27 Search Results for "Panigrahi, Debmalya"


Document
Engineering Weighted Connectivity Augmentation Algorithms

Authors: Marcelo Fonseca Faraj, Ernestine Großmann, Felix Joos, Thomas Möller, and Christian Schulz

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Increasing the connectivity of a graph is a pivotal challenge in robust network design. The weighted connectivity augmentation problem is a common version of the problem that takes link costs into consideration. The problem is then to find a minimum cost subset of a given set of weighted links that increases the connectivity of a graph by one when the links are added to the edge set of the input instance. In this work, we give a first implementation of recently discovered better-than-2 approximations. Furthermore, we propose three new heuristics and one exact approach. These include a greedy algorithm considering link costs and the number of unique cuts covered, an approach based on minimum spanning trees and a local search algorithm that may improve a given solution by swapping links of paths. Our exact approach uses an ILP formulation with efficient cut enumeration as well as a fast initialization routine. We then perform an extensive experimental evaluation which shows that our algorithms are faster and yield the best solutions compared to the current state-of-the-art as well as the recently discovered better-than-2 approximation algorithms. Our novel local search algorithm can improve solution quality even further.

Cite as

Marcelo Fonseca Faraj, Ernestine Großmann, Felix Joos, Thomas Möller, and Christian Schulz. Engineering Weighted Connectivity Augmentation Algorithms. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 11:1-11:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{faraj_et_al:LIPIcs.SEA.2024.11,
  author =	{Faraj, Marcelo Fonseca and Gro{\ss}mann, Ernestine and Joos, Felix and M\"{o}ller, Thomas and Schulz, Christian},
  title =	{{Engineering Weighted Connectivity Augmentation Algorithms}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{11:1--11:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.11},
  URN =		{urn:nbn:de:0030-drops-203768},
  doi =		{10.4230/LIPIcs.SEA.2024.11},
  annote =	{Keywords: weighted connectivity augmentation, approximation, heuristic, integer linear program, algorithm engineering}
}
Document
Track A: Algorithms, Complexity and Games
Approximate Counting for Spin Systems in Sub-Quadratic Time

Authors: Konrad Anand, Weiming Feng, Graham Freifeld, Heng Guo, and Jiaheng Wang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We present two randomised approximate counting algorithms with Õ(n^{2-c}/ε²) running time for some constant c > 0 and accuracy ε: 1) for the hard-core model with fugacity λ on graphs with maximum degree Δ when λ = O(Δ^{-1.5-c₁}) where c₁ = c/(2-2c); 2) for spin systems with strong spatial mixing (SSM) on planar graphs with quadratic growth, such as ℤ². For the hard-core model, Weitz’s algorithm (STOC, 2006) achieves sub-quadratic running time when correlation decays faster than the neighbourhood growth, namely when λ = o(Δ^{-2}). Our first algorithm does not require this property and extends the range where sub-quadratic algorithms exist. Our second algorithm appears to be the first to achieve sub-quadratic running time up to the SSM threshold, albeit on a restricted family of graphs. It also extends to (not necessarily planar) graphs with polynomial growth, such as ℤ^d, but with a running time of the form Õ(n²ε^{-2}/2^{c(log n)^{1/d}}) where d is the exponent of the polynomial growth and c > 0 is some constant.

Cite as

Konrad Anand, Weiming Feng, Graham Freifeld, Heng Guo, and Jiaheng Wang. Approximate Counting for Spin Systems in Sub-Quadratic Time. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{anand_et_al:LIPIcs.ICALP.2024.11,
  author =	{Anand, Konrad and Feng, Weiming and Freifeld, Graham and Guo, Heng and Wang, Jiaheng},
  title =	{{Approximate Counting for Spin Systems in Sub-Quadratic Time}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.11},
  URN =		{urn:nbn:de:0030-drops-201543},
  doi =		{10.4230/LIPIcs.ICALP.2024.11},
  annote =	{Keywords: Randomised algorithm, Approximate counting, Spin system, Sub-quadratic algorithm}
}
Document
Track A: Algorithms, Complexity and Games
List Update with Delays or Time Windows

Authors: Yossi Azar, Shahar Lewkowicz, and Danny Vainstein

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We address the problem of List Update, which is considered one of the fundamental problems in online algorithms and competitive analysis. In this context, we are presented with a list of elements and receive requests for these elements over time. Our objective is to fulfill these requests, incurring a cost proportional to their position in the list. Additionally, we can swap any two consecutive elements at a cost of 1. The renowned "Move to Front" algorithm, introduced by Sleator and Tarjan, immediately moves any requested element to the front of the list. They demonstrated that this algorithm achieves a competitive ratio of 2. While this bound is impressive, the actual cost of the algorithm’s solution can be excessively high. For example, if we request the last half of the list, the resulting solution cost becomes quadratic in the list’s length. To address this issue, we consider a more generalized problem called List Update with Time Windows. In this variant, each request arrives with a specific deadline by which it must be served, rather than being served immediately. Moreover, we allow the algorithm to process multiple requests simultaneously, accessing the corresponding elements in a single pass. The cost incurred in this case is determined by the position of the furthest element accessed, leading to a significant reduction in the total solution cost. We introduce this problem to explore lower solution costs, but it necessitates the development of new algorithms. For instance, Move-to-Front fails when handling the simple scenario of requesting the last half of the list with overlapping time windows. In our work, we present a natural O(1) competitive algorithm for this problem. While the algorithm itself is intuitive, its analysis is intricate, requiring the use of a novel potential function. Additionally, we delve into a more general problem called List Update with Delays, where the fixed deadlines are replaced with arbitrary delay functions. In this case, the cost includes not only the access and swapping costs, but also penalties for the delays incurred until the requests are served. This problem encompasses a special case known as the prize collecting version, where a request may go unserved up to a given deadline, resulting in a specified penalty. For this more comprehensive problem, we establish an O(1) competitive algorithm. However, the algorithm for the delay version is more complex, and its analysis involves significantly more intricate considerations.

Cite as

Yossi Azar, Shahar Lewkowicz, and Danny Vainstein. List Update with Delays or Time Windows. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 15:1-15:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{azar_et_al:LIPIcs.ICALP.2024.15,
  author =	{Azar, Yossi and Lewkowicz, Shahar and Vainstein, Danny},
  title =	{{List Update with Delays or Time Windows}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{15:1--15:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.15},
  URN =		{urn:nbn:de:0030-drops-201583},
  doi =		{10.4230/LIPIcs.ICALP.2024.15},
  annote =	{Keywords: Online, List Update, Delay, Time Window, Deadline}
}
Document
Track A: Algorithms, Complexity and Games
On the Streaming Complexity of Expander Decomposition

Authors: Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we study the problem of finding (ε, ϕ)-expander decompositions of a graph in the streaming model, in particular for dynamic streams of edge insertions and deletions. The goal is to partition the vertex set so that every component induces a ϕ-expander, while the number of inter-cluster edges is only an ε fraction of the total volume. It was recently shown that there exists a simple algorithm to construct a (O(ϕ log n), ϕ)-expander decomposition of an n-vertex graph using Õ(n/ϕ²) bits of space [Filtser, Kapralov, Makarov, ITCS'23]. This result calls for understanding the extent to which a dependence in space on the sparsity parameter ϕ is inherent. We move towards answering this question on two fronts. We prove that a (O(ϕ log n), ϕ)-expander decomposition can be found using Õ(n) space, for every ϕ. At the core of our result is the first streaming algorithm for computing boundary-linked expander decompositions, a recently introduced strengthening of the classical notion [Goranci et al., SODA'21]. The key advantage is that a classical sparsifier [Fung et al., STOC'11], with size independent of ϕ, preserves the cuts inside the clusters of a boundary-linked expander decomposition within a multiplicative error. Notable algorithmic applications use sequences of expander decompositions, in particular one often repeatedly computes a decomposition of the subgraph induced by the inter-cluster edges (e.g., the seminal work of Spielman and Teng on spectral sparsifiers [Spielman, Teng, SIAM Journal of Computing 40(4)], or the recent maximum flow breakthrough [Chen et al., FOCS'22], among others). We prove that any streaming algorithm that computes a sequence of (O(ϕ log n), ϕ)-expander decompositions requires Ω̃(n/ϕ) bits of space, even in insertion only streams.

Cite as

Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali. On the Streaming Complexity of Expander Decomposition. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 46:1-46:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2024.46,
  author =	{Chen, Yu and Kapralov, Michael and Makarov, Mikhail and Mazzali, Davide},
  title =	{{On the Streaming Complexity of Expander Decomposition}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{46:1--46:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.46},
  URN =		{urn:nbn:de:0030-drops-201890},
  doi =		{10.4230/LIPIcs.ICALP.2024.46},
  annote =	{Keywords: Graph Sketching, Dynamic Streaming, Expander Decomposition}
}
Document
Track A: Algorithms, Complexity and Games
Simultaneously Approximating All 𝓁_p-Norms in Correlation Clustering

Authors: Sami Davies, Benjamin Moseley, and Heather Newman

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
This paper considers correlation clustering on unweighted complete graphs. We give a combinatorial algorithm that returns a single clustering solution that is simultaneously O(1)-approximate for all 𝓁_p-norms of the disagreement vector; in other words, a combinatorial O(1)-approximation of the all-norms objective for correlation clustering. This is the first proof that minimal sacrifice is needed in order to optimize different norms of the disagreement vector. In addition, our algorithm is the first combinatorial approximation algorithm for the 𝓁₂-norm objective, and more generally the first combinatorial algorithm for the 𝓁_p-norm objective when 1 < p < ∞. It is also faster than all previous algorithms that minimize the 𝓁_p-norm of the disagreement vector, with run-time O(n^ω), where O(n^ω) is the time for matrix multiplication on n × n matrices. When the maximum positive degree in the graph is at most Δ, this can be improved to a run-time of O(nΔ² log n).

Cite as

Sami Davies, Benjamin Moseley, and Heather Newman. Simultaneously Approximating All 𝓁_p-Norms in Correlation Clustering. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 52:1-52:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{davies_et_al:LIPIcs.ICALP.2024.52,
  author =	{Davies, Sami and Moseley, Benjamin and Newman, Heather},
  title =	{{Simultaneously Approximating All 𝓁\underlinep-Norms in Correlation Clustering}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{52:1--52:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.52},
  URN =		{urn:nbn:de:0030-drops-201950},
  doi =		{10.4230/LIPIcs.ICALP.2024.52},
  annote =	{Keywords: Approximation algorithms, correlation clustering, all-norms, lp-norms}
}
Document
Track A: Algorithms, Complexity and Games
An FPRAS for Two Terminal Reliability in Directed Acyclic Graphs

Authors: Weiming Feng and Heng Guo

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We give a fully polynomial-time randomized approximation scheme (FPRAS) for two terminal reliability in directed acyclic graphs (DAGs). In contrast, we also show the complementing problem of approximating two terminal unreliability in DAGs is #BIS-hard.

Cite as

Weiming Feng and Heng Guo. An FPRAS for Two Terminal Reliability in Directed Acyclic Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 62:1-62:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{feng_et_al:LIPIcs.ICALP.2024.62,
  author =	{Feng, Weiming and Guo, Heng},
  title =	{{An FPRAS for Two Terminal Reliability in Directed Acyclic Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{62:1--62:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.62},
  URN =		{urn:nbn:de:0030-drops-202057},
  doi =		{10.4230/LIPIcs.ICALP.2024.62},
  annote =	{Keywords: Approximate counting, Network reliability, Sampling algorithm}
}
Document
Track A: Algorithms, Complexity and Games
Streaming Algorithms for Connectivity Augmentation

Authors: Ce Jin, Michael Kapralov, Sepideh Mahabadi, and Ali Vakilian

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study the k-connectivity augmentation problem (k-CAP) in the single-pass streaming model. Given a (k-1)-edge connected graph G = (V,E) that is stored in memory, and a stream of weighted edges (also called links) L with weights in {0,1,… ,W}, the goal is to choose a minimum weight subset L' ⊆ L of the links such that G' = (V,E∪ L') is k-edge connected. We give a (2+ε)-approximation algorithm for this problem which requires to store O(ε^{-1} nlog n) words. Moreover, we show the tightness of our result: Any algorithm with better than 2-approximation for the problem requires Ω(n²) bits of space even when k = 2. This establishes a gap between the optimal approximation factor one can obtain in the streaming vs the offline setting for k-CAP. We further consider a natural generalization to the fully streaming model where both E and L arrive in the stream in an arbitrary order. We show that this problem has a space lower bound that matches the best possible size of a spanner of the same approximation ratio. Following this, we give improved results for spanners on weighted graphs: We show a streaming algorithm that finds a (2t-1+ε)-approximate weighted spanner of size at most O(ε^{-1} n^{1+1/t}log n) for integer t, whereas the best prior streaming algorithm for spanner on weighted graphs had size depending on log W. We believe that this result is of independent interest. Using our spanner result, we provide an optimal O(t)-approximation for k-CAP in the fully streaming model with O(nk + n^{1+1/t}) words of space. Finally we apply our results to network design problems such as Steiner tree augmentation problem (STAP), k-edge connected spanning subgraph (k-ECSS) and the general Survivable Network Design problem (SNDP). In particular, we show a single-pass O(tlog k)-approximation for SNDP using O(kn^{1+1/t}) words of space, where k is the maximum connectivity requirement.

Cite as

Ce Jin, Michael Kapralov, Sepideh Mahabadi, and Ali Vakilian. Streaming Algorithms for Connectivity Augmentation. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 93:1-93:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jin_et_al:LIPIcs.ICALP.2024.93,
  author =	{Jin, Ce and Kapralov, Michael and Mahabadi, Sepideh and Vakilian, Ali},
  title =	{{Streaming Algorithms for Connectivity Augmentation}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{93:1--93:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.93},
  URN =		{urn:nbn:de:0030-drops-202367},
  doi =		{10.4230/LIPIcs.ICALP.2024.93},
  annote =	{Keywords: streaming algorithms, connectivity augmentation}
}
Document
Track A: Algorithms, Complexity and Games
Cut Sparsification and Succinct Representation of Submodular Hypergraphs

Authors: Yotam Kenneth and Robert Krauthgamer

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In cut sparsification, all cuts of a hypergraph H = (V,E,w) are approximated within 1±ε factor by a small hypergraph H'. This widely applied method was generalized recently to a setting where the cost of cutting each hyperedge e is provided by a splitting function g_e: 2^e → ℝ_+. This generalization is called a submodular hypergraph when the functions {g_e}_{e ∈ E} are submodular, and it arises in machine learning, combinatorial optimization, and algorithmic game theory. Previous work studied the setting where H' is a reweighted sub-hypergraph of H, and measured the size of H' by the number of hyperedges in it. In this setting, we present two results: (i) all submodular hypergraphs admit sparsifiers of size polynomial in n = |V| and ε^{-1}; (ii) we propose a new parameter, called spread, and use it to obtain smaller sparsifiers in some cases. We also show that for a natural family of splitting functions, relaxing the requirement that H' be a reweighted sub-hypergraph of H yields a substantially smaller encoding of the cuts of H (almost a factor n in the number of bits). This is in contrast to graphs, where the most succinct representation is attained by reweighted subgraphs. A new tool in our construction of succinct representation is the notion of deformation, where a splitting function g_e is decomposed into a sum of functions of small description, and we provide upper and lower bounds for deformation of common splitting functions.

Cite as

Yotam Kenneth and Robert Krauthgamer. Cut Sparsification and Succinct Representation of Submodular Hypergraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 97:1-97:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kenneth_et_al:LIPIcs.ICALP.2024.97,
  author =	{Kenneth, Yotam and Krauthgamer, Robert},
  title =	{{Cut Sparsification and Succinct Representation of Submodular Hypergraphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{97:1--97:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.97},
  URN =		{urn:nbn:de:0030-drops-202406},
  doi =		{10.4230/LIPIcs.ICALP.2024.97},
  annote =	{Keywords: Cut Sparsification, Submodular Hypergraphs, Succinct Representation}
}
Document
Track A: Algorithms, Complexity and Games
Finding Most-Shattering Minimum Vertex Cuts of Polylogarithmic Size in Near-Linear Time

Authors: Kevin Hua, Daniel Li, Jaewoo Park, and Thatchaphol Saranurak

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We show the first near-linear time randomized algorithms for listing all minimum vertex cuts of polylogarithmic size that separate the graph into at least three connected components (also known as shredders) and for finding the most shattering one, i.e., the one maximizing the number of connected components. Our algorithms break the quadratic time bound by Cheriyan and Thurimella (STOC'96) for both problems that has been unimproved for more than two decades. Our work also removes an important bottleneck to near-linear time algorithms for the vertex connectivity augmentation problem (Jordan '95) and finding an even-length directed cycle in a graph, a problem shown to be equivalent to many other fundamental problems (Vazirani and Yannakakis '90, Robertson et al. '99). Note that it is necessary to list only minimum vertex cuts that separate the graph into at least three components because there can be an exponential number of minimum vertex cuts in general. To obtain a near-linear time algorithm, we have extended techniques in local flow algorithms developed by Forster et al. (SODA'20) to list shredders on a local scale. We also exploit fast queries to a pairwise vertex connectivity oracle subject to vertex failures (Long and Saranurak FOCS'22, Kosinas ESA'23). This is the first application of using connectivity oracles subject to vertex failures to speed up a static graph algorithm.

Cite as

Kevin Hua, Daniel Li, Jaewoo Park, and Thatchaphol Saranurak. Finding Most-Shattering Minimum Vertex Cuts of Polylogarithmic Size in Near-Linear Time. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 87:1-87:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hua_et_al:LIPIcs.ICALP.2024.87,
  author =	{Hua, Kevin and Li, Daniel and Park, Jaewoo and Saranurak, Thatchaphol},
  title =	{{Finding Most-Shattering Minimum Vertex Cuts of Polylogarithmic Size in Near-Linear Time}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{87:1--87:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.87},
  URN =		{urn:nbn:de:0030-drops-202302},
  doi =		{10.4230/LIPIcs.ICALP.2024.87},
  annote =	{Keywords: Graphs, Flows, Randomized Algorithms, Vertex Connectivity}
}
Document
Graph Algorithms: Cuts, Flows, and Network Design (Dagstuhl Seminar 23422)

Authors: Jason Li, Debmalya Panigrahi, Laura Sanita, and Thatchaphol Saranurak

Published in: Dagstuhl Reports, Volume 13, Issue 10 (2024)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23422 "Graph Algorithms: Cuts, Flows, and Network Design". This seminar brought 25 leading researchers in graph algorithms together for a discussion of the recent progress and challenges in two areas: the design of fast algorithm for fundamental flow/cut problems and the design of approximation algorithms for basic network design problems. The seminar included several talks of varying lengths, a panel discussion, and an open problem session. In addition, sufficient time was set aside for research discussions and collaborations.

Cite as

Jason Li, Debmalya Panigrahi, Laura Sanita, and Thatchaphol Saranurak. Graph Algorithms: Cuts, Flows, and Network Design (Dagstuhl Seminar 23422). In Dagstuhl Reports, Volume 13, Issue 10, pp. 76-89, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{li_et_al:DagRep.13.10.76,
  author =	{Li, Jason and Panigrahi, Debmalya and Sanita, Laura and Saranurak, Thatchaphol},
  title =	{{Graph Algorithms: Cuts, Flows, and Network Design (Dagstuhl Seminar 23422)}},
  pages =	{76--89},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{10},
  editor =	{Li, Jason and Panigrahi, Debmalya and Sanita, Laura and Saranurak, Thatchaphol},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.10.76},
  URN =		{urn:nbn:de:0030-drops-198357},
  doi =		{10.4230/DagRep.13.10.76},
  annote =	{Keywords: approximation, graph algorithm, maximum flow, minimum cut, network design}
}
Document
APPROX
Efficient Algorithms and Hardness Results for the Weighted k-Server Problem

Authors: Anupam Gupta, Amit Kumar, and Debmalya Panigrahi

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
In this paper, we study the weighted k-server problem on the uniform metric in both the offline and online settings. We start with the offline setting. In contrast to the (unweighted) k-server problem which has a polynomial-time solution using min-cost flows, there are strong computational lower bounds for the weighted k-server problem, even on the uniform metric. Specifically, we show that assuming the unique games conjecture, there are no polynomial-time algorithms with a sub-polynomial approximation factor, even if we use c-resource augmentation for c < 2. Furthermore, if we consider the natural LP relaxation of the problem, then obtaining a bounded integrality gap requires us to use at least 𝓁 resource augmentation, where 𝓁 is the number of distinct server weights. We complement these results by obtaining a constant-approximation algorithm via LP rounding, with a resource augmentation of (2+ε)𝓁 for any constant ε > 0. In the online setting, an exp(k) lower bound is known for the competitive ratio of any randomized algorithm for the weighted k-server problem on the uniform metric. In contrast, we show that 2𝓁-resource augmentation can bring the competitive ratio down by an exponential factor to only O(𝓁² log 𝓁). Our online algorithm uses the two-stage approach of first obtaining a fractional solution using the online primal-dual framework, and then rounding it online.

Cite as

Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. Efficient Algorithms and Hardness Results for the Weighted k-Server Problem. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 12:1-12:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.APPROX/RANDOM.2023.12,
  author =	{Gupta, Anupam and Kumar, Amit and Panigrahi, Debmalya},
  title =	{{Efficient Algorithms and Hardness Results for the Weighted k-Server Problem}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{12:1--12:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.12},
  URN =		{urn:nbn:de:0030-drops-188375},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.12},
  annote =	{Keywords: Online Algorithms, Weighted k-server, Integrality Gap, Hardness}
}
Document
Track A: Algorithms, Complexity and Games
A General Framework for Learning-Augmented Online Allocation

Authors: Ilan Reuven Cohen and Debmalya Panigrahi

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Online allocation is a broad class of problems where items arriving online have to be allocated to agents who have a fixed utility/cost for each assigned item so to maximize/minimize some objective. This framework captures a broad range of fundamental problems such as the Santa Claus problem (maximizing minimum utility), Nash welfare maximization (maximizing geometric mean of utilities), makespan minimization (minimizing maximum cost), minimization of 𝓁_p-norms, and so on. We focus on divisible items (i.e., fractional allocations) in this paper. Even for divisible items, these problems are characterized by strong super-constant lower bounds in the classical worst-case online model. In this paper, we study online allocations in the learning-augmented setting, i.e., where the algorithm has access to some additional (machine-learned) information about the problem instance. We introduce a general algorithmic framework for learning-augmented online allocation that produces nearly optimal solutions for this broad range of maximization and minimization objectives using only a single learned parameter for every agent. As corollaries of our general framework, we improve prior results of Lattanzi et al. (SODA 2020) and Li and Xian (ICML 2021) for learning-augmented makespan minimization, and obtain the first learning-augmented nearly-optimal algorithms for the other objectives such as Santa Claus, Nash welfare, 𝓁_p-minimization, etc. We also give tight bounds on the resilience of our algorithms to errors in the learned parameters, and study the learnability of these parameters.

Cite as

Ilan Reuven Cohen and Debmalya Panigrahi. A General Framework for Learning-Augmented Online Allocation. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 43:1-43:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.ICALP.2023.43,
  author =	{Cohen, Ilan Reuven and Panigrahi, Debmalya},
  title =	{{A General Framework for Learning-Augmented Online Allocation}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{43:1--43:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.43},
  URN =		{urn:nbn:de:0030-drops-180952},
  doi =		{10.4230/LIPIcs.ICALP.2023.43},
  annote =	{Keywords: Algorithms with predictions, Scheduling algorithms, Online algorithms}
}
Document
Online Paging with Heterogeneous Cache Slots

Authors: Marek Chrobak, Samuel Haney, Mehraneh Liaee, Debmalya Panigrahi, Rajmohan Rajaraman, Ravi Sundaram, and Neal E. Young

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
It is natural to generalize the online k-Server problem by allowing each request to specify not only a point p, but also a subset S of servers that may serve it. To initiate a systematic study of this generalization, we focus on uniform and star metrics. For uniform metrics, the problem is equivalent to a generalization of Paging in which each request specifies not only a page p, but also a subset S of cache slots, and is satisfied by having a copy of p in some slot in S. We call this problem Slot-Heterogenous Paging. In realistic settings only certain subsets of cache slots or servers would appear in requests. Therefore we parameterize the problem by specifying a family 𝒮 ⊆ 2^[k] of requestable slot sets, and we establish bounds on the competitive ratio as a function of the cache size k and family 𝒮. If all request sets are allowed (𝒮 = 2^[k]), the optimal deterministic and randomized competitive ratios are exponentially worse than for standard Paging (𝒮 = {[k]}). As a function of |𝒮| and k, the optimal deterministic ratio is polynomial: at most O(k²|𝒮|) and at least Ω(√{|𝒮|}). For any laminar family {𝒮} of height h, the optimal ratios are O(hk) (deterministic) and O(h²log k) (randomized). The special case that we call All-or-One Paging extends standard Paging by allowing each request to specify a specific slot to put the requested page in. For All-or-One Paging the optimal competitive ratios are Θ(k) (deterministic) and Θ(log k) (randomized), while the offline problem is NP-hard. We extend the deterministic upper bound to the weighted variant of All-or-One Paging (a generalization of standard Weighted Paging), showing that it is also Θ(k). Some results for the laminar case are shown via a reduction to the generalization of Paging in which each request specifies a set P of pages, and is satisfied by fetching any page from P into the cache. The optimal ratios for the latter problem (with laminar family of height h) are at most hk (deterministic) and hH_k (randomized).

Cite as

Marek Chrobak, Samuel Haney, Mehraneh Liaee, Debmalya Panigrahi, Rajmohan Rajaraman, Ravi Sundaram, and Neal E. Young. Online Paging with Heterogeneous Cache Slots. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 23:1-23:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chrobak_et_al:LIPIcs.STACS.2023.23,
  author =	{Chrobak, Marek and Haney, Samuel and Liaee, Mehraneh and Panigrahi, Debmalya and Rajaraman, Rajmohan and Sundaram, Ravi and Young, Neal E.},
  title =	{{Online Paging with Heterogeneous Cache Slots}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{23:1--23:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.23},
  URN =		{urn:nbn:de:0030-drops-176759},
  doi =		{10.4230/LIPIcs.STACS.2023.23},
  annote =	{Keywords: Caching and paging algorithms, k-server, weighted paging, laminar family}
}
Document
Quantum Complexity of Minimum Cut

Authors: Simon Apers and Troy Lee

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
The minimum cut problem in an undirected and weighted graph G is to find the minimum total weight of a set of edges whose removal disconnects G. We completely characterize the quantum query and time complexity of the minimum cut problem in the adjacency matrix model. If G has n vertices and edge weights at least 1 and at most τ, we give a quantum algorithm to solve the minimum cut problem using Õ(n^{3/2}√{τ}) queries and time. Moreover, for every integer 1 ≤ τ ≤ n we give an example of a graph G with edge weights 1 and τ such that solving the minimum cut problem on G requires Ω(n^{3/2}√{τ}) queries to the adjacency matrix of G. These results contrast with the classical randomized case where Ω(n²) queries to the adjacency matrix are needed in the worst case even to decide if an unweighted graph is connected or not. In the adjacency array model, when G has m edges the classical randomized complexity of the minimum cut problem is ̃ Θ(m). We show that the quantum query and time complexity are Õ(√{mnτ}) and Õ(√{mnτ} + n^{3/2}), respectively, where again the edge weights are between 1 and τ. For dense graphs we give lower bounds on the quantum query complexity of Ω(n^{3/2}) for τ > 1 and Ω(τ n) for any 1 ≤ τ ≤ n. Our query algorithm uses a quantum algorithm for graph sparsification by Apers and de Wolf (FOCS 2020) and results on the structure of near-minimum cuts by Kawarabayashi and Thorup (STOC 2015) and Rubinstein, Schramm and Weinberg (ITCS 2018). Our time efficient implementation builds on Karger’s tree packing technique (STOC 1996).

Cite as

Simon Apers and Troy Lee. Quantum Complexity of Minimum Cut. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 28:1-28:33, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{apers_et_al:LIPIcs.CCC.2021.28,
  author =	{Apers, Simon and Lee, Troy},
  title =	{{Quantum Complexity of Minimum Cut}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{28:1--28:33},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.28},
  URN =		{urn:nbn:de:0030-drops-143026},
  doi =		{10.4230/LIPIcs.CCC.2021.28},
  annote =	{Keywords: Quantum algorithms, quantum query complexity, minimum cut}
}
Document
Track A: Algorithms, Complexity and Games
Sparsification of Directed Graphs via Cut Balance

Authors: Ruoxu Cen, Yu Cheng, Debmalya Panigrahi, and Kevin Sun

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
In this paper, we consider the problem of designing cut sparsifiers and sketches for directed graphs. To bypass known lower bounds, we allow the sparsifier/sketch to depend on the balance of the input graph, which smoothly interpolates between undirected and directed graphs. We give nearly matching upper and lower bounds for both for-all (cf. Benczúr and Karger, STOC 1996) and for-each (Andoni et al., ITCS 2016) cut sparsifiers/sketches as a function of cut balance, defined the maximum ratio of the cut value in the two directions of a directed graph (Ene et al., STOC 2016). We also show an interesting application of digraph sparsification via cut balance by using it to give a very short proof of a celebrated maximum flow result of Karger and Levine (STOC 2002).

Cite as

Ruoxu Cen, Yu Cheng, Debmalya Panigrahi, and Kevin Sun. Sparsification of Directed Graphs via Cut Balance. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 45:1-45:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cen_et_al:LIPIcs.ICALP.2021.45,
  author =	{Cen, Ruoxu and Cheng, Yu and Panigrahi, Debmalya and Sun, Kevin},
  title =	{{Sparsification of Directed Graphs via Cut Balance}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{45:1--45:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.45},
  URN =		{urn:nbn:de:0030-drops-141143},
  doi =		{10.4230/LIPIcs.ICALP.2021.45},
  annote =	{Keywords: Graph sparsification, directed graphs, cut sketches, space complexity}
}
  • Refine by Author
  • 15 Panigrahi, Debmalya
  • 3 Haney, Samuel
  • 3 Maggs, Bruce M.
  • 3 Rajaraman, Rajmohan
  • 3 Sundaram, Ravi
  • Show More...

  • Refine by Classification
  • 5 Theory of computation → Online algorithms
  • 4 Theory of computation → Graph algorithms analysis
  • 3 Theory of computation → Sparsification and spanners
  • 2 Theory of computation → Approximation algorithms analysis
  • 2 Theory of computation → Design and analysis of algorithms
  • Show More...

  • Refine by Keyword
  • 3 Approximation algorithms
  • 3 Online algorithms
  • 2 Approximate counting
  • 2 Online Algorithms
  • 2 approximation
  • Show More...

  • Refine by Type
  • 27 document

  • Refine by Publication Year
  • 10 2024
  • 4 2021
  • 3 2017
  • 3 2020
  • 3 2023
  • Show More...