s shortest path separator theorem [Thorup, 2004]. We build on their work and obtain several new results on DST and related problems. - We develop a tree embedding technique for rooted problems in planar digraphs via an interpretation of the recursion in [Zachary Friggstad and Ramin Mousavi, 2023]. Using this we obtain polynomial-time poly-logarithmic approximations for Group Steiner Tree [Naveen Garg et al., 2000], Covering Steiner Tree [Goran Konjevod et al., 2002] and the Polymatroid Steiner Tree [Gruia Călinescu and Alexander Zelikovsky, 2005] problems in planar digraphs. All these problems are hard to approximate to within a factor of Ω(log² n/log log n) even in trees [Eran Halperin and Robert Krauthgamer, 2003; Grandoni et al., 2022]. - We prove that the natural cut-based LP relaxation for DST has an integrality gap of O(log² k) in planar digraphs. This is in contrast to general graphs where the integrality gap of this LP is known to be Ω(√k) [Leonid Zosin and Samir Khuller, 2002] and Ω(n^{δ}) for some fixed δ > 0 [Shi Li and Bundit Laekhanukit, 2022]. - We combine the preceding results with density based arguments to obtain poly-logarithmic approximations for the multi-rooted versions of the problems in planar digraphs. For DST our result improves the O(R + log k) approximation of [Zachary Friggstad and Ramin Mousavi, 2023] when R = ω(log² k).

Cite as

Chandra Chekuri, Rhea Jain, Shubhang Kulkarni, Da Wei Zheng, and Weihao Zhu. From Directed Steiner Tree to Directed Polymatroid Steiner Tree in Planar Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 42:1-42:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chekuri_et_al:LIPIcs.ESA.2024.42,
  author =	{Chekuri, Chandra and Jain, Rhea and Kulkarni, Shubhang and Zheng, Da Wei and Zhu, Weihao},
  title =	{{From Directed Steiner Tree to Directed Polymatroid Steiner Tree in Planar Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{42:1--42:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.42},
  URN =		{urn:nbn:de:0030-drops-211134},
  doi =		{10.4230/LIPIcs.ESA.2024.42},
  annote =	{Keywords: Directed Planar Graphs, Submodular Functions, Steiner Tree, Network Design}
}
Document
Random-Order Online Independent Set of Intervals and Hyperrectangles

Authors: Mohit Garg, Debajyoti Kar, and Arindam Khan

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the Maximum Independent Set of Hyperrectangles problem, we are given a set of n (possibly overlapping) d-dimensional axis-aligned hyperrectangles, and the goal is to find a subset of non-overlapping hyperrectangles of maximum cardinality. For d = 1, this corresponds to the classical Interval Scheduling problem, where a simple greedy algorithm returns an optimal solution. In the offline setting, for d-dimensional hyperrectangles, polynomial time (log n)^{O(d)}-approximation algorithms are known [Chalermsook and Chuzhoy, 2009]. However, the problem becomes notably challenging in the online setting, where the input objects (hyperrectangles) appear one by one in an adversarial order, and on the arrival of an object, the algorithm needs to make an immediate and irrevocable decision whether or not to select the object while maintaining the feasibility. Even for interval scheduling, an Ω(n) lower bound is known on the competitive ratio. To circumvent these negative results, in this work, we study the online maximum independent set of axis-aligned hyperrectangles in the random-order arrival model, where the adversary specifies the set of input objects which then arrive in a uniformly random order. Starting from the prototypical secretary problem, the random-order model has received significant attention to study algorithms beyond the worst-case competitive analysis (see the survey by Gupta and Singla [Anupam Gupta and Sahil Singla, 2020]). Surprisingly, we show that the problem in the random-order model almost matches the best-known offline approximation guarantees, up to polylogarithmic factors. In particular, we give a simple (log n)^{O(d)}-competitive algorithm for d-dimensional hyperrectangles in this model, which runs in O_d̃(n) time. Our approach also yields (log n)^{O(d)}-competitive algorithms in the random-order model for more general objects such as d-dimensional fat objects and ellipsoids. Furthermore, all our competitiveness guarantees hold with high probability, and not just in expectation.

Cite as

Mohit Garg, Debajyoti Kar, and Arindam Khan. Random-Order Online Independent Set of Intervals and Hyperrectangles. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 58:1-58:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{garg_et_al:LIPIcs.ESA.2024.58,
  author =	{Garg, Mohit and Kar, Debajyoti and Khan, Arindam},
  title =	{{Random-Order Online Independent Set of Intervals and Hyperrectangles}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{58:1--58:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.58},
  URN =		{urn:nbn:de:0030-drops-211298},
  doi =		{10.4230/LIPIcs.ESA.2024.58},
  annote =	{Keywords: Online Algorithms, Random-Order Model, Maximum Independent Set of Rectangles, Hyperrectangles, Fat Objects, Interval Scheduling}
}
Document
Practical Expander Decomposition

Authors: Lars Gottesbüren, Nikos Parotsidis, and Maximilian Probst Gutenberg

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The expander decomposition of a graph decomposes the set of vertices into clusters such that the induced subgraph of each cluster is a subgraph with high conductance, and there is only a small number of inter-cluster edges. Expander decompositions are at the forefront of recent theoretical developments in the area of efficient graph algorithms and act as a central component in several state-of-the-art graph algorithms for fundamental problems like maximum flow, min-cost flow, Gomory-Hu trees, global min-cut, and more. Despite this crucial role and the existence of theoretically efficient expander decomposition algorithms, little is known on their behavior in practice. In this paper we explore the engineering design space in implementations for computing expander decompositions. We base our implementation on the near-linear time algorithm of Saranurak and Wang [SODA'19], and enhance it with practical optimizations that accelerate its running time in practice and at the same time preserve the theoretical runtime and approximation guarantees. We evaluate our algorithm on real-world graphs with up to tens of millions of edges. We demonstrate significant speedups of up to two orders of magnitude over the only prior implementation. To the best of our knowledge, our implementation is the first to compute expander decompositions at this scale within reasonable time.

Cite as

Lars Gottesbüren, Nikos Parotsidis, and Maximilian Probst Gutenberg. Practical Expander Decomposition. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 61:1-61:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gottesburen_et_al:LIPIcs.ESA.2024.61,
  author =	{Gottesb\"{u}ren, Lars and Parotsidis, Nikos and Gutenberg, Maximilian Probst},
  title =	{{Practical Expander Decomposition}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{61:1--61:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.61},
  URN =		{urn:nbn:de:0030-drops-211323},
  doi =		{10.4230/LIPIcs.ESA.2024.61},
  annote =	{Keywords: Expander Decomposition, Clustering, Graph Algorithms}
}
Document
Shortest Path Separators in Unit Disk Graphs

Authors: Elfarouk Harb, Zhengcheng Huang, and Da Wei Zheng

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We introduce a new balanced separator theorem for unit-disk graphs involving two shortest paths combined with the 1-hop neighbours of those paths and two other vertices. This answers an open problem of Yan, Xiang and Dragan [CGTA '12] and improves their result that requires removing the 3-hop neighbourhood of two shortest paths. Our proof uses very different ideas, including Delaunay triangulations and a generalization of the celebrated balanced separator theorem of Lipton and Tarjan [J. Appl. Math. '79] to systems of non-intersecting paths.

Cite as

Elfarouk Harb, Zhengcheng Huang, and Da Wei Zheng. Shortest Path Separators in Unit Disk Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 66:1-66:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{harb_et_al:LIPIcs.ESA.2024.66,
  author =	{Harb, Elfarouk and Huang, Zhengcheng and Zheng, Da Wei},
  title =	{{Shortest Path Separators in Unit Disk Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{66:1--66:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.66},
  URN =		{urn:nbn:de:0030-drops-211375},
  doi =		{10.4230/LIPIcs.ESA.2024.66},
  annote =	{Keywords: Balanced shortest path separators, unit disk graphs, crossings}
}
Document
Approximation Algorithms for Steiner Connectivity Augmentation

Authors: Daniel Hathcock and Michael Zlatin

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We consider connectivity augmentation problems in the Steiner setting, where the goal is to augment the edge-connectivity between a specified subset of terminal nodes. In the Steiner Augmentation of a Graph problem (k-SAG), we are given a k-edge-connected subgraph H of a graph G. The goal is to augment H by including links from G of minimum cost so that the edge-connectivity between nodes of H increases by 1. This is a generalization of the Weighted Connectivity Augmentation Problem, in which only links between pairs of nodes in H are available for the augmentation. In the Steiner Connectivity Augmentation Problem (k-SCAP), we are given a Steiner k-edge-connected graph connecting terminals R, and we seek to add links of minimum cost to create a Steiner (k+1)-edge-connected graph for R. Note that k-SAG is a special case of k-SCAP. The results of Ravi, Zhang and Zlatin for the Steiner Tree Augmentation problem yield a (1.5+ε)-approximation for 1-SCAP and for k-SAG when k is odd [Ravi et al., 2023]. In this work, we give a (1 + ln{2} +ε)-approximation for the Steiner Ring Augmentation Problem (SRAP). This yields a polynomial time algorithm with approximation ratio (1 + ln{2} + ε) for 2-SCAP. We obtain an improved approximation guarantee for SRAP when the ring consists of only terminals, yielding a (1.5+ε)-approximation for k-SAG for any k.

Cite as

Daniel Hathcock and Michael Zlatin. Approximation Algorithms for Steiner Connectivity Augmentation. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 67:1-67:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hathcock_et_al:LIPIcs.ESA.2024.67,
  author =	{Hathcock, Daniel and Zlatin, Michael},
  title =	{{Approximation Algorithms for Steiner Connectivity Augmentation}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{67:1--67:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.67},
  URN =		{urn:nbn:de:0030-drops-211387},
  doi =		{10.4230/LIPIcs.ESA.2024.67},
  annote =	{Keywords: Approximation Algorithms, Steiner Connectivity, Network Design}
}
Document
Fully Dynamic k-Means Coreset in Near-Optimal Update Time

Authors: Max Dupré la Tour, Monika Henzinger, and David Saulpic

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study in this paper the problem of maintaining a solution to k-median and k-means clustering in a fully dynamic setting. To do so, we present an algorithm to efficiently maintain a coreset, a compressed version of the dataset, that allows easy computation of a clustering solution at query time. Our coreset algorithm has near-optimal update time of Õ(k) in general metric spaces, which reduces to Õ(d) in the Euclidean space ℝ^d. The query time is O(k²) in general metrics, and O(kd) in ℝ^d. To maintain a constant-factor approximation for k-median and k-means clustering in Euclidean space, this directly leads to an algorithm with update time Õ(d), and query time Õ(kd + k²). To maintain a O(polylog k)-approximation, the query time is reduced to Õ(kd).

Cite as

Max Dupré la Tour, Monika Henzinger, and David Saulpic. Fully Dynamic k-Means Coreset in Near-Optimal Update Time. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 100:1-100:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{latour_et_al:LIPIcs.ESA.2024.100,
  author =	{la Tour, Max Dupr\'{e} and Henzinger, Monika and Saulpic, David},
  title =	{{Fully Dynamic k-Means Coreset in Near-Optimal Update Time}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{100:1--100:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.100},
  URN =		{urn:nbn:de:0030-drops-211716},
  doi =		{10.4230/LIPIcs.ESA.2024.100},
  annote =	{Keywords: clustering, fully-dynamic, coreset, k-means}
}
  • Refine by Author
  • 18 Krauthgamer, Robert
  • 4 Trabelsi, Ohad
  • 3 Abboud, Amir
  • 3 Chakraborty, Diptarka
  • 3 Jiang, Shaofeng H.-C.
  • Show More...

  • Refine by Classification
  • 12 Theory of computation → Graph algorithms analysis
  • 7 Theory of computation → Design and analysis of algorithms
  • 7 Theory of computation → Sketching and sampling
  • 7 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 6 Theory of computation → Computational geometry
  • Show More...

  • Refine by Keyword
  • 4 Approximation Algorithms
  • 4 Clustering
  • 3 Graph Algorithms
  • 3 edge sparsification
  • 3 k-means
  • Show More...

  • Refine by Type
  • 61 document

  • Refine by Publication Year
  • 39 2024
  • 7 2019
  • 4 2020
  • 3 2021
  • 3 2023
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail