37 Search Results for "Scheider, Simon"


Volume

LIPIcs, Volume 315

16th International Conference on Spatial Information Theory (COSIT 2024)

COSIT 2024, September 17-20, 2024, Québec City, Canada

Editors: Benjamin Adams, Amy L. Griffin, Simon Scheider, and Grant McKenzie

Document
Complete Volume
LIPIcs, Volume 315, COSIT 2024, Complete Volume

Authors: Benjamin Adams, Amy L. Griffin, Simon Scheider, and Grant McKenzie

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
LIPIcs, Volume 315, COSIT 2024, Complete Volume

Cite as

16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 1-416, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Proceedings{adams_et_al:LIPIcs.COSIT.2024,
  title =	{{LIPIcs, Volume 315, COSIT 2024, Complete Volume}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{1--416},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024},
  URN =		{urn:nbn:de:0030-drops-208148},
  doi =		{10.4230/LIPIcs.COSIT.2024},
  annote =	{Keywords: LIPIcs, Volume 315, COSIT 2024, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Benjamin Adams, Amy L. Griffin, Simon Scheider, and Grant McKenzie

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 0:i-0:xvi, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{adams_et_al:LIPIcs.COSIT.2024.0,
  author =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{0:i--0:xvi},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.0},
  URN =		{urn:nbn:de:0030-drops-208157},
  doi =		{10.4230/LIPIcs.COSIT.2024.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
A Salience-Based Framework for Terrain Modelling: From the Surface Network to Topo-Contexts

Authors: Éric Guilbert and Bernard Moulin

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Twenty years after Mark and Smith’s seminal paper, a Science of Topography, we revisit some of their fundamental questions about how landforms are recognised by people and how they can be automatically extracted or delimited from representations of topographic surfaces. Many approaches and tools, essentially based on GeoOBIA, can extract objects associated with landforms from image data. But, they cannot relate these objects to the topology and topography of the terrain. Yet, geo-scientists can easily recognise landforms, considering terrain characteristics and other factors composing the context of appearance of those landforms. Revisiting Gestalt Theory, we propose a salience-based approach fostering a holistic view of the terrain which fits with the geoscientists' ability to recognise landforms using the topographic and hydrologic contexts. The terrain is represented as an extended surface network (ESN), a graph composed of elementary saliences (peaks, pits, saddles, thalweg and ridge networks) and obtained from raster data. The ESN combines both the surface and the drainage networks in a sound topological representation of the terrain. A skeletonisation technique of the ESN’s thalweg and ridge networks is proposed to geometrically and topologically characterise landforms, as well as ensembles of landforms. On this basis and to represent the context of appearance of landforms, geo/topo-contexts are introduced as structures grounded in the properties of the ESN and using the skeletonisation technique. We give an illustration of how a geomorphologist can apply our approach and tools, using the depressions and drainage basins as examples of useful geo/topo-contexts.

Cite as

Éric Guilbert and Bernard Moulin. A Salience-Based Framework for Terrain Modelling: From the Surface Network to Topo-Contexts. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 2:1-2:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{guilbert_et_al:LIPIcs.COSIT.2024.2,
  author =	{Guilbert, \'{E}ric and Moulin, Bernard},
  title =	{{A Salience-Based Framework for Terrain Modelling: From the Surface Network to Topo-Contexts}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{2:1--2:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.2},
  URN =		{urn:nbn:de:0030-drops-208177},
  doi =		{10.4230/LIPIcs.COSIT.2024.2},
  annote =	{Keywords: DTM, surface network, landform, topographic context, saliences}
}
Document
Can You Sketch in 3D? Exploring Perceived Feasibility and Use Cases of 3D Sketch Mapping

Authors: Kevin Gonyop Kim, Tiffany C.K. Kwok, Sailin Zhong, Peter Kiefer, and Martin Raubal

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Sketch mapping is a research technique that has been widely used to study what people think about the spatial layout of an environment. One of the limitations of the current practice of sketch mapping is that the interface (a pen on paper or digital tablets) forces people to draw on 2D surfaces even when the information to be represented is 3D. For the purpose of studying the 3D aspect of spatial understanding, the recent advancements in extended reality (XR) technologies including virtual reality, augmented reality, and mixed reality are interesting as they provide novel ways to create 3D sketches. In this paper, we investigate how the concept of 3D sketch mapping using XR is perceived by users and explore its potential feasibility and use cases. For this, we conducted semi-structured interviews with 27 participants from three domains: aviation, architecture, and wayfinding. Our findings show that the concept is well-perceived as an intuitive way to externalize the 3D aspect of spatial information, and it has the potential to be a research tool for human cognition research as well as a practical tool that can provide added value in different professional activities.

Cite as

Kevin Gonyop Kim, Tiffany C.K. Kwok, Sailin Zhong, Peter Kiefer, and Martin Raubal. Can You Sketch in 3D? Exploring Perceived Feasibility and Use Cases of 3D Sketch Mapping. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 3:1-3:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kim_et_al:LIPIcs.COSIT.2024.3,
  author =	{Kim, Kevin Gonyop and Kwok, Tiffany C.K. and Zhong, Sailin and Kiefer, Peter and Raubal, Martin},
  title =	{{Can You Sketch in 3D? Exploring Perceived Feasibility and Use Cases of 3D Sketch Mapping}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{3:1--3:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.3},
  URN =		{urn:nbn:de:0030-drops-208186},
  doi =		{10.4230/LIPIcs.COSIT.2024.3},
  annote =	{Keywords: Sketch maps, spatial understanding, 3D sketching, extended reality, use cases, interviews}
}
Document
Qualitative Formalization of a Curve on a Two-Dimensional Plane

Authors: Kazuko Takahashi

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
We propose a theoretical framework for qualitative spatial representation and reasoning about curves on a two-dimensional plane. We regard a curve as a sequence of segments, each of which has its own direction and convexity, and give a symbolic expression to it. We propose a reasoning method on this symbolic expression; when only a few segments of a curve are visible, we find missing segments by connecting them to create a global smooth continuous curve. In addition, we discuss whether the shape of the created curve can represent that of a real object; if the curve forms a spiral, such a curve is sometimes not appropriate as a border of an object. We show a method that judges the appropriateness of a curve, by considering the orientations of the segments.

Cite as

Kazuko Takahashi. Qualitative Formalization of a Curve on a Two-Dimensional Plane. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{takahashi:LIPIcs.COSIT.2024.4,
  author =	{Takahashi, Kazuko},
  title =	{{Qualitative Formalization of a Curve on a Two-Dimensional Plane}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.4},
  URN =		{urn:nbn:de:0030-drops-208193},
  doi =		{10.4230/LIPIcs.COSIT.2024.4},
  annote =	{Keywords: qualitative spatial reasoning, knowledge representation, logical reasoning, shape information}
}
Document
Spatial Nudging: Converging Persuasive Technologies, Spatial Design, and Behavioral Theories

Authors: Ayda Grisiute and Martin Raubal

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
This paper presents the Spatial Nudging framework - a theory-based framework that maps out nudging strategies in the mobility domain and refines its existing definitions. We link these strategies by highlighting the role of perceived affordances across physical and digital interventions based on the Nudge Theory and the Theory of Affordances. Furthermore, we propose to use graph representation techniques as a supportive methodology to better align perceived and actual environments, thereby enhancing the intervention strategies' effectiveness. We illustrate the applicability of the Spatial Nudging framework and the supportive methodology in the context of an E-bike City vision. This paper lays the foundation for future research on theoretically integrating physical and digital interventions to promote sustainable mobility.

Cite as

Ayda Grisiute and Martin Raubal. Spatial Nudging: Converging Persuasive Technologies, Spatial Design, and Behavioral Theories. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grisiute_et_al:LIPIcs.COSIT.2024.5,
  author =	{Grisiute, Ayda and Raubal, Martin},
  title =	{{Spatial Nudging: Converging Persuasive Technologies, Spatial Design, and Behavioral Theories}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.5},
  URN =		{urn:nbn:de:0030-drops-208206},
  doi =		{10.4230/LIPIcs.COSIT.2024.5},
  annote =	{Keywords: spatial nudging, active mobility, Nudge Theory, Theory of Affordances, cognitive graphs}
}
Document
Is Familiarity Reflected in the Spatial Knowledge Revealed by Sketch Maps?

Authors: Markus Kattenbeck, Daniel R. Montello, Martin Raubal, and Ioannis Giannopoulos

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Despite the frequent use of sketch maps in assessing environmental knowledge, it remains unclear how and to what degree familiarity impacts sketch map content. In the present study, we assess whether different levels of familiarity relate to differences in the content and spatial accuracy of environmental knowledge depicted in sketch maps drawn for the purpose of route instructions. To this end, we conduct a real-world wayfinding study with 91 participants, all of whom have to walk along a pre-defined route of approximately 2.3km length. Prior to the walk, we collect self-report familiarity ratings from participants for both a set of 15 landmarks and a set of areas we define as hexagons along the route. Once participants finished walking the route, they were asked to sketch a map of the route, specifically a sketch that would enable a person who had never walked the route to follow it. We found that participants unfamiliar with the areas along the route sketched fewer features than familiar people did. Contrary to our expectations, however, we found that landmarks were sketched or not regardless of participants' level of familiarity with the landmarks. We were also surprised that the level of familiarity was not correlated to the accuracy of the sketched order of features along the route, of the position of sketched features in relation to the route, nor to the metric locational accuracy of feature placement on the sketches. These results lead us to conclude that different aspects of feature salience influence whether the features are included on sketch maps, independent of familiarity. They also point to the influence of task context on the content of sketch maps, again independent of familiarity. We propose further studies to more fully explore these ideas.

Cite as

Markus Kattenbeck, Daniel R. Montello, Martin Raubal, and Ioannis Giannopoulos. Is Familiarity Reflected in the Spatial Knowledge Revealed by Sketch Maps?. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kattenbeck_et_al:LIPIcs.COSIT.2024.6,
  author =	{Kattenbeck, Markus and Montello, Daniel R. and Raubal, Martin and Giannopoulos, Ioannis},
  title =	{{Is Familiarity Reflected in the Spatial Knowledge Revealed by Sketch Maps?}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{6:1--6:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.6},
  URN =		{urn:nbn:de:0030-drops-208215},
  doi =		{10.4230/LIPIcs.COSIT.2024.6},
  annote =	{Keywords: Familiarity, Spatial Knowledge, Sketch Maps}
}
Document
What Is a Spatio-Temporal Model Good For?: Validity as a Function of Purpose and the Questions Answered by a Model

Authors: Simon Scheider and Judith A. Verstegen

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
The concept of validity is a cornerstone of science. Given this central role, it is somewhat surprising to find that validity remains a rather obscure concept. Unfortunately, the term is often reduced to a matter of ground truth data, seemingly because we fail to come to grips with it. In this paper, instead, we take a purpose-based approach to the validity of spatio-temporal models. We argue that a model application is valid only if the model delivers an answer to a particular spatio-temporal question specifying some experiment including spatio-temporal controls and measures. Such questions constitute the information purposes of models, forming an intermediate layer in a pragmatic knowledge pyramid with corresponding levels of validity. We introduce a corresponding question-based grammar that allows us to formally distinguish among contemporary inference, prediction, retrodiction, projection, and retrojection models. We apply the grammar to corresponding examples and discuss the possibilities for validating such models as a means to a given end.

Cite as

Simon Scheider and Judith A. Verstegen. What Is a Spatio-Temporal Model Good For?: Validity as a Function of Purpose and the Questions Answered by a Model. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 7:1-7:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{scheider_et_al:LIPIcs.COSIT.2024.7,
  author =	{Scheider, Simon and Verstegen, Judith A.},
  title =	{{What Is a Spatio-Temporal Model Good For?: Validity as a Function of Purpose and the Questions Answered by a Model}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{7:1--7:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.7},
  URN =		{urn:nbn:de:0030-drops-208225},
  doi =		{10.4230/LIPIcs.COSIT.2024.7},
  annote =	{Keywords: validity, fitness-for-purpose, spatio-temporal modeling, pragmatics, question grammar}
}
Document
Scalable Harmonious Simplification of Isolines

Authors: Steven van den Broek, Wouter Meulemans, Andreas Reimer, and Bettina Speckmann

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Isolines visually characterize scalar fields by connecting all points of the same value by a closed curve at repeated intervals. They work only as a set which gives the viewer an indication of the shape of the underlying field. Hence, when simplifying isolines it is important that the correspondence - the harmony - between adjacent isolines is preserved whenever it is present. The majority of state-of-the-art simplification methods treat isolines independently; at best they avoid collisions between adjacent simplified isolines. A notable exception is the work by Van Goethem et al. (2021) who were the first to introduce the concept of harmony between adjacent isolines explicitly as an algorithmic design principle. They presented a proof-of-concept algorithm that harmoniously simplifies a sequence of polylines. However, the sets of isolines of scalar fields, most notably terrain, consist of closed curves which are nested in arbitrarily complex ways and not of an ordered sequence of polylines. In this paper we significantly extend the work by Van Goethem et al. (2021) to capture harmony in general sets of isolines. Our new simplification algorithm can handle sets of isolines describing arbitrary scalar fields and is more efficient, allowing us to harmoniously simplify terrain with hundreds of thousands of vertices. We experimentally compare our method to the results of Van Goethem et al. (2021) on bundles of isolines and to general simplification methods on isolines extracted from DEMs of Antartica. Our results indicate that our method efficiently preserves the harmony in the simplified maps, which are thereby less noisy, cartographically more meaningful, and easier to read.

Cite as

Steven van den Broek, Wouter Meulemans, Andreas Reimer, and Bettina Speckmann. Scalable Harmonious Simplification of Isolines. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vandenbroek_et_al:LIPIcs.COSIT.2024.8,
  author =	{van den Broek, Steven and Meulemans, Wouter and Reimer, Andreas and Speckmann, Bettina},
  title =	{{Scalable Harmonious Simplification of Isolines}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.8},
  URN =		{urn:nbn:de:0030-drops-208230},
  doi =		{10.4230/LIPIcs.COSIT.2024.8},
  annote =	{Keywords: Simplification, isolines, harmony}
}
Document
Probing the Information Theoretical Roots of Spatial Dependence Measures

Authors: Zhangyu Wang, Krzysztof Janowicz, Gengchen Mai, and Ivan Majic

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Intuitively, there is a relation between measures of spatial dependence and information theoretical measures of entropy. For instance, we can provide an intuition of why spatial data is special by stating that, on average, spatial data samples contain less than expected information. Similarly, spatial data, e.g., remotely sensed imagery, that is easy to compress is also likely to show significant spatial autocorrelation. Formulating our (highly specific) core concepts of spatial information theory in the widely used language of information theory opens new perspectives on their differences and similarities and also fosters cross-disciplinary collaboration, e.g., with the broader AI/ML communities. Interestingly, however, this intuitive relation is challenging to formalize and generalize, leading prior work to rely mostly on experimental results, e.g., for describing landscape patterns. In this work, we will explore the information theoretical roots of spatial autocorrelation, more specifically Moran’s I, through the lens of self-information (also known as surprisal) and provide both formal proofs and experiments.

Cite as

Zhangyu Wang, Krzysztof Janowicz, Gengchen Mai, and Ivan Majic. Probing the Information Theoretical Roots of Spatial Dependence Measures. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{wang_et_al:LIPIcs.COSIT.2024.9,
  author =	{Wang, Zhangyu and Janowicz, Krzysztof and Mai, Gengchen and Majic, Ivan},
  title =	{{Probing the Information Theoretical Roots of Spatial Dependence Measures}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.9},
  URN =		{urn:nbn:de:0030-drops-208247},
  doi =		{10.4230/LIPIcs.COSIT.2024.9},
  annote =	{Keywords: Spatial Autocorrelation, Moran’s I, Information Theory, Surprisal, Self-Information}
}
Document
Revealing Differences in Public Transport Share Through District-Wise Comparison and Relating Them to Network Properties

Authors: Manuela Canestrini, Ioanna Gogousou, Dimitrios Michail, and Ioannis Giannopoulos

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Sustainable transport is becoming an increasingly pressing issue, with two major pillars being the reduction of car usage and the promotion of public transport. One way to approach both of these pillars is through the large number of daily commute trips in urban areas, and their modal split. Previous research gathered knowledge on influencing factors on the modal split mainly through travel surveys. We take a different approach by analysing the "raw" network and the time-optimised trips on a multi-modal graph. For the case study of Vienna, Austria we investigate how the option to use a private car influences the modal split of routes towards the city centre. Additionally, we compare the modal split across seven inner districts and we relate properties of the public transport network to the respective share of public transport. The results suggest that different districts have varying options of public transport connections towards the city centre, with a share of public transport between about 5% up to a share of 45%. This reveals areas where investments in public transport could reduce commute times to the city centre. Regarding network properties, our findings suggest, that it is not sufficient to analyse the joint public transport network. Instead, individual public transport modalities should be examined. We show that the network length and the direction of the lines towards the city centre influence the proportion of subway and tram in the modal split.

Cite as

Manuela Canestrini, Ioanna Gogousou, Dimitrios Michail, and Ioannis Giannopoulos. Revealing Differences in Public Transport Share Through District-Wise Comparison and Relating Them to Network Properties. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{canestrini_et_al:LIPIcs.COSIT.2024.10,
  author =	{Canestrini, Manuela and Gogousou, Ioanna and Michail, Dimitrios and Giannopoulos, Ioannis},
  title =	{{Revealing Differences in Public Transport Share Through District-Wise Comparison and Relating Them to Network Properties}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.10},
  URN =		{urn:nbn:de:0030-drops-208255},
  doi =		{10.4230/LIPIcs.COSIT.2024.10},
  annote =	{Keywords: Mobility, Modal Split, Transportation Networks}
}
Document
Semantic Perspectives on the Lake District Writing: Spatial Ontology Modeling and Relation Extraction for Deeper Insights

Authors: Erum Haris, Anthony G. Cohn, and John G. Stell

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Extracting spatial details from historical texts can be difficult, hindering our understanding of past landscapes. The study addresses this challenge by analyzing the Corpus of the Lake District Writing, focusing on the English Lake District region. We systematically link the theoretical notions from the core concepts of spatial information to provide basis for the problem domain. The conceptual foundation is further complemented with a spatial ontology and a custom gazetteer, allowing a formal and insightful semantic exploration of the massive unstructured corpus. The other contrasting side of the framework is the usage of LLMs for spatial relation extraction. We formulate prompts leveraging understanding of the LLMs of the intended task, curate a list of spatial relations representing the most recurring proximity or vicinity relations terms and extract semantic triples for the top five place names appearing in the corpus. We compare the extraction capabilities of three benchmark LLMs for a scholarly significant historical archive, representing their potential in a challenging and interdisciplinary research problem. Finally, the network comprising the semantic triples is enhanced by incorporating a gazetteer-based classification of the objects involved thus improving their spatial profiling.

Cite as

Erum Haris, Anthony G. Cohn, and John G. Stell. Semantic Perspectives on the Lake District Writing: Spatial Ontology Modeling and Relation Extraction for Deeper Insights. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{haris_et_al:LIPIcs.COSIT.2024.11,
  author =	{Haris, Erum and Cohn, Anthony G. and Stell, John G.},
  title =	{{Semantic Perspectives on the Lake District Writing: Spatial Ontology Modeling and Relation Extraction for Deeper Insights}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.11},
  URN =		{urn:nbn:de:0030-drops-208268},
  doi =		{10.4230/LIPIcs.COSIT.2024.11},
  annote =	{Keywords: spatial humanities, spatial narratives, ontology, large language models}
}
Document
Short Paper
Exploring Discrete Spatial Heterogeneity Across Quantiles: A Combination Approach of Generalized Lasso and Conditional Quantile Regression (Short Paper)

Authors: Ryo Inoue and Kenya Aoki

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Spatial heterogeneity has been investigated extensively. However, in addition to spatial heterogeneity, there are spatial phenomena where heterogeneity in the data generation process exists across quantiles. This study proposes a new method that combines generalized lasso (GL) and conditional quantile regression (CQR) to analyze discrete spatial heterogeneity across quantiles. GL enables the identification of spatial boundaries where the spatial data generation process varies discretely, and CQR estimates the parameters of the conditional quantile of the dependent variable. The proposed method is expressed as a linear programming problem and is simple to use. To validate its effectiveness, we applied this method to apartment rent data in Minato Ward, Tokyo. The results revealed that the neighborhoods where rent levels deviated from the overall trend in the analyzed area differed by quantiles.

Cite as

Ryo Inoue and Kenya Aoki. Exploring Discrete Spatial Heterogeneity Across Quantiles: A Combination Approach of Generalized Lasso and Conditional Quantile Regression (Short Paper). In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 12:1-12:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{inoue_et_al:LIPIcs.COSIT.2024.12,
  author =	{Inoue, Ryo and Aoki, Kenya},
  title =	{{Exploring Discrete Spatial Heterogeneity Across Quantiles: A Combination Approach of Generalized Lasso and Conditional Quantile Regression}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{12:1--12:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.12},
  URN =		{urn:nbn:de:0030-drops-208272},
  doi =		{10.4230/LIPIcs.COSIT.2024.12},
  annote =	{Keywords: discrete spatial heterogeneity, generalized lasso, conditional quantile regression}
}
Document
Short Paper
Long-Term Landmark and Route Memory Retention Acquired in a Real-World Map-Aided Navigation Task (Short Paper)

Authors: Armand Kapaj, Christopher Hilton, and Sara I. Fabrikant

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
The visualization of landmarks in mobile maps has become a popular countermeasure to the negative effect navigation aids have on spatial learning. Landmarks are salient environmental cues that serve as cognitive anchors during navigation, facilitating spatial memory formation and long-term retention. However, longitudinal studies assessing long-term spatial memory retention acquired during mobile map-assisted navigation in the real world and what role visualized landmarks play in this context are still scarce. We report on a longitudinal study to assess long-term spatial memory retention of wayfinders who, two years prior, navigated only once a real-world route prescribed with a mobile map aid enriched with visually salient task-relevant landmarks. We report preliminary results on their long-term memory retention of acquired landmark and route knowledge. We found that participants retained meaningful long-term landmark and route knowledge over the two-year study period. While landmark knowledge decreased over the test-retest sessions, gained route knowledge was unaffected. These ecologically valid results contribute to a better understanding of spatial memory formation and long-term retention after one route exposure through a real-world environment, aided by a mobile map enriched with salient landmarks.

Cite as

Armand Kapaj, Christopher Hilton, and Sara I. Fabrikant. Long-Term Landmark and Route Memory Retention Acquired in a Real-World Map-Aided Navigation Task (Short Paper). In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 13:1-13:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kapaj_et_al:LIPIcs.COSIT.2024.13,
  author =	{Kapaj, Armand and Hilton, Christopher and Fabrikant, Sara I.},
  title =	{{Long-Term Landmark and Route Memory Retention Acquired in a Real-World Map-Aided Navigation Task}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{13:1--13:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.13},
  URN =		{urn:nbn:de:0030-drops-208281},
  doi =		{10.4230/LIPIcs.COSIT.2024.13},
  annote =	{Keywords: Long-term, spatial memory, retention, map-aided, real-world navigation}
}
  • Refine by Author
  • 6 Scheider, Simon
  • 3 Giannopoulos, Ioannis
  • 3 Raubal, Martin
  • 2 Adams, Benjamin
  • 2 Griffin, Amy L.
  • Show More...

  • Refine by Classification
  • 10 Information systems → Geographic information systems
  • 6 Computing methodologies → Spatial and physical reasoning
  • 5 Applied computing → Psychology
  • 4 General and reference → Empirical studies
  • 3 Computing methodologies → Ontology engineering
  • Show More...

  • Refine by Keyword
  • 3 spatial cognition
  • 2 Eye-tracking
  • 2 Large Language Models
  • 2 Mobility
  • 2 ontology
  • Show More...

  • Refine by Type
  • 36 document
  • 1 volume

  • Refine by Publication Year
  • 34 2024
  • 2 2022
  • 1 2014

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail