5 Search Results for "Saks, Michael E."


Document
Local Enumeration: The Not-All-Equal Case

Authors: Mohit Gurumukhani, Ramamohan Paturi, Michael Saks, and Navid Talebanfard

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
Gurumukhani et al. (CCC'24) proposed the local enumeration problem Enum(k, t) as an approach to break the Super Strong Exponential Time Hypothesis (SSETH): for a natural number k and a parameter t, given an n-variate k-CNF with no satisfying assignment of Hamming weight less than t(n), enumerate all satisfying assignments of Hamming weight exactly t(n). Furthermore, they gave a randomized algorithm for Enum(k, t) and employed new ideas to analyze the first non-trivial case, namely k = 3. In particular, they solved Enum(3, n/2) in expected 1.598ⁿ time. A simple construction shows a lower bound of 6^{n/4} ≈ 1.565ⁿ. In this paper, we show that to break SSETH, it is sufficient to consider a simpler local enumeration problem NAE-Enum(k, t): for a natural number k and a parameter t, given an n-variate k-CNF with no satisfying assignment of Hamming weight less than t(n), enumerate all Not-All-Equal (NAE) solutions of Hamming weight exactly t(n), i.e., those that satisfy and falsify some literal in every clause. We refine the algorithm of Gurumukhani et al. and show that it optimally solves NAE-Enum(3, n/2), namely, in expected time poly(n) ⋅ 6^{n/4}.

Cite as

Mohit Gurumukhani, Ramamohan Paturi, Michael Saks, and Navid Talebanfard. Local Enumeration: The Not-All-Equal Case. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 42:1-42:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gurumukhani_et_al:LIPIcs.STACS.2025.42,
  author =	{Gurumukhani, Mohit and Paturi, Ramamohan and Saks, Michael and Talebanfard, Navid},
  title =	{{Local Enumeration: The Not-All-Equal Case}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{42:1--42:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.42},
  URN =		{urn:nbn:de:0030-drops-228680},
  doi =		{10.4230/LIPIcs.STACS.2025.42},
  annote =	{Keywords: Depth 3 circuits, k-CNF satisfiability, Circuit lower bounds, Majority function}
}
Document
RANDOM
Consequences of Randomized Reductions from SAT to Time-Bounded Kolmogorov Complexity

Authors: Halley Goldberg and Valentine Kabanets

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
A central open question within meta-complexity is that of NP-hardness of problems such as MCSP and MK^{t}P. Despite a large body of work giving consequences of and barriers for NP-hardness of these problems under (restricted) deterministic reductions, very little is known in the setting of randomized reductions. In this work, we give consequences of randomized NP-hardness reductions for both approximating and exactly computing time-bounded and time-unbounded Kolmogorov complexity. In the setting of approximate K^{poly} complexity, our results are as follows. 1) Under a derandomization assumption, for any constant δ > 0, if approximating K^t complexity within n^{δ} additive error is hard for SAT under an honest randomized non-adaptive Turing reduction running in time polynomially less than t, then NP = coNP. 2) Under the same assumptions, the worst-case hardness of NP is equivalent to the existence of one-way functions. Item 1 above may be compared with a recent work of Saks and Santhanam [Michael E. Saks and Rahul Santhanam, 2022], which makes the same assumptions except with ω(log n) additive error, obtaining the conclusion NE = coNE. In the setting of exact K^{poly} complexity, where the barriers of Item 1 and [Michael E. Saks and Rahul Santhanam, 2022] do not apply, we show: 3) If computing K^t complexity is hard for SAT under reductions as in Item 1, then the average-case hardness of NP is equivalent to the existence of one-way functions. That is, "Pessiland" is excluded. Finally, we give consequences of NP-hardness of exact time-unbounded Kolmogorov complexity under randomized reductions. 4) If computing Kolmogorov complexity is hard for SAT under a randomized many-one reduction running in time t_R and with failure probability at most 1/(t_R)^16, then coNP is contained in non-interactive statistical zero-knowledge; thus NP ⊆ coAM. Also, the worst-case hardness of NP is equivalent to the existence of one-way functions. We further exploit the connection to NISZK along with a previous work of Allender et al. [Eric Allender et al., 2023] to show that hardness of K complexity under randomized many-one reductions is highly robust with respect to failure probability, approximation error, output length, and threshold parameter.

Cite as

Halley Goldberg and Valentine Kabanets. Consequences of Randomized Reductions from SAT to Time-Bounded Kolmogorov Complexity. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 51:1-51:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{goldberg_et_al:LIPIcs.APPROX/RANDOM.2024.51,
  author =	{Goldberg, Halley and Kabanets, Valentine},
  title =	{{Consequences of Randomized Reductions from SAT to Time-Bounded Kolmogorov Complexity}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{51:1--51:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.51},
  URN =		{urn:nbn:de:0030-drops-210444},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.51},
  annote =	{Keywords: Meta-complexity, Randomized reductions, NP-hardness, Worst-case complexity, Time-bounded Kolmogorov complexity}
}
Document
NP-Hardness of Circuit Minimization for Multi-Output Functions

Authors: Rahul Ilango, Bruno Loff, and Igor C. Oliveira

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
Can we design efficient algorithms for finding fast algorithms? This question is captured by various circuit minimization problems, and algorithms for the corresponding tasks have significant practical applications. Following the work of Cook and Levin in the early 1970s, a central question is whether minimizing the circuit size of an explicitly given function is NP-complete. While this is known to hold in restricted models such as DNFs, making progress with respect to more expressive classes of circuits has been elusive. In this work, we establish the first NP-hardness result for circuit minimization of total functions in the setting of general (unrestricted) Boolean circuits. More precisely, we show that computing the minimum circuit size of a given multi-output Boolean function f : {0,1}^n → {0,1}^m is NP-hard under many-one polynomial-time randomized reductions. Our argument builds on a simpler NP-hardness proof for the circuit minimization problem for (single-output) Boolean functions under an extended set of generators. Complementing these results, we investigate the computational hardness of minimizing communication. We establish that several variants of this problem are NP-hard under deterministic reductions. In particular, unless 𝖯 = 𝖭𝖯, no polynomial-time computable function can approximate the deterministic two-party communication complexity of a partial Boolean function up to a polynomial. This has consequences for the class of structural results that one might hope to show about the communication complexity of partial functions.

Cite as

Rahul Ilango, Bruno Loff, and Igor C. Oliveira. NP-Hardness of Circuit Minimization for Multi-Output Functions. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 22:1-22:36, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{ilango_et_al:LIPIcs.CCC.2020.22,
  author =	{Ilango, Rahul and Loff, Bruno and Oliveira, Igor C.},
  title =	{{NP-Hardness of Circuit Minimization for Multi-Output Functions}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{22:1--22:36},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.22},
  URN =		{urn:nbn:de:0030-drops-125744},
  doi =		{10.4230/LIPIcs.CCC.2020.22},
  annote =	{Keywords: MCSP, circuit minimization, communication complexity, Boolean circuit}
}
Document
Lower Bounds for Combinatorial Algorithms for Boolean Matrix Multiplication

Authors: Debarati Das, Michal Koucký, and Michael Saks

Published in: LIPIcs, Volume 96, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)


Abstract
In this paper we propose models of combinatorial algorithms for the Boolean Matrix Multiplication (BMM), and prove lower bounds on computing BMM in these models. First, we give a relatively relaxed combinatorial model which is an extension of the model by Angluin (1976), and we prove that the time required by any algorithm for the BMM is at least Omega(n^3 / 2^{O( sqrt{ log n })}). Subsequently, we propose a more general model capable of simulating the "Four Russian Algorithm". We prove a lower bound of Omega(n^{7/3} / 2^{O(sqrt{ log n })}) for the BMM under this model. We use a special class of graphs, called (r,t)-graphs, originally discovered by Rusza and Szemeredi (1978), along with randomization, to construct matrices that are hard instances for our combinatorial models.

Cite as

Debarati Das, Michal Koucký, and Michael Saks. Lower Bounds for Combinatorial Algorithms for Boolean Matrix Multiplication. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 96, pp. 23:1-23:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{das_et_al:LIPIcs.STACS.2018.23,
  author =	{Das, Debarati and Kouck\'{y}, Michal and Saks, Michael},
  title =	{{Lower Bounds for Combinatorial Algorithms for Boolean Matrix Multiplication}},
  booktitle =	{35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)},
  pages =	{23:1--23:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-062-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{96},
  editor =	{Niedermeier, Rolf and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2018.23},
  URN =		{urn:nbn:de:0030-drops-85050},
  doi =		{10.4230/LIPIcs.STACS.2018.23},
  annote =	{Keywords: Lower bounds, Combinatorial algorithm, Boolean matrix multiplication}
}
Document
The Power of Super-logarithmic Number of Players

Authors: Arkadev Chattopadhyay and Michael E. Saks

Published in: LIPIcs, Volume 28, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)


Abstract
In the `Number-on-Forehead' (NOF) model of multiparty communication, the input is a k times m boolean matrix A (where k is the number of players) and Player i sees all bits except those in the i-th row, and the players communicate by broadcast in order to evaluate a specified function f at A. We discover new computational power when k exceeds log m. We give a protocol with communication cost poly-logarithmic in m, for block composed functions with limited block width. These are functions of the form f o g where f is a symmetric b-variate function, and g is a (kr)-variate function and (f o g)(A) is defined, for a k times (br) matrix to be f(g(A-1),...,g(A-b)) where A-i is the i-th (k times r) block of A. Our protocol works provided that k > 1+ ln b + (2 to the power of r). Ada et al. (ICALP'2012) previously obtained simultaneous and deterministic efficient protocols for composed functions of block-width one. The new protocol is the first to work for block composed functions with block-width greather than one. Moreover, it is simultaneous, with vanishingly small error probability, if public coin randomness is allowed. The deterministic and zero-error version barely uses interaction.

Cite as

Arkadev Chattopadhyay and Michael E. Saks. The Power of Super-logarithmic Number of Players. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 28, pp. 596-603, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{chattopadhyay_et_al:LIPIcs.APPROX-RANDOM.2014.596,
  author =	{Chattopadhyay, Arkadev and Saks, Michael E.},
  title =	{{The Power of Super-logarithmic Number of Players}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)},
  pages =	{596--603},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-74-3},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{28},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} and Devanur, Nikhil R. and Moore, Cristopher},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2014.596},
  URN =		{urn:nbn:de:0030-drops-47243},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2014.596},
  annote =	{Keywords: Communication complexity, Number-On-Forehead model, composed functions}
}
  • Refine by Author
  • 2 Saks, Michael
  • 1 Chattopadhyay, Arkadev
  • 1 Das, Debarati
  • 1 Goldberg, Halley
  • 1 Gurumukhani, Mohit
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 1 Boolean circuit
  • 1 Boolean matrix multiplication
  • 1 Circuit lower bounds
  • 1 Combinatorial algorithm
  • 1 Communication complexity
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 1 2014
  • 1 2018
  • 1 2020
  • 1 2024
  • 1 2025

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail