34 Search Results for "Siebertz, Sebastian"


Document
Scalable Hard Instances for Independent Set Reconfiguration

Authors: Takehide Soh, Takumu Watanabe, Jun Kawahara, Akira Suzuki, and Takehiro Ito

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
The Token Jumping problem, also known as the independent set reconfiguration problem under the token jumping model, is defined as follows: Given a graph and two same-sized independent sets, determine whether one can be transformed into the other via a sequence of independent sets. Token Jumping has been extensively studied, mainly from the viewpoint of algorithmic theory, but its practical study has just begun. To develop a practically good solver, it is important to construct benchmark datasets that are scalable and hard. Here, "scalable" means the ability to change the scale of the instance while maintaining its characteristics by adjusting the given parameters; and "hard" means that the instance can become so difficult that it cannot be solved within a practical time frame by a solver. In this paper, we propose four types of instance series for Token Jumping. Our instance series is scalable in the sense that instance scales are controlled by the number of vertices. To establish their hardness, we focus on the numbers of transformation steps; our instance series requires exponential numbers of steps with respect to the number of vertices. Interestingly, three types of instance series are constructed by importing theories developed by algorithmic research. We experimentally evaluate the scalability and hardness of the proposed instance series, using the SAT solver and award-winning solvers of the international competition for Token Jumping.

Cite as

Takehide Soh, Takumu Watanabe, Jun Kawahara, Akira Suzuki, and Takehiro Ito. Scalable Hard Instances for Independent Set Reconfiguration. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 26:1-26:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{soh_et_al:LIPIcs.SEA.2024.26,
  author =	{Soh, Takehide and Watanabe, Takumu and Kawahara, Jun and Suzuki, Akira and Ito, Takehiro},
  title =	{{Scalable Hard Instances for Independent Set Reconfiguration}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{26:1--26:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.26},
  URN =		{urn:nbn:de:0030-drops-203913},
  doi =		{10.4230/LIPIcs.SEA.2024.26},
  annote =	{Keywords: Combinatorial reconfiguration, Benckmark dataset, Graph Algorithm, PSPACE-complete}
}
Document
Track A: Algorithms, Complexity and Games
Kernelization Dichotomies for Hitting Subgraphs Under Structural Parameterizations

Authors: Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
For a fixed graph H, the H-Subgraph Hitting problem consists in deleting the minimum number of vertices from an input graph to obtain a graph without any occurrence of H as a subgraph. This problem can be seen as a generalization of Vertex Cover, which corresponds to the case H = K₂. We initiate a study of H-Subgraph Hitting from the point of view of characterizing structural parameterizations that allow for polynomial kernels, within the recently active framework of taking as the parameter the number of vertex deletions to obtain a graph in a "simple" class 𝒞. Our main contribution is to identify graph parameters that, when H-Subgraph Hitting is parameterized by the vertex-deletion distance to a class 𝒞 where any of these parameters is bounded, and assuming standard complexity assumptions and that H is biconnected, allow us to prove the following sharp dichotomy: the problem admits a polynomial kernel if and only if H is a clique. These new graph parameters are inspired by the notion of 𝒞-elimination distance introduced by Bulian and Dawar [Algorithmica 2016], and generalize it in two directions. Our results also apply to the version of the problem where one wants to hit H as an induced subgraph, and imply in particular, that the problems of hitting minors and hitting (induced) subgraphs have a substantially different behavior with respect to the existence of polynomial kernels under structural parameterizations.

Cite as

Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau. Kernelization Dichotomies for Hitting Subgraphs Under Structural Parameterizations. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 33:1-33:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bougeret_et_al:LIPIcs.ICALP.2024.33,
  author =	{Bougeret, Marin and Jansen, Bart M. P. and Sau, Ignasi},
  title =	{{Kernelization Dichotomies for Hitting Subgraphs Under Structural Parameterizations}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{33:1--33:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.33},
  URN =		{urn:nbn:de:0030-drops-201766},
  doi =		{10.4230/LIPIcs.ICALP.2024.33},
  annote =	{Keywords: hitting subgraphs, hitting induced subgraphs, parameterized complexity, polynomial kernel, complexity dichotomy, elimination distance}
}
Document
Track A: Algorithms, Complexity and Games
Solution Discovery via Reconfiguration for Problems in P

Authors: Mario Grobler, Stephanie Maaz, Nicole Megow, Amer E. Mouawad, Vijayaragunathan Ramamoorthi, Daniel Schmand, and Sebastian Siebertz

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the recently introduced framework of solution discovery via reconfiguration [Fellows et al., ECAI 2023], we are given an initial configuration of k tokens on a graph and the question is whether we can transform this configuration into a feasible solution (for some problem) via a bounded number b of small modification steps. In this work, we study solution discovery variants of polynomial-time solvable problems, namely Spanning Tree Discovery, Shortest Path Discovery, Matching Discovery, and Vertex/Edge Cut Discovery in the unrestricted token addition/removal model, the token jumping model, and the token sliding model. In the unrestricted token addition/removal model, we show that all four discovery variants remain in P. For the token jumping model we also prove containment in P, except for Vertex/Edge Cut Discovery, for which we prove NP-completeness. Finally, in the token sliding model, almost all considered problems become NP-complete, the exception being Spanning Tree Discovery, which remains polynomial-time solvable. We then study the parameterized complexity of the NP-complete problems and provide a full classification of tractability with respect to the parameters solution size (number of tokens) k and transformation budget (number of steps) b. Along the way, we observe strong connections between the solution discovery variants of our base problems and their (weighted) rainbow variants as well as their red-blue variants with cardinality constraints.

Cite as

Mario Grobler, Stephanie Maaz, Nicole Megow, Amer E. Mouawad, Vijayaragunathan Ramamoorthi, Daniel Schmand, and Sebastian Siebertz. Solution Discovery via Reconfiguration for Problems in P. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 76:1-76:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grobler_et_al:LIPIcs.ICALP.2024.76,
  author =	{Grobler, Mario and Maaz, Stephanie and Megow, Nicole and Mouawad, Amer E. and Ramamoorthi, Vijayaragunathan and Schmand, Daniel and Siebertz, Sebastian},
  title =	{{Solution Discovery via Reconfiguration for Problems in P}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{76:1--76:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.76},
  URN =		{urn:nbn:de:0030-drops-202195},
  doi =		{10.4230/LIPIcs.ICALP.2024.76},
  annote =	{Keywords: solution discovery, reconfiguration, spanning tree, shortest path, matching, cut}
}
Document
Track A: Algorithms, Complexity and Games
Isomorphism for Tournaments of Small Twin Width

Authors: Martin Grohe and Daniel Neuen

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We prove that isomorphism of tournaments of twin width at most k can be decided in time k^O(log k) n^O(1). This implies that the isomorphism problem for classes of tournaments of bounded or moderately growing twin width is in polynomial time. By comparison, there are classes of undirected graphs of bounded twin width that are isomorphism complete, that is, the isomorphism problem for the classes is as hard as the general graph isomorphism problem. Twin width is a graph parameter that has been introduced only recently (Bonnet et al., FOCS 2020), but has received a lot of attention in structural graph theory since then. On directed graphs, it is functionally smaller than clique width. We prove that on tournaments (but not on general directed graphs) it is also functionally smaller than directed tree width (and thus, the same also holds for cut width and directed path width). Hence, our result implies that tournament isomorphism testing is also fixed-parameter tractable when parameterized by any of these parameters. Our isomorphism algorithm heavily employs group-theoretic techniques. This seems to be necessary: as a second main result, we show that the combinatorial Weisfeiler-Leman algorithm does not decide isomorphism of tournaments of twin width at most 35 if its dimension is o(n). (Throughout this abstract, n is the order of the input graphs.)

Cite as

Martin Grohe and Daniel Neuen. Isomorphism for Tournaments of Small Twin Width. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 78:1-78:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grohe_et_al:LIPIcs.ICALP.2024.78,
  author =	{Grohe, Martin and Neuen, Daniel},
  title =	{{Isomorphism for Tournaments of Small Twin Width}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{78:1--78:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.78},
  URN =		{urn:nbn:de:0030-drops-202216},
  doi =		{10.4230/LIPIcs.ICALP.2024.78},
  annote =	{Keywords: tournament isomorphism, twin width, fixed-parameter tractability, Weisfeiler-Leman algorithm}
}
Document
Track A: Algorithms, Complexity and Games
Better Decremental and Fully Dynamic Sensitivity Oracles for Subgraph Connectivity

Authors: Yaowei Long and Yunfan Wang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study the sensitivity oracles problem for subgraph connectivity in the decremental and fully dynamic settings. In the fully dynamic setting, we preprocess an n-vertices m-edges undirected graph G with n_{off} deactivated vertices initially and the others are activated. Then we receive a single update D ⊆ V(G) of size |D| = d ≤ d_{⋆}, representing vertices whose states will be switched. Finally, we get a sequence of queries, each of which asks the connectivity of two given vertices u and v in the activated subgraph. The decremental setting is a special case when there is no deactivated vertex initially, and it is also known as the vertex-failure connectivity oracles problem. We present a better deterministic vertex-failure connectivity oracle with Ô(d_{⋆}m) preprocessing time, Õ(m) space, Õ(d²) update time and O(d) query time, which improves the update time of the previous almost-optimal oracle [Long and Saranurak, 2022] from Ô(d²) to Õ(d²). We also present a better deterministic fully dynamic sensitivity oracle for subgraph connectivity with Ô(min{m(n_{off} + d_{⋆}),n^{ω}}) preprocessing time, Õ(min{m(n_{off} + d_{⋆}),n²}) space, Õ(d²) update time and O(d) query time, which significantly improves the update time of the state of the art [Bingbing Hu et al., 2023] from Õ(d⁴) to Õ(d²). Furthermore, our solution is even almost-optimal assuming popular fine-grained complexity conjectures.

Cite as

Yaowei Long and Yunfan Wang. Better Decremental and Fully Dynamic Sensitivity Oracles for Subgraph Connectivity. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 109:1-109:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{long_et_al:LIPIcs.ICALP.2024.109,
  author =	{Long, Yaowei and Wang, Yunfan},
  title =	{{Better Decremental and Fully Dynamic Sensitivity Oracles for Subgraph Connectivity}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{109:1--109:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.109},
  URN =		{urn:nbn:de:0030-drops-202523},
  doi =		{10.4230/LIPIcs.ICALP.2024.109},
  annote =	{Keywords: connectivity, sensitivity}
}
Document
Track A: Algorithms, Complexity and Games
Alphabet Reduction for Reconfiguration Problems

Authors: Naoto Ohsaka

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We present a reconfiguration analogue of alphabet reduction à la Dinur (J. ACM, 2007) and its applications. Given a binary constraint graph G and its two satisfying assignments ψ^ini and ψ^tar, the Maxmin 2-CSP Reconfiguration problem requests to transform ψ^ini into ψ^tar by repeatedly changing the value of a single vertex so that the minimum fraction of satisfied edges is maximized. We demonstrate a polynomial-time reduction from Maxmin 2-CSP Reconfiguration with arbitrarily large alphabet size W ∈ ℕ to itself with universal alphabet size W₀ ∈ ℕ such that 1) the perfect completeness is preserved, and 2) if any reconfiguration for the former violates ε-fraction of edges, then Ω(ε)-fraction of edges must be unsatisfied during any reconfiguration for the latter. The crux of its construction is the reconfigurability of Hadamard codes, which enables to reconfigure between a pair of codewords, while avoiding getting too close to the other codewords. Combining this alphabet reduction with gap amplification due to Ohsaka (SODA 2024), we are able to amplify the 1 vs. 1-ε gap for arbitrarily small ε ∈ (0,1) up to the 1 vs. 1-ε₀ for some universal ε₀ ∈ (0,1) without blowing up the alphabet size. In particular, a 1 vs. 1-ε₀ gap version of Maxmin 2-CSP Reconfiguration with alphabet size W₀ is PSPACE-hard given a probabilistically checkable reconfiguration proof system having any soundness error 1-ε due to Hirahara and Ohsaka (STOC 2024) and Karthik C. S. and Manurangsi (2023). As an immediate corollary, we show that there exists a universal constant ε₀ ∈ (0,1) such that many popular reconfiguration problems are PSPACE-hard to approximate within a factor of 1-ε₀, including those of 3-SAT, Independent Set, Vertex Cover, Clique, Dominating Set, and Set Cover. This may not be achieved only by gap amplification of Ohsaka, which makes the alphabet size gigantic depending on ε^-1.

Cite as

Naoto Ohsaka. Alphabet Reduction for Reconfiguration Problems. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 113:1-113:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ohsaka:LIPIcs.ICALP.2024.113,
  author =	{Ohsaka, Naoto},
  title =	{{Alphabet Reduction for Reconfiguration Problems}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{113:1--113:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.113},
  URN =		{urn:nbn:de:0030-drops-202560},
  doi =		{10.4230/LIPIcs.ICALP.2024.113},
  annote =	{Keywords: reconfiguration problems, hardness of approximation, Hadamard codes, alphabet reduction}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
On Classes of Bounded Tree Rank, Their Interpretations, and Efficient Sparsification

Authors: Jakub Gajarský and Rose McCarty

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Graph classes of bounded tree rank were introduced recently in the context of the model checking problem for first-order logic of graphs. These graph classes are a common generalization of graph classes of bounded degree and bounded treedepth, and they are a special case of graph classes of bounded expansion. We introduce a notion of decomposition for these classes and show that these decompositions can be efficiently computed. Also, a natural extension of our decomposition leads to a new characterization and decomposition for graph classes of bounded expansion (and an efficient algorithm computing this decomposition). We then focus on interpretations of graph classes of bounded tree rank. We give a characterization of graph classes interpretable in graph classes of tree rank 2. Importantly, our characterization leads to an efficient sparsification procedure: For any graph class 𝒞 interpretable in a graph class of tree rank at most 2, there is a polynomial time algorithm that to any G ∈ 𝒞 computes a (sparse) graph H from a fixed graph class of tree rank at most 2 such that G = I(H) for a fixed interpretation I. To the best of our knowledge, this is the first efficient "interpretation reversal" result that generalizes the result of Gajarský et al. [LICS 2016], who showed an analogous result for graph classes interpretable in classes of graphs of bounded degree.

Cite as

Jakub Gajarský and Rose McCarty. On Classes of Bounded Tree Rank, Their Interpretations, and Efficient Sparsification. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 137:1-137:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.ICALP.2024.137,
  author =	{Gajarsk\'{y}, Jakub and McCarty, Rose},
  title =	{{On Classes of Bounded Tree Rank, Their Interpretations, and Efficient Sparsification}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{137:1--137:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.137},
  URN =		{urn:nbn:de:0030-drops-202802},
  doi =		{10.4230/LIPIcs.ICALP.2024.137},
  annote =	{Keywords: First-order model checking, structural graph theory, structural sparsity}
}
Document
Remarks on Parikh-Recognizable Omega-languages

Authors: Mario Grobler, Leif Sabellek, and Sebastian Siebertz

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
Several variants of Parikh automata on infinite words were recently introduced by Guha et al. [FSTTCS, 2022]. We show that one of these variants coincides with blind counter machine as introduced by Fernau and Stiebe [Fundamenta Informaticae, 2008]. Fernau and Stiebe showed that every ω-language recognized by a blind counter machine is of the form ⋃_iU_iV_i^ω for Parikh recognizable languages U_i, V_i, but blind counter machines fall short of characterizing this class of ω-languages. They posed as an open problem to find a suitable automata-based characterization. We introduce several additional variants of Parikh automata on infinite words that yield automata characterizations of classes of ω-language of the form ⋃_iU_iV_i^ω for all combinations of languages U_i, V_i being regular or Parikh-recognizable. When both U_i and V_i are regular, this coincides with Büchi’s classical theorem. We study the effect of ε-transitions in all variants of Parikh automata and show that almost all of them admit ε-elimination. Finally we study the classical decision problems with applications to model checking.

Cite as

Mario Grobler, Leif Sabellek, and Sebastian Siebertz. Remarks on Parikh-Recognizable Omega-languages. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 31:1-31:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grobler_et_al:LIPIcs.CSL.2024.31,
  author =	{Grobler, Mario and Sabellek, Leif and Siebertz, Sebastian},
  title =	{{Remarks on Parikh-Recognizable Omega-languages}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{31:1--31:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.31},
  URN =		{urn:nbn:de:0030-drops-196743},
  doi =		{10.4230/LIPIcs.CSL.2024.31},
  annote =	{Keywords: Parikh automata, blind counter machines, infinite words, B\"{u}chi’s theorem}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes

Authors: Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Monadically stable and monadically NIP classes of structures were initially studied in the context of model theory and defined in logical terms. They have recently attracted attention in the area of structural graph theory, as they generalize notions such as nowhere denseness, bounded cliquewidth, and bounded twinwidth. Our main result is the - to the best of our knowledge first - purely combinatorial characterization of monadically stable classes of graphs, in terms of a property dubbed flip-flatness. A class C of graphs is flip-flat if for every fixed radius r, every sufficiently large set of vertices of a graph G ∈ C contains a large subset of vertices with mutual distance larger than r, where the distance is measured in some graph G' that can be obtained from G by performing a bounded number of flips that swap edges and non-edges within a subset of vertices. Flip-flatness generalizes the notion of uniform quasi-wideness, which characterizes nowhere dense classes and had a key impact on the combinatorial and algorithmic treatment of nowhere dense classes. To obtain this result, we develop tools that also apply to the more general monadically NIP classes, based on the notion of indiscernible sequences from model theory. We show that in monadically stable and monadically NIP classes indiscernible sequences impose a strong combinatorial structure on their definable neighborhoods. All our proofs are constructive and yield efficient algorithms.

Cite as

Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk. Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 125:1-125:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dreier_et_al:LIPIcs.ICALP.2023.125,
  author =	{Dreier, Jan and M\"{a}hlmann, Nikolas and Siebertz, Sebastian and Toru\'{n}czyk, Szymon},
  title =	{{Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{125:1--125:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.125},
  URN =		{urn:nbn:de:0030-drops-181779},
  doi =		{10.4230/LIPIcs.ICALP.2023.125},
  annote =	{Keywords: stability, NIP, combinatorial characterization, first-order model checking}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Flipper Games for Monadically Stable Graph Classes

Authors: Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokołowski, and Szymon Toruńczyk

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
A class of graphs C is monadically stable if for every unary expansion Ĉ of C, one cannot encode - using first-order transductions - arbitrarily long linear orders in graphs from C. It is known that nowhere dense graph classes are monadically stable; these include classes of bounded maximum degree and classes that exclude a fixed topological minor. On the other hand, monadic stability is a property expressed in purely model-theoretic terms that is also suited for capturing structure in dense graphs. In this work we provide a characterization of monadic stability in terms of the Flipper game: a game on a graph played by Flipper, who in each round can complement the edge relation between any pair of vertex subsets, and Localizer, who in each round is forced to restrict the game to a ball of bounded radius. This is an analog of the Splitter game, which characterizes nowhere dense classes of graphs (Grohe, Kreutzer, and Siebertz, J. ACM '17). We give two different proofs of our main result. The first proof is based on tools borrowed from model theory, and it exposes an additional property of monadically stable graph classes that is close in spirit to definability of types. Also, as a byproduct, we show that monadic stability for graph classes coincides with monadic stability of existential formulas with two free variables, and we provide another combinatorial characterization of monadic stability via forbidden patterns. The second proof relies on the recently introduced notion of flip-flatness (Dreier, Mählmann, Siebertz, and Toruńczyk, arXiv 2206.13765) and provides an efficient algorithm to compute Flipper’s moves in a winning strategy.

Cite as

Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokołowski, and Szymon Toruńczyk. Flipper Games for Monadically Stable Graph Classes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 128:1-128:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.ICALP.2023.128,
  author =	{Gajarsk\'{y}, Jakub and M\"{a}hlmann, Nikolas and McCarty, Rose and Ohlmann, Pierre and Pilipczuk, Micha{\l} and Przybyszewski, Wojciech and Siebertz, Sebastian and Soko{\l}owski, Marek and Toru\'{n}czyk, Szymon},
  title =	{{Flipper Games for Monadically Stable Graph Classes}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{128:1--128:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.128},
  URN =		{urn:nbn:de:0030-drops-181804},
  doi =		{10.4230/LIPIcs.ICALP.2023.128},
  annote =	{Keywords: Stability theory, structural graph theory, games}
}
Document
Combinatorial and Algorithmic Aspects of Monadic Stability

Authors: Jan Dreier, Nikolas Mählmann, Amer E. Mouawad, Sebastian Siebertz, and Alexandre Vigny

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
Nowhere dense classes of graphs are classes of sparse graphs with rich structural and algorithmic properties, however, they fail to capture even simple classes of dense graphs. Monadically stable classes, originating from model theory, generalize nowhere dense classes and close them under transductions, i.e. transformations defined by colorings and simple first-order interpretations. In this work we aim to extend some combinatorial and algorithmic properties of nowhere dense classes to monadically stable classes of finite graphs. We prove the following results. - For every monadically stable class C and fixed integer s ≥ 3, the Ramsey numbers R_C(s,t) are bounded from above by 𝒪(t^{s-1-δ}) for some δ > 0, improving the bound R(s,t) ∈ 𝒪(t^{s-1}/(log t)^{s-1}) known for the class of all graphs and the bounds known for k-stable graphs when s ≤ k. - For every monadically stable class C and every integer r, there exists δ > 0 such that every graph G ∈ C that contains an r-subdivision of the biclique K_{t,t} as a subgraph also contains K_{t^δ,t^δ} as a subgraph. This generalizes earlier results for nowhere dense graph classes. - We obtain a stronger regularity lemma for monadically stable classes of graphs. - Finally, we show that we can compute polynomial kernels for the independent set and dominating set problems in powers of nowhere dense classes. Formerly, only fixed-parameter tractable algorithms were known for these problems on powers of nowhere dense classes.

Cite as

Jan Dreier, Nikolas Mählmann, Amer E. Mouawad, Sebastian Siebertz, and Alexandre Vigny. Combinatorial and Algorithmic Aspects of Monadic Stability. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 11:1-11:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dreier_et_al:LIPIcs.ISAAC.2022.11,
  author =	{Dreier, Jan and M\"{a}hlmann, Nikolas and Mouawad, Amer E. and Siebertz, Sebastian and Vigny, Alexandre},
  title =	{{Combinatorial and Algorithmic Aspects of Monadic Stability}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{11:1--11:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.11},
  URN =		{urn:nbn:de:0030-drops-172961},
  doi =		{10.4230/LIPIcs.ISAAC.2022.11},
  annote =	{Keywords: Monadic Stability, Structural Graph Theory, Ramsey Numbers, Regularity, Kernels}
}
Document
PACE Solver Description
PACE Solver Description: GraPA-JAVA

Authors: Moritz Bergenthal, Jona Dirks, Thorben Freese, Jakob Gahde, Enna Gerhard, Mario Grobler, and Sebastian Siebertz

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
We present an exact solver for the DFVS, submitted for the exact track of the Parameterized Algorithms and Computational Experiments challenge (PACE) in 2022. The solver heavily relies on data reduction (known from the literature and new reduction rules). The instances are then further processed by integer linear programming approaches. We implemented the algorithm in the scope of a student project at the University of Bremen.

Cite as

Moritz Bergenthal, Jona Dirks, Thorben Freese, Jakob Gahde, Enna Gerhard, Mario Grobler, and Sebastian Siebertz. PACE Solver Description: GraPA-JAVA. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 30:1-30:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bergenthal_et_al:LIPIcs.IPEC.2022.30,
  author =	{Bergenthal, Moritz and Dirks, Jona and Freese, Thorben and Gahde, Jakob and Gerhard, Enna and Grobler, Mario and Siebertz, Sebastian},
  title =	{{PACE Solver Description: GraPA-JAVA}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{30:1--30:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.30},
  URN =		{urn:nbn:de:0030-drops-173861},
  doi =		{10.4230/LIPIcs.IPEC.2022.30},
  annote =	{Keywords: complexity theory, parameterized complexity, linear programming, java, directed feedback vertex set, PACE 2022}
}
Document
SAT Backdoors: Depth Beats Size

Authors: Jan Dreier, Sebastian Ordyniak, and Stefan Szeider

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
For several decades, much effort has been put into identifying classes of CNF formulas whose satisfiability can be decided in polynomial time. Classic results are the linear-time tractability of Horn formulas (Aspvall, Plass, and Tarjan, 1979) and Krom (i.e., 2CNF) formulas (Dowling and Gallier, 1984). Backdoors, introduced by Williams, Gomes and Selman (2003), gradually extend such a tractable class to all formulas of bounded distance to the class. Backdoor size provides a natural but rather crude distance measure between a formula and a tractable class. Backdoor depth, introduced by Mählmann, Siebertz, and Vigny (2021), is a more refined distance measure, which admits the utilization of different backdoor variables in parallel. Bounded backdoor size implies bounded backdoor depth, but there are formulas of constant backdoor depth and arbitrarily large backdoor size. We propose FPT approximation algorithms to compute backdoor depth into the classes Horn and Krom. This leads to a linear-time algorithm for deciding the satisfiability of formulas of bounded backdoor depth into these classes. We base our FPT approximation algorithm on a sophisticated notion of obstructions, extending Mählmann et al.’s obstruction trees in various ways, including the addition of separator obstructions. We develop the algorithm through a new game-theoretic framework that simplifies the reasoning about backdoors. Finally, we show that bounded backdoor depth captures tractable classes of CNF formulas not captured by any known method.

Cite as

Jan Dreier, Sebastian Ordyniak, and Stefan Szeider. SAT Backdoors: Depth Beats Size. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 46:1-46:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dreier_et_al:LIPIcs.ESA.2022.46,
  author =	{Dreier, Jan and Ordyniak, Sebastian and Szeider, Stefan},
  title =	{{SAT Backdoors: Depth Beats Size}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{46:1--46:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.46},
  URN =		{urn:nbn:de:0030-drops-169840},
  doi =		{10.4230/LIPIcs.ESA.2022.46},
  annote =	{Keywords: satisfiability, backdoor (depth)}
}
Document
CSP Beyond Tractable Constraint Languages

Authors: Jan Dreier, Sebastian Ordyniak, and Stefan Szeider

Published in: LIPIcs, Volume 235, 28th International Conference on Principles and Practice of Constraint Programming (CP 2022)


Abstract
The constraint satisfaction problem (CSP) is among the most studied computational problems. While NP-hard, many tractable subproblems have been identified (Bulatov 2017, Zuk 2017). Backdoors, introduced by Williams, Gomes, and Selman (2003), gradually extend such a tractable class to all CSP instances of bounded distance to the class. Backdoor size provides a natural but rather crude distance measure between a CSP instance and a tractable class. Backdoor depth, introduced by Mählmann, Siebertz, and Vigny (2021) for SAT, is a more refined distance measure, which admits the parallel utilization of different backdoor variables. Bounded backdoor size implies bounded backdoor depth, but there are instances of constant backdoor depth and arbitrarily large backdoor size. Dreier, Ordyniak, and Szeider (2022) provided fixed-parameter algorithms for finding backdoors of small depth into the classes of Horn and Krom formulas. In this paper, we consider backdoor depth for CSP. We consider backdoors w.r.t. tractable subproblems C_Γ of the CSP defined by a constraint language Γ, i.e., where all the constraints use relations from the language Γ. Building upon Dreier et al.’s game-theoretic approach and their notion of separator obstructions, we show that for any finite, tractable, semi-conservative constraint language Γ, the CSP is fixed-parameter tractable parameterized by the backdoor depth into C_Γ plus the domain size. With backdoors of low depth, we reach classes of instances that require backdoors of arbitrary large size. Hence, our results strictly generalize several known results for CSP that are based on backdoor size.

Cite as

Jan Dreier, Sebastian Ordyniak, and Stefan Szeider. CSP Beyond Tractable Constraint Languages. In 28th International Conference on Principles and Practice of Constraint Programming (CP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 235, pp. 20:1-20:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dreier_et_al:LIPIcs.CP.2022.20,
  author =	{Dreier, Jan and Ordyniak, Sebastian and Szeider, Stefan},
  title =	{{CSP Beyond Tractable Constraint Languages}},
  booktitle =	{28th International Conference on Principles and Practice of Constraint Programming (CP 2022)},
  pages =	{20:1--20:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-240-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{235},
  editor =	{Solnon, Christine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2022.20},
  URN =		{urn:nbn:de:0030-drops-166490},
  doi =		{10.4230/LIPIcs.CP.2022.20},
  annote =	{Keywords: CSP, backdoor depth, constraint language, tractable class, recursive backdoor}
}
Document
Track A: Algorithms, Complexity and Games
Algorithms and Data Structures for First-Order Logic with Connectivity Under Vertex Failures

Authors: Michał Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Toruńczyk, and Alexandre Vigny

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We introduce a new data structure for answering connectivity queries in undirected graphs subject to batched vertex failures. Precisely, given any graph G and integer parameter k, we can in fixed-parameter time construct a data structure that can later be used to answer queries of the form: "are vertices s and t connected via a path that avoids vertices u₁,…, u_k?" in time 2^𝒪(k). In the terminology of the literature on data structures, this gives the first deterministic data structure for connectivity under vertex failures where for every fixed number of failures, all operations can be performed in constant time. With the aim to understand the power and the limitations of our new techniques, we prove an algorithmic meta theorem for the recently introduced separator logic, which extends first-order logic with atoms for connectivity under vertex failures. We prove that the model-checking problem for separator logic is fixed-parameter tractable on every class of graphs that exclude a fixed topological minor. We also show a weak converse. This implies that from the point of view of parameterized complexity, under standard complexity theoretical assumptions, the frontier of tractability of separator logic is almost exactly delimited by classes excluding a fixed topological minor. The backbone of our proof relies on a decomposition theorem of Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh [SICOMP '19], which provides a tree decomposition of a given graph into bags that are unbreakable. Crucially, unbreakability allows to reduce separator logic to plain first-order logic within each bag individually. Guided by this observation, we design our model-checking algorithm using dynamic programming over the tree decomposition, where the transition at each bag amounts to running a suitable model-checking subprocedure for plain first-order logic. This approach is robust enough to provide also an extension to efficient enumeration of answers to a query expressed in separator logic.

Cite as

Michał Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Toruńczyk, and Alexandre Vigny. Algorithms and Data Structures for First-Order Logic with Connectivity Under Vertex Failures. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 102:1-102:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{pilipczuk_et_al:LIPIcs.ICALP.2022.102,
  author =	{Pilipczuk, Micha{\l} and Schirrmacher, Nicole and Siebertz, Sebastian and Toru\'{n}czyk, Szymon and Vigny, Alexandre},
  title =	{{Algorithms and Data Structures for First-Order Logic with Connectivity Under Vertex Failures}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{102:1--102:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.102},
  URN =		{urn:nbn:de:0030-drops-164432},
  doi =		{10.4230/LIPIcs.ICALP.2022.102},
  annote =	{Keywords: Combinatorics and graph theory, Computational applications of logic, Data structures, Fixed-parameter algorithms and complexity, Graph algorithms}
}
  • Refine by Author
  • 25 Siebertz, Sebastian
  • 8 Kreutzer, Stephan
  • 7 Rabinovich, Roman
  • 5 Vigny, Alexandre
  • 4 Dreier, Jan
  • Show More...

  • Refine by Classification
  • 11 Theory of computation → Finite Model Theory
  • 10 Theory of computation → Fixed parameter tractability
  • 6 Mathematics of computing → Graph algorithms
  • 6 Theory of computation → Graph algorithms analysis
  • 5 Mathematics of computing → Graph theory
  • Show More...

  • Refine by Keyword
  • 6 parameterized complexity
  • 5 structural graph theory
  • 3 Dominating Set
  • 2 Finite model theory
  • 2 Sparse Graph Classes
  • Show More...

  • Refine by Type
  • 34 document

  • Refine by Publication Year
  • 8 2022
  • 8 2024
  • 3 2018
  • 3 2021
  • 2 2016
  • Show More...