42 Search Results for "Tal, Avishay"


Document
A VLSI Circuit Model Accounting for Wire Delay

Authors: Ce Jin, R. Ryan Williams, and Nathaniel Young

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
Given the need for ever higher performance, and the failure of CPUs to keep providing single-threaded performance gains, engineers are increasingly turning to highly-parallel custom VLSI chips to implement expensive computations. In VLSI design, the gates and wires of a logical circuit are placed on a 2-dimensional chip with a small number of layers. Traditional VLSI models use gate delay to measure the time complexity of the chip, ignoring the lengths of wires. However, as technology has advanced, wire delay is no longer negligible; it has become an important measure in the design of VLSI chips [Markov, Nature (2014)]. Motivated by this situation, we define and study a model for VLSI chips, called wire-delay VLSI, which takes wire delay into account, going beyond an earlier model of Chazelle and Monier [JACM 1985]. - We prove nearly tight upper bounds and lower bounds (up to logarithmic factors) on the time delay of this chip model for several basic problems. For example, And, Or and Parity require Θ(n^{1/3}) delay, while Addition and Multiplication require ̃ Θ(n^{1/2}) delay, and Triangle Detection on (dense) n-node graphs requires ̃ Θ(n) delay. Interestingly, when we allow input bits to be read twice, the delay for Addition can be improved to Θ(n^{1/3}). - We also show that proving significantly higher lower bounds in our wire-delay VLSI model would imply breakthrough results in circuit lower bounds. Motivated by this barrier, we also study conditional lower bounds on the delay of chips based on the Orthogonal Vectors Hypothesis from fine-grained complexity.

Cite as

Ce Jin, R. Ryan Williams, and Nathaniel Young. A VLSI Circuit Model Accounting for Wire Delay. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 66:1-66:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jin_et_al:LIPIcs.ITCS.2024.66,
  author =	{Jin, Ce and Williams, R. Ryan and Young, Nathaniel},
  title =	{{A VLSI Circuit Model Accounting for Wire Delay}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{66:1--66:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.66},
  URN =		{urn:nbn:de:0030-drops-195949},
  doi =		{10.4230/LIPIcs.ITCS.2024.66},
  annote =	{Keywords: circuit complexity, systolic arrays, VLSI, wire delay}
}
Document
Track A: Algorithms, Complexity and Games
New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

Authors: Lijie Chen, Xin Lyu, Avishay Tal, and Hongxun Wu

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We give the first pseudorandom generators with sub-linear seed length for the following variants of read-once branching programs (roBPs): 1) First, we show there is an explicit PRG of seed length O(log²(n/ε)log(n)) fooling unbounded-width unordered permutation branching programs with a single accept state, where n is the length of the program. Previously, [Lee-Pyne-Vadhan RANDOM 2022] gave a PRG with seed length Ω(n) for this class. For the ordered case, [Hoza-Pyne-Vadhan ITCS 2021] gave a PRG with seed length Õ(log n ⋅ log 1/ε). 2) Second, we show there is an explicit PRG fooling unbounded-width unordered regular branching programs with a single accept state with seed length Õ(√{n ⋅ log 1/ε} + log 1/ε). Previously, no non-trivial PRG (with seed length less than n) was known for this class (even in the ordered setting). For the ordered case, [Bogdanov-Hoza-Prakriya-Pyne CCC 2022] gave an HSG with seed length Õ(log n ⋅ log 1/ε). 3) Third, we show there is an explicit PRG fooling width w adaptive branching programs with seed length O(log n ⋅ log² (nw/ε)). Here, the branching program can choose an input bit to read depending on its current state, while it is guaranteed that on any input x ∈ {0,1}ⁿ, the branching program reads each input bit exactly once. Previously, no PRG with a non-trivial seed length is known for this class. We remark that there are some functions computable by constant-width adaptive branching programs but not by sub-exponential-width unordered branching programs. In terms of techniques, we indeed show that the Forbes-Kelly PRG (with the right parameters) from [Forbes-Kelly FOCS 2018] already fools all variants of roBPs above. Our proof adds several new ideas to the original analysis of Forbes-Kelly, and we believe it further demonstrates the versatility of the Forbes-Kelly PRG.

Cite as

Lijie Chen, Xin Lyu, Avishay Tal, and Hongxun Wu. New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 39:1-39:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2023.39,
  author =	{Chen, Lijie and Lyu, Xin and Tal, Avishay and Wu, Hongxun},
  title =	{{New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{39:1--39:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.39},
  URN =		{urn:nbn:de:0030-drops-180916},
  doi =		{10.4230/LIPIcs.ICALP.2023.39},
  annote =	{Keywords: pseudorandom generators, derandomization, read-once branching programs}
}
Document
The Acrobatics of BQP

Authors: Scott Aaronson, DeVon Ingram, and William Kretschmer

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
One can fix the randomness used by a randomized algorithm, but there is no analogous notion of fixing the quantumness used by a quantum algorithm. Underscoring this fundamental difference, we show that, in the black-box setting, the behavior of quantum polynomial-time (BQP) can be remarkably decoupled from that of classical complexity classes like NP. Specifically: - There exists an oracle relative to which NP^{BQP} ⊄ BQP^{PH}, resolving a 2005 problem of Fortnow. As a corollary, there exists an oracle relative to which 𝖯 = NP but BQP ≠ QCMA. - Conversely, there exists an oracle relative to which BQP^{NP} ⊄ PH^{BQP}. - Relative to a random oracle, PP is not contained in the "QMA hierarchy" QMA^{QMA^{QMA^{⋯}}}. - Relative to a random oracle, Σ_{k+1}^𝖯 ⊄ BQP^{Σ_k^𝖯} for every k. - There exists an oracle relative to which BQP = P^#P and yet PH is infinite. (By contrast, relative to all oracles, if NP ⊆ BPP, then PH collapses.) - There exists an oracle relative to which 𝖯 = NP ≠ BQP = 𝖯^#P. To achieve these results, we build on the 2018 achievement by Raz and Tal of an oracle relative to which BQP ⊄ PH, and associated results about the Forrelation problem. We also introduce new tools that might be of independent interest. These include a "quantum-aware" version of the random restriction method, a concentration theorem for the block sensitivity of AC⁰ circuits, and a (provable) analogue of the Aaronson-Ambainis Conjecture for sparse oracles.

Cite as

Scott Aaronson, DeVon Ingram, and William Kretschmer. The Acrobatics of BQP. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 20:1-20:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{aaronson_et_al:LIPIcs.CCC.2022.20,
  author =	{Aaronson, Scott and Ingram, DeVon and Kretschmer, William},
  title =	{{The Acrobatics of BQP}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{20:1--20:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.20},
  URN =		{urn:nbn:de:0030-drops-165820},
  doi =		{10.4230/LIPIcs.CCC.2022.20},
  annote =	{Keywords: BQP, Forrelation, oracle separations, Polynomial Hierarchy, query complexity}
}
Document
Pseudorandomness of Expander Random Walks for Symmetric Functions and Permutation Branching Programs

Authors: Louis Golowich and Salil Vadhan

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
We study the pseudorandomness of random walks on expander graphs against tests computed by symmetric functions and permutation branching programs. These questions are motivated by applications of expander walks in the coding theory and derandomization literatures. A line of prior work has shown that random walks on expanders with second largest eigenvalue λ fool symmetric functions up to a O(λ) error in total variation distance, but only for the case where the vertices are labeled with symbols from a binary alphabet, and with a suboptimal dependence on the bias of the labeling. We generalize these results to labelings with an arbitrary alphabet, and for the case of binary labelings we achieve an optimal dependence on the labeling bias. We extend our analysis to unify it with and strengthen the expander-walk Chernoff bound. We then show that expander walks fool permutation branching programs up to a O(λ) error in 𝓁₂-distance, and we prove that much stronger bounds hold for programs with a certain structure. We also prove lower bounds to show that our results are tight. To prove our results for symmetric functions, we analyze the Fourier coefficients of the relevant distributions using linear-algebraic techniques. Our analysis for permutation branching programs is likewise linear-algebraic in nature, but also makes use of the recently introduced singular-value approximation notion for matrices (Ahmadinejad et al. 2021).

Cite as

Louis Golowich and Salil Vadhan. Pseudorandomness of Expander Random Walks for Symmetric Functions and Permutation Branching Programs. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 27:1-27:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{golowich_et_al:LIPIcs.CCC.2022.27,
  author =	{Golowich, Louis and Vadhan, Salil},
  title =	{{Pseudorandomness of Expander Random Walks for Symmetric Functions and Permutation Branching Programs}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{27:1--27:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.27},
  URN =		{urn:nbn:de:0030-drops-165893},
  doi =		{10.4230/LIPIcs.CCC.2022.27},
  annote =	{Keywords: Expander graph, Random walk, Pseudorandomness}
}
Document
Improved Pseudorandom Generators for AC⁰ Circuits

Authors: Xin Lyu

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
We give PRG for depth-d, size-m AC⁰ circuits with seed length O(log^{d-1}(m)log(m/ε)log log(m)). Our PRG improves on previous work [Luca Trevisan and Tongke Xue, 2013; Rocco A. Servedio and Li-Yang Tan, 2019; Zander Kelley, 2021] from various aspects. It has optimal dependence on 1/ε and is only one "log log(m)" away from the lower bound barrier. For the case of d = 2, the seed length tightly matches the best-known PRG for CNFs [Anindya De et al., 2010; Avishay Tal, 2017]. There are two technical ingredients behind our new result; both of them might be of independent interest. First, we use a partitioning-based approach to construct PRGs based on restriction lemmas for AC⁰. Previous works [Luca Trevisan and Tongke Xue, 2013; Rocco A. Servedio and Li-Yang Tan, 2019; Zander Kelley, 2021] usually built PRGs on the Ajtai-Wigderson framework [Miklós Ajtai and Avi Wigderson, 1989]. Compared with them, the partitioning approach avoids the extra "log(n)" factor that usually arises from the Ajtai-Wigderson framework, allowing us to get the almost-tight seed length. The partitioning approach is quite general, and we believe it can help design PRGs for classes beyond constant-depth circuits. Second, improving and extending [Luca Trevisan and Tongke Xue, 2013; Rocco A. Servedio and Li-Yang Tan, 2019; Zander Kelley, 2021], we prove a full derandomization of the powerful multi-switching lemma [Johan Håstad, 2014]. We show that one can use a short random seed to sample a restriction, such that a family of DNFs simultaneously simplifies under the restriction with high probability. This answers an open question in [Zander Kelley, 2021]. Previous derandomizations were either partial (that is, they pseudorandomly choose variables to restrict, and then fix those variables to truly-random bits) or had sub-optimal seed length. In our application, having a fully-derandomized switching lemma is crucial, and the randomness-efficiency of our derandomization allows us to get an almost-tight seed length.

Cite as

Xin Lyu. Improved Pseudorandom Generators for AC⁰ Circuits. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 34:1-34:25, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lyu:LIPIcs.CCC.2022.34,
  author =	{Lyu, Xin},
  title =	{{Improved Pseudorandom Generators for AC⁰ Circuits}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{34:1--34:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.34},
  URN =		{urn:nbn:de:0030-drops-165963},
  doi =		{10.4230/LIPIcs.CCC.2022.34},
  annote =	{Keywords: pseudorandom generators, derandomization, switching Lemmas, AC⁰}
}
Document
Invited Talk
BQP After 28 Years (Invited Talk)

Authors: Scott Aaronson

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
I will discuss the now-ancient question of where BQP, Bounded-Error Quantum Polynomial-Time, fits in among classical complexity classes. After reviewing some basics from the 90s, I will discuss the Forrelation problem that I introduced in 2009 to yield an oracle separation between BQP and PH, and the dramatic completion of that program by Ran Raz and Avishay Tal in 2018. I will then discuss very recent work, with William Kretschmer and DeVon Ingram, which leverages the Raz-Tal theorem, along with a new "quantum-aware" random restriction method, to obtain results that illustrate just how differently BQP can behave from BPP. These include oracles relative to which NP^{BQP} ̸ ⊂ BQP^{PH} - solving a 2005 open problem of Lance Fortnow - and conversely, relative to which BQP^{NP} ̸ ⊂ PH^{BQP}; an oracle relative to which 𝖯 = NP and yet BQP ≠ QCMA; an oracle relative to which NP ⊆ BQP yet PH is infinite; an oracle relative to which 𝖯 = NP≠ BQP = PP; and an oracle relative to which PP = PostBQP ̸ ⊂ QMA^{QMA^{…}}. By popular demand, I will also speculate about the status of BQP in the unrelativized world.

Cite as

Scott Aaronson. BQP After 28 Years (Invited Talk). In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, p. 1:1, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{aaronson:LIPIcs.FSTTCS.2021.1,
  author =	{Aaronson, Scott},
  title =	{{BQP After 28 Years}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.1},
  URN =		{urn:nbn:de:0030-drops-155124},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.1},
  annote =	{Keywords: quantum computing, complexity theory, oracle separations, circuit lower bounds}
}
Document
RANDOM
Lower Bounds for XOR of Forrelations

Authors: Uma Girish, Ran Raz, and Wei Zhan

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
The Forrelation problem, first introduced by Aaronson [Scott Aaronson, 2010] and Aaronson and Ambainis [Scott Aaronson and Andris Ambainis, 2015], is a well studied computational problem in the context of separating quantum and classical computational models. Variants of this problem were used to give tight separations between quantum and classical query complexity [Scott Aaronson and Andris Ambainis, 2015]; the first separation between poly-logarithmic quantum query complexity and bounded-depth circuits of super-polynomial size, a result that also implied an oracle separation of the classes BQP and PH [Ran Raz and Avishay Tal, 2019]; and improved separations between quantum and classical communication complexity [Uma Girish et al., 2021]. In all these separations, the lower bound for the classical model only holds when the advantage of the protocol (over a random guess) is more than ≈ 1/√N, that is, the success probability is larger than ≈ 1/2 + 1/√N. This is unavoidable as ≈ 1/√N is the correlation between two coordinates of an input that is sampled from the Forrelation distribution, and hence there are simple classical protocols that achieve advantage ≈ 1/√N, in all these models. To achieve separations when the classical protocol has smaller advantage, we study in this work the xor of k independent copies of (a variant of) the Forrelation function (where k≪ N). We prove a very general result that shows that any family of Boolean functions that is closed under restrictions, whose Fourier mass at level 2k is bounded by α^k (that is, the sum of the absolute values of all Fourier coefficients at level 2k is bounded by α^k), cannot compute the xor of k independent copies of the Forrelation function with advantage better than O((α^k)/(N^{k/2})). This is a strengthening of a result of [Eshan Chattopadhyay et al., 2019], that gave a similar statement for k = 1, using the technique of [Ran Raz and Avishay Tal, 2019]. We give several applications of our result. In particular, we obtain the following separations: Quantum versus Classical Communication Complexity. We give the first example of a partial Boolean function that can be computed by a simultaneous-message quantum protocol with communication complexity polylog(N) (where Alice and Bob also share polylog(N) EPR pairs), and such that, any classical randomized protocol of communication complexity at most õ(N^{1/4}), with any number of rounds, has quasipolynomially small advantage over a random guess. Previously, only separations where the classical protocol has polynomially small advantage were known between these models [Dmitry Gavinsky, 2016; Uma Girish et al., 2021]. Quantum Query Complexity versus Bounded Depth Circuits. We give the first example of a partial Boolean function that has a quantum query algorithm with query complexity polylog(N), and such that, any constant-depth circuit of quasipolynomial size has quasipolynomially small advantage over a random guess. Previously, only separations where the constant-depth circuit has polynomially small advantage were known [Ran Raz and Avishay Tal, 2019].

Cite as

Uma Girish, Ran Raz, and Wei Zhan. Lower Bounds for XOR of Forrelations. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 52:1-52:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{girish_et_al:LIPIcs.APPROX/RANDOM.2021.52,
  author =	{Girish, Uma and Raz, Ran and Zhan, Wei},
  title =	{{Lower Bounds for XOR of Forrelations}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{52:1--52:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.52},
  URN =		{urn:nbn:de:0030-drops-147453},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.52},
  annote =	{Keywords: Forrelation, Quasipolynomial, Separation, Quantum versus Classical, Xor}
}
Document
RANDOM
Pseudorandom Generators for Read-Once Monotone Branching Programs

Authors: Dean Doron, Raghu Meka, Omer Reingold, Avishay Tal, and Salil Vadhan

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
Motivated by the derandomization of space-bounded computation, there has been a long line of work on constructing pseudorandom generators (PRGs) against various forms of read-once branching programs (ROBPs), with a goal of improving the O(log² n) seed length of Nisan’s classic construction [Noam Nisan, 1992] to the optimal O(log n). In this work, we construct an explicit PRG with seed length Õ(log n) for constant-width ROBPs that are monotone, meaning that the states at each time step can be ordered so that edges with the same labels never cross each other. Equivalently, for each fixed input, the transition functions are a monotone function of the state. This result is complementary to a line of work that gave PRGs with seed length O(log n) for (ordered) permutation ROBPs of constant width [Braverman et al., 2014; Koucký et al., 2011; De, 2011; Thomas Steinke, 2012], since the monotonicity constraint can be seen as the "opposite" of the permutation constraint. Our PRG also works for monotone ROBPs that can read the input bits in any order, which are strictly more powerful than read-once AC⁰. Our PRG achieves better parameters (in terms of the dependence on the depth of the circuit) than the best previous pseudorandom generator for read-once AC⁰, due to Doron, Hatami, and Hoza [Doron et al., 2019]. Our pseudorandom generator construction follows Ajtai and Wigderson’s approach of iterated pseudorandom restrictions [Ajtai and Wigderson, 1989; Gopalan et al., 2012]. We give a randomness-efficient width-reduction process which proves that the branching program simplifies to an O(log n)-junta after only O(log log n) independent applications of the Forbes-Kelley pseudorandom restrictions [Michael A. Forbes and Zander Kelley, 2018].

Cite as

Dean Doron, Raghu Meka, Omer Reingold, Avishay Tal, and Salil Vadhan. Pseudorandom Generators for Read-Once Monotone Branching Programs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 58:1-58:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{doron_et_al:LIPIcs.APPROX/RANDOM.2021.58,
  author =	{Doron, Dean and Meka, Raghu and Reingold, Omer and Tal, Avishay and Vadhan, Salil},
  title =	{{Pseudorandom Generators for Read-Once Monotone Branching Programs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{58:1--58:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.58},
  URN =		{urn:nbn:de:0030-drops-147513},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.58},
  annote =	{Keywords: Branching programs, pseudorandom generators, constant depth circuits}
}
Document
RANDOM
Memory-Sample Lower Bounds for Learning Parity with Noise

Authors: Sumegha Garg, Pravesh K. Kothari, Pengda Liu, and Ran Raz

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
In this work, we show, for the well-studied problem of learning parity under noise, where a learner tries to learn x = (x₁,…,x_n) ∈ {0,1}ⁿ from a stream of random linear equations over 𝔽₂ that are correct with probability 1/2+ε and flipped with probability 1/2-ε (0 < ε < 1/2), that any learning algorithm requires either a memory of size Ω(n²/ε) or an exponential number of samples. In fact, we study memory-sample lower bounds for a large class of learning problems, as characterized by [Garg et al., 2018], when the samples are noisy. A matrix M: A × X → {-1,1} corresponds to the following learning problem with error parameter ε: an unknown element x ∈ X is chosen uniformly at random. A learner tries to learn x from a stream of samples, (a₁, b₁), (a₂, b₂) …, where for every i, a_i ∈ A is chosen uniformly at random and b_i = M(a_i,x) with probability 1/2+ε and b_i = -M(a_i,x) with probability 1/2-ε (0 < ε < 1/2). Assume that k,𝓁, r are such that any submatrix of M of at least 2^{-k} ⋅ |A| rows and at least 2^{-𝓁} ⋅ |X| columns, has a bias of at most 2^{-r}. We show that any learning algorithm for the learning problem corresponding to M, with error parameter ε, requires either a memory of size at least Ω((k⋅𝓁)/ε), or at least 2^{Ω(r)} samples. The result holds even if the learner has an exponentially small success probability (of 2^{-Ω(r)}). In particular, this shows that for a large class of learning problems, same as those in [Garg et al., 2018], any learning algorithm requires either a memory of size at least Ω(((log|X|)⋅(log|A|))/ε) or an exponential number of noisy samples. Our proof is based on adapting the arguments in [Ran Raz, 2017; Garg et al., 2018] to the noisy case.

Cite as

Sumegha Garg, Pravesh K. Kothari, Pengda Liu, and Ran Raz. Memory-Sample Lower Bounds for Learning Parity with Noise. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 60:1-60:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{garg_et_al:LIPIcs.APPROX/RANDOM.2021.60,
  author =	{Garg, Sumegha and Kothari, Pravesh K. and Liu, Pengda and Raz, Ran},
  title =	{{Memory-Sample Lower Bounds for Learning Parity with Noise}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{60:1--60:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.60},
  URN =		{urn:nbn:de:0030-drops-147534},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.60},
  annote =	{Keywords: memory-sample tradeoffs, learning parity under noise, space lower bound, branching program}
}
Document
Junta Distance Approximation with Sub-Exponential Queries

Authors: Vishnu Iyer, Avishay Tal, and Michael Whitmeyer

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
Leveraging tools of De, Mossel, and Neeman [FOCS, 2019], we show two different results pertaining to the tolerant testing of juntas. Given black-box access to a Boolean function f:{±1}ⁿ → {±1}: 1) We give a poly(k, 1/(ε)) query algorithm that distinguishes between functions that are γ-close to k-juntas and (γ+ε)-far from k'-juntas, where k' = O(k/(ε²)). 2) In the non-relaxed setting, we extend our ideas to give a 2^{Õ(√{k/ε})} (adaptive) query algorithm that distinguishes between functions that are γ-close to k-juntas and (γ+ε)-far from k-juntas. To the best of our knowledge, this is the first subexponential-in-k query algorithm for approximating the distance of f to being a k-junta (previous results of Blais, Canonne, Eden, Levi, and Ron [SODA, 2018] and De, Mossel, and Neeman [FOCS, 2019] required exponentially many queries in k). Our techniques are Fourier analytical and make use of the notion of "normalized influences" that was introduced by Talagrand [Michel Talagrand, 1994].

Cite as

Vishnu Iyer, Avishay Tal, and Michael Whitmeyer. Junta Distance Approximation with Sub-Exponential Queries. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 24:1-24:38, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{iyer_et_al:LIPIcs.CCC.2021.24,
  author =	{Iyer, Vishnu and Tal, Avishay and Whitmeyer, Michael},
  title =	{{Junta Distance Approximation with Sub-Exponential Queries}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{24:1--24:38},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.24},
  URN =		{urn:nbn:de:0030-drops-142988},
  doi =		{10.4230/LIPIcs.CCC.2021.24},
  annote =	{Keywords: Algorithms, Complexity Theory, Fourier Analysis, Juntas, Normalized Influence, Property Testing, Tolerant Property Testing}
}
Document
Fourier Growth of Parity Decision Trees

Authors: Uma Girish, Avishay Tal, and Kewen Wu

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
We prove that for every parity decision tree of depth d on n variables, the sum of absolute values of Fourier coefficients at level 𝓁 is at most d^{𝓁/2} ⋅ O(𝓁 ⋅ log(n))^𝓁. Our result is nearly tight for small values of 𝓁 and extends a previous Fourier bound for standard decision trees by Sherstov, Storozhenko, and Wu (STOC, 2021). As an application of our Fourier bounds, using the results of Bansal and Sinha (STOC, 2021), we show that the k-fold Forrelation problem has (randomized) parity decision tree complexity Ω̃(n^{1-1/k}), while having quantum query complexity ⌈ k/2⌉. Our proof follows a random-walk approach, analyzing the contribution of a random path in the decision tree to the level-𝓁 Fourier expression. To carry the argument, we apply a careful cleanup procedure to the parity decision tree, ensuring that the value of the random walk is bounded with high probability. We observe that step sizes for the level-𝓁 walks can be computed by the intermediate values of level ≤ 𝓁-1 walks, which calls for an inductive argument. Our approach differs from previous proofs of Tal (FOCS, 2020) and Sherstov, Storozhenko, and Wu (STOC, 2021) that relied on decompositions of the tree. In particular, for the special case of standard decision trees we view our proof as slightly simpler and more intuitive. In addition, we prove a similar bound for noisy decision trees of cost at most d - a model that was recently introduced by Ben-David and Blais (FOCS, 2020).

Cite as

Uma Girish, Avishay Tal, and Kewen Wu. Fourier Growth of Parity Decision Trees. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 39:1-39:36, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{girish_et_al:LIPIcs.CCC.2021.39,
  author =	{Girish, Uma and Tal, Avishay and Wu, Kewen},
  title =	{{Fourier Growth of Parity Decision Trees}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{39:1--39:36},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.39},
  URN =		{urn:nbn:de:0030-drops-143137},
  doi =		{10.4230/LIPIcs.CCC.2021.39},
  annote =	{Keywords: Fourier analysis of Boolean functions, noisy decision tree, parity decision tree, query complexity}
}
Document
Interactive Proofs for Verifying Machine Learning

Authors: Shafi Goldwasser, Guy N. Rothblum, Jonathan Shafer, and Amir Yehudayoff

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We consider the following question: using a source of labeled data and interaction with an untrusted prover, what is the complexity of verifying that a given hypothesis is "approximately correct"? We study interactive proof systems for PAC verification, where a verifier that interacts with a prover is required to accept good hypotheses, and reject bad hypotheses. Both the verifier and the prover are efficient and have access to labeled data samples from an unknown distribution. We are interested in cases where the verifier can use significantly less data than is required for (agnostic) PAC learning, or use a substantially cheaper data source (e.g., using only random samples for verification, even though learning requires membership queries). We believe that today, when data and data-driven algorithms are quickly gaining prominence, the question of verifying purported outcomes of data analyses is very well-motivated. We show three main results. First, we prove that for a specific hypothesis class, verification is significantly cheaper than learning in terms of sample complexity, even if the verifier engages with the prover only in a single-round (NP-like) protocol. Moreover, for this class we prove that single-round verification is also significantly cheaper than testing closeness to the class. Second, for the broad class of Fourier-sparse boolean functions, we show a multi-round (IP-like) verification protocol, where the prover uses membership queries, and the verifier is able to assess the result while only using random samples. Third, we show that verification is not always more efficient. Namely, we show a class of functions where verification requires as many samples as learning does, up to a logarithmic factor.

Cite as

Shafi Goldwasser, Guy N. Rothblum, Jonathan Shafer, and Amir Yehudayoff. Interactive Proofs for Verifying Machine Learning. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 41:1-41:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{goldwasser_et_al:LIPIcs.ITCS.2021.41,
  author =	{Goldwasser, Shafi and Rothblum, Guy N. and Shafer, Jonathan and Yehudayoff, Amir},
  title =	{{Interactive Proofs for Verifying Machine Learning}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{41:1--41:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.41},
  URN =		{urn:nbn:de:0030-drops-135806},
  doi =		{10.4230/LIPIcs.ITCS.2021.41},
  annote =	{Keywords: PAC learning, Fourier analysis of boolean functions, Complexity gaps, Complexity lower bounds, Goldreich-Levin algorithm, Kushilevitz-Mansour algorithm, Distribution testing}
}
Document
Quantum Versus Randomized Communication Complexity, with Efficient Players

Authors: Uma Girish, Ran Raz, and Avishay Tal

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We study a new type of separations between quantum and classical communication complexity, separations that are obtained using quantum protocols where all parties are efficient, in the sense that they can be implemented by small quantum circuits, with oracle access to their inputs. Our main result qualitatively matches the strongest known separation between quantum and classical communication complexity [Dmitry Gavinsky, 2016] and is obtained using a quantum protocol where all parties are efficient. More precisely, we give an explicit partial Boolean function f over inputs of length N, such that: (1) f can be computed by a simultaneous-message quantum protocol with communication complexity polylog(N) (where at the beginning of the protocol Alice and Bob also have polylog(N) entangled EPR pairs). (2) Any classical randomized protocol for f, with any number of rounds, has communication complexity at least Ω̃(N^{1/4}). (3) All parties in the quantum protocol of Item (1) (Alice, Bob and the referee) can be implemented by quantum circuits of size polylog(N) (where Alice and Bob have oracle access to their inputs). Items (1), (2) qualitatively match the strongest known separation between quantum and classical communication complexity, proved by Gavinsky [Dmitry Gavinsky, 2016]. Item (3) is new. (Our result is incomparable to the one of Gavinsky. While he obtained a quantitatively better lower bound of Ω(N^{1/2}) in the classical case, the referee in his quantum protocol is inefficient). Exponential separations of quantum and classical communication complexity have been studied in numerous previous works, but to the best of our knowledge the efficiency of the parties in the quantum protocol has not been addressed, and in most previous separations the quantum parties seem to be inefficient. The only separations that we know of that have efficient quantum parties are the recent separations that are based on lifting [Arkadev Chattopadhyay et al., 2019; Arkadev Chattopadhyay et al., 2019]. However, these separations seem to require quantum protocols with at least two rounds of communication, so they imply a separation of two-way quantum and classical communication complexity but they do not give the stronger separations of simultaneous-message quantum communication complexity vs. two-way classical communication complexity (or even one-way quantum communication complexity vs. two-way classical communication complexity). Our proof technique is completely new, in the context of communication complexity, and is based on techniques from [Ran Raz and Avishay Tal, 2019]. Our function f is based on a lift of the forrelation problem, using xor as a gadget.

Cite as

Uma Girish, Ran Raz, and Avishay Tal. Quantum Versus Randomized Communication Complexity, with Efficient Players. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 54:1-54:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{girish_et_al:LIPIcs.ITCS.2021.54,
  author =	{Girish, Uma and Raz, Ran and Tal, Avishay},
  title =	{{Quantum Versus Randomized Communication Complexity, with Efficient Players}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{54:1--54:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.54},
  URN =		{urn:nbn:de:0030-drops-135932},
  doi =		{10.4230/LIPIcs.ITCS.2021.54},
  annote =	{Keywords: Exponential Separation, Quantum, Randomized, Communication, Complexity, Forrelation}
}
Document
Extended Abstract
Shrinkage Under Random Projections, and Cubic Formula Lower Bounds for AC0 (Extended Abstract)

Authors: Yuval Filmus, Or Meir, and Avishay Tal

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
Håstad showed that any De Morgan formula (composed of AND, OR and NOT gates) shrinks by a factor of O(p²) under a random restriction that leaves each variable alive independently with probability p [SICOMP, 1998]. Using this result, he gave an Ω̃(n³) formula size lower bound for the Andreev function, which, up to lower order improvements, remains the state-of-the-art lower bound for any explicit function. In this work, we extend the shrinkage result of Håstad to hold under a far wider family of random restrictions and their generalization - random projections. Based on our shrinkage results, we obtain an Ω̃(n³) formula size lower bound for an explicit function computed in AC⁰. This improves upon the best known formula size lower bounds for AC⁰, that were only quadratic prior to our work. In addition, we prove that the KRW conjecture [Karchmer et al., Computational Complexity 5(3/4), 1995] holds for inner functions for which the unweighted quantum adversary bound is tight. In particular, this holds for inner functions with a tight Khrapchenko bound. Our random projections are tailor-made to the function’s structure so that the function maintains structure even under projection - using such projections is necessary, as standard random restrictions simplify AC⁰ circuits. In contrast, we show that any De Morgan formula shrinks by a quadratic factor under our random projections, allowing us to prove the cubic lower bound. Our proof techniques build on the proof of Håstad for the simpler case of balanced formulas. This allows for a significantly simpler proof at the cost of slightly worse parameters. As such, when specialized to the case of p-random restrictions, our proof can be used as an exposition of Håstad’s result.

Cite as

Yuval Filmus, Or Meir, and Avishay Tal. Shrinkage Under Random Projections, and Cubic Formula Lower Bounds for AC0 (Extended Abstract). In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 89:1-89:7, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{filmus_et_al:LIPIcs.ITCS.2021.89,
  author =	{Filmus, Yuval and Meir, Or and Tal, Avishay},
  title =	{{Shrinkage Under Random Projections, and Cubic Formula Lower Bounds for AC0}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{89:1--89:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.89},
  URN =		{urn:nbn:de:0030-drops-136281},
  doi =		{10.4230/LIPIcs.ITCS.2021.89},
  annote =	{Keywords: De Morgan formulas, KRW Conjecture, shrinkage, random restrictions, random projections, bounded depth circuits, constant depth circuits, formula complexity}
}
Document
RANDOM
Time-Space Tradeoffs for Distinguishing Distributions and Applications to Security of Goldreich’s PRG

Authors: Sumegha Garg, Pravesh K. Kothari, and Ran Raz

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
In this work, we establish lower-bounds against memory bounded algorithms for distinguishing between natural pairs of related distributions from samples that arrive in a streaming setting. Our first result applies to the problem of distinguishing the uniform distribution on {0,1}ⁿ from uniform distribution on some unknown linear subspace of {0,1}ⁿ. As a specific corollary, we show that any algorithm that distinguishes between uniform distribution on {0,1}ⁿ and uniform distribution on an n/2-dimensional linear subspace of {0,1}ⁿ with non-negligible advantage needs 2^Ω(n) samples or Ω(n²) memory (tight up to constants in the exponent). Our second result applies to distinguishing outputs of Goldreich’s local pseudorandom generator from the uniform distribution on the output domain. Specifically, Goldreich’s pseudorandom generator G fixes a predicate P:{0,1}^k → {0,1} and a collection of subsets S₁, S₂, …, S_m ⊆ [n] of size k. For any seed x ∈ {0,1}ⁿ, it outputs P(x_S₁), P(x_S₂), …, P(x_{S_m}) where x_{S_i} is the projection of x to the coordinates in S_i. We prove that whenever P is t-resilient (all non-zero Fourier coefficients of (-1)^P are of degree t or higher), then no algorithm, with < n^ε memory, can distinguish the output of G from the uniform distribution on {0,1}^m with a large inverse polynomial advantage, for stretch m ≤ (n/t) ^{(1-ε)/36 ⋅ t} (barring some restrictions on k). The lower bound holds in the streaming model where at each time step i, S_i ⊆ [n] is a randomly chosen (ordered) subset of size k and the distinguisher sees either P(x_{S_i}) or a uniformly random bit along with S_i. An important implication of our second result is the security of Goldreich’s generator with super linear stretch (in the streaming model), against memory-bounded adversaries, whenever the predicate P satisfies the necessary condition of t-resiliency identified in various prior works. Our proof builds on the recently developed machinery for proving time-space trade-offs (Raz 2016 and follow-ups). Our key technical contribution is to adapt this machinery to work for distinguishing problems in contrast to prior works on similar results for search/learning problems.

Cite as

Sumegha Garg, Pravesh K. Kothari, and Ran Raz. Time-Space Tradeoffs for Distinguishing Distributions and Applications to Security of Goldreich’s PRG. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 21:1-21:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{garg_et_al:LIPIcs.APPROX/RANDOM.2020.21,
  author =	{Garg, Sumegha and Kothari, Pravesh K. and Raz, Ran},
  title =	{{Time-Space Tradeoffs for Distinguishing Distributions and Applications to Security of Goldreich’s PRG}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{21:1--21:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.21},
  URN =		{urn:nbn:de:0030-drops-126248},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.21},
  annote =	{Keywords: memory-sample tradeoffs, bounded storage cryptography, Goldreich’s local PRG, distinguishing problems, refuting CSPs}
}
  • Refine by Author
  • 17 Tal, Avishay
  • 5 Raz, Ran
  • 4 Hatami, Pooya
  • 3 Garg, Sumegha
  • 3 Girish, Uma
  • Show More...

  • Refine by Classification
  • 10 Theory of computation → Pseudorandomness and derandomization
  • 7 Theory of computation → Circuit complexity
  • 5 Theory of computation → Communication complexity
  • 5 Theory of computation → Quantum complexity theory
  • 4 Theory of computation
  • Show More...

  • Refine by Keyword
  • 4 circuit complexity
  • 4 lower bounds
  • 4 pseudorandom generators
  • 4 query complexity
  • 3 Forrelation
  • Show More...

  • Refine by Type
  • 42 document

  • Refine by Publication Year
  • 15 2019
  • 9 2021
  • 3 2016
  • 3 2017
  • 3 2020
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail