17 Search Results for "Yang, Jing-Cen"


Document
Time Series Anomaly Detection Leveraging MSE Feedback with AutoEncoder and RNN

Authors: Ibrahim Delibasoglu and Fredrik Heintz

Published in: LIPIcs, Volume 318, 31st International Symposium on Temporal Representation and Reasoning (TIME 2024)


Abstract
Anomaly detection in time series data is a critical task in various domains, including finance, healthcare, cybersecurity and industry. Traditional methods, such as time series decomposition, clustering, and density estimation, have provided robust solutions for identifying anomalies that exhibit distinct patterns or significant deviations from normal data distributions. Recent advancements in machine learning and deep learning have further enhanced these capabilities. This paper introduces a novel method for anomaly detection that combines the strengths of autoencoders and recurrent neural networks (RNNs) with an reconstruction error feedback mechanism based on Mean Squared Error. We compare our method against classical techniques and recent approaches like OmniAnomaly, which leverages stochastic recurrent neural networks, and the Anomaly Transformer, which introduces association discrepancy to capture long-range dependencies and DCDetector using contrastive representation learning with multi-scale dual attention. Experimental results demonstrate that our method achieves superior overall performance in terms of precision, recall, and F1 score. The source code is available at http://github.com/mribrahim/AE-FAR

Cite as

Ibrahim Delibasoglu and Fredrik Heintz. Time Series Anomaly Detection Leveraging MSE Feedback with AutoEncoder and RNN. In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 17:1-17:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{delibasoglu_et_al:LIPIcs.TIME.2024.17,
  author =	{Delibasoglu, Ibrahim and Heintz, Fredrik},
  title =	{{Time Series Anomaly Detection Leveraging MSE Feedback with AutoEncoder and RNN}},
  booktitle =	{31st International Symposium on Temporal Representation and Reasoning (TIME 2024)},
  pages =	{17:1--17:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-349-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{318},
  editor =	{Sala, Pietro and Sioutis, Michael and Wang, Fusheng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2024.17},
  URN =		{urn:nbn:de:0030-drops-212244},
  doi =		{10.4230/LIPIcs.TIME.2024.17},
  annote =	{Keywords: Time series, Anomaly, Neural networks}
}
Document
A Bayesian Rolling Horizon Approach for Rolling Stock Rotation Planning with Predictive Maintenance

Authors: Felix Prause and Ralf Borndörfer

Published in: OASIcs, Volume 123, 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)


Abstract
We consider the rolling stock rotation planning problem with predictive maintenance (RSRP-PdM), where a timetable given by a set of trips must be operated by a fleet of vehicles. Here, the health states of the vehicles are assumed to be random variables, and their maintenance schedule should be planned based on their predicted failure probabilities. Utilizing the Bayesian update step of the Kalman filter, we develop a rolling horizon approach for RSRP-PdM, in which the predicted health state distributions are updated as new data become available. This approach reduces the uncertainty of the health states and thus improves the decision-making basis for maintenance planning. To solve the instances, we employ a local neighborhood search, which is a modification of a heuristic for RSRP-PdM, and demonstrate its effectiveness. Using this solution algorithm, the presented approach is compared with the results of common maintenance strategies on test instances derived from real-world timetables. The obtained results show the benefits of the rolling horizon approach.

Cite as

Felix Prause and Ralf Borndörfer. A Bayesian Rolling Horizon Approach for Rolling Stock Rotation Planning with Predictive Maintenance. In 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs), Volume 123, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{prause_et_al:OASIcs.ATMOS.2024.13,
  author =	{Prause, Felix and Bornd\"{o}rfer, Ralf},
  title =	{{A Bayesian Rolling Horizon Approach for Rolling Stock Rotation Planning with Predictive Maintenance}},
  booktitle =	{24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)},
  pages =	{13:1--13:19},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-350-8},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{123},
  editor =	{Bouman, Paul C. and Kontogiannis, Spyros C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2024.13},
  URN =		{urn:nbn:de:0030-drops-212013},
  doi =		{10.4230/OASIcs.ATMOS.2024.13},
  annote =	{Keywords: Rolling stock rotation planning, Predictive maintenance, Rolling horizon approach, Bayesian inference, Local neighborhood search}
}
Document
Cornucopia: Distributed Randomness at Scale

Authors: Miranda Christ, Kevin Choi, and Joseph Bonneau

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
We propose Cornucopia, a protocol framework for distributed randomness beacons combining accumulators and verifiable delay functions. Cornucopia generalizes the Unicorn protocol, using an accumulator to enable efficient verification by each participant that their contribution has been included. The output is unpredictable as long as at least one participant is honest, yielding a scalable distributed randomness beacon with strong security properties. Proving this approach secure requires developing a novel property of accumulators, insertion security, which we show is both necessary and sufficient for Cornucopia-style protocols. We show that not all accumulators are insertion-secure, then prove that common constructions (Merkle trees, RSA accumulators, and bilinear accumulators) are either naturally insertion-secure or can be made so with trivial modifications.

Cite as

Miranda Christ, Kevin Choi, and Joseph Bonneau. Cornucopia: Distributed Randomness at Scale. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 17:1-17:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{christ_et_al:LIPIcs.AFT.2024.17,
  author =	{Christ, Miranda and Choi, Kevin and Bonneau, Joseph},
  title =	{{Cornucopia: Distributed Randomness at Scale}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{17:1--17:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.17},
  URN =		{urn:nbn:de:0030-drops-209533},
  doi =		{10.4230/LIPIcs.AFT.2024.17},
  annote =	{Keywords: Randomness beacons, accumulators}
}
Document
APPROX
Degrees and Network Design: New Problems and Approximations

Authors: Michael Dinitz, Guy Kortsarz, and Shi Li

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
While much of network design focuses mostly on cost (number or weight of edges), node degrees have also played an important role. They have traditionally either appeared as an objective, to minimize the maximum degree (e.g., the Minimum Degree Spanning Tree problem), or as constraints that might be violated to give bicriteria approximations (e.g., the Minimum Cost Degree Bounded Spanning Tree problem). We extend the study of degrees in network design in two ways. First, we introduce and study a new variant of the Survivable Network Design Problem where in addition to the traditional objective of minimizing the cost of the chosen edges, we add a constraint that the 𝓁_p-norm of the node degree vector is bounded by an input parameter. This interpolates between the classical settings of maximum degree (the 𝓁_∞-norm) and the number of edges (the 𝓁₁-degree), and has natural applications in distributed systems and VLSI design. We give a constant bicriteria approximation in both measures using convex programming. Second, we provide a polylogarithmic bicriteria approximation for the Degree Bounded Group Steiner problem on bounded treewidth graphs, solving an open problem from [Guy Kortsarz and Zeev Nutov, 2022] and [X. Guo et al., 2022].

Cite as

Michael Dinitz, Guy Kortsarz, and Shi Li. Degrees and Network Design: New Problems and Approximations. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 3:1-3:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dinitz_et_al:LIPIcs.APPROX/RANDOM.2024.3,
  author =	{Dinitz, Michael and Kortsarz, Guy and Li, Shi},
  title =	{{Degrees and Network Design: New Problems and Approximations}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{3:1--3:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.3},
  URN =		{urn:nbn:de:0030-drops-209969},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.3},
  annote =	{Keywords: Network Design, Degrees}
}
Document
DeFiAligner: Leveraging Symbolic Analysis and Large Language Models for Inconsistency Detection in Decentralized Finance

Authors: Rundong Gan, Liyi Zhou, Le Wang, Kaihua Qin, and Xiaodong Lin

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
Decentralized Finance (DeFi) has witnessed a monumental surge, reaching 53.039 billion USD in total value locked. As this sector continues to expand, ensuring the reliability of DeFi smart contracts becomes increasingly crucial. While some users are adept at reading code or the compiled bytecode to understand smart contracts, many rely on documentation. Therefore, discrepancies between the documentation and the deployed code can pose significant risks, whether these discrepancies are due to errors or intentional fraud. To tackle these challenges, we developed DeFiAligner, an end-to-end system to identify inconsistencies between documentation and smart contracts. DeFiAligner incorporates a symbolic execution tool, SEVM, which explores execution paths of on-chain binary code, recording memory and stack states. It automatically generates symbolic expressions for token balance changes and branch conditions, which, along with related project documents, are processed by LLMs. Using structured prompts, the LLMs evaluate the alignment between the symbolic expressions and the documentation. Our tests across three distinct scenarios demonstrate DeFiAligner’s capability to automate inconsistency detection in DeFi, achieving recall rates of 92% and 90% on two public datasets respectively.

Cite as

Rundong Gan, Liyi Zhou, Le Wang, Kaihua Qin, and Xiaodong Lin. DeFiAligner: Leveraging Symbolic Analysis and Large Language Models for Inconsistency Detection in Decentralized Finance. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 7:1-7:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gan_et_al:LIPIcs.AFT.2024.7,
  author =	{Gan, Rundong and Zhou, Liyi and Wang, Le and Qin, Kaihua and Lin, Xiaodong},
  title =	{{DeFiAligner: Leveraging Symbolic Analysis and Large Language Models for Inconsistency Detection in Decentralized Finance}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{7:1--7:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.7},
  URN =		{urn:nbn:de:0030-drops-209431},
  doi =		{10.4230/LIPIcs.AFT.2024.7},
  annote =	{Keywords: Decentralized Finance Security, Large Language Models, Project Review, Symbolic Analysis, Smart Contracts}
}
Document
Dynamically Generating Callback Summaries for Enhancing Static Analysis

Authors: Steven Arzt, Marc Miltenberger, and Julius Näumann

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Interprocedural static analyses require a complete and precise callgraph. Since third-party libraries are responsible for large portions of the code of an app, a substantial fraction of the effort in callgraph generation is therefore spent on the library code for each app. For analyses that are oblivious to the inner workings of a library and only require the user code to be processed, the library can be replaced with a summary that allows to reconstruct the callbacks from library code back to user code. To improve performance, we propose the automatic generation and use of precise pre-computed callgraph summaries for commonly used libraries. Reflective method calls within libraries and callback-driven APIs pose further challenges for generating precise callgraphs using static analysis. Pre-computed summaries can also help analyses avoid these challenges. We present CGMiner, an approach for automatically generating callgraph models for library code. It dynamically observes sample apps that use one or more particular target libraries. As we show, CGMiner yields more than 94% of correct edges, whereas existing work only achieves around 33% correct edges. CGMiner avoids the high false positive rate of existing tools. We show that CGMiner integrated into FlowDroid uncovers 40% more data flows than our baseline without callback summaries.

Cite as

Steven Arzt, Marc Miltenberger, and Julius Näumann. Dynamically Generating Callback Summaries for Enhancing Static Analysis. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 4:1-4:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arzt_et_al:LIPIcs.ECOOP.2024.4,
  author =	{Arzt, Steven and Miltenberger, Marc and N\"{a}umann, Julius},
  title =	{{Dynamically Generating Callback Summaries for Enhancing Static Analysis}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{4:1--4:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.4},
  URN =		{urn:nbn:de:0030-drops-208533},
  doi =		{10.4230/LIPIcs.ECOOP.2024.4},
  annote =	{Keywords: dynamic analysis, callback detection, java, android}
}
Document
Learning and Inference in a Lattice Model of Multicomponent Condensates

Authors: Cameron Chalk, Salvador Buse, Krishna Shrinivas, Arvind Murugan, and Erik Winfree

Published in: LIPIcs, Volume 314, 30th International Conference on DNA Computing and Molecular Programming (DNA 30) (2024)


Abstract
Life is chemical intelligence. What is the source of intelligent behavior in molecular systems? Here we illustrate how, in contrast to the common belief that energy use in non-equilibrium reactions is essential, the detailed balance equilibrium properties of multicomponent liquid interactions are sufficient for sophisticated information processing. Our approach derives from the classical Boltzmann machine model for probabilistic neural networks, inheriting key principles such as representing probability distributions via quadratic energy functions, clamping input variables to infer conditional probability distributions, accommodating omnidirectional computation, and learning energy parameters via a wake phase / sleep phase algorithm that performs gradient descent on the relative entropy with respect to the target distribution. While the cubic lattice model of multicomponent liquids is standard, the behaviors exhibited by the trained molecules capture both previously-observed phenomena such as core-shell condensate architectures as well as novel phenomena such as an analog of Hopfield associative memories that perform recall by contact with a patterned surface. Our final example demonstrates equilibrium classification of MNIST digits. Experimental implementation using DNA nanostar liquids is conceptually straightforward.

Cite as

Cameron Chalk, Salvador Buse, Krishna Shrinivas, Arvind Murugan, and Erik Winfree. Learning and Inference in a Lattice Model of Multicomponent Condensates. In 30th International Conference on DNA Computing and Molecular Programming (DNA 30). Leibniz International Proceedings in Informatics (LIPIcs), Volume 314, pp. 5:1-5:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chalk_et_al:LIPIcs.DNA.30.5,
  author =	{Chalk, Cameron and Buse, Salvador and Shrinivas, Krishna and Murugan, Arvind and Winfree, Erik},
  title =	{{Learning and Inference in a Lattice Model of Multicomponent Condensates}},
  booktitle =	{30th International Conference on DNA Computing and Molecular Programming (DNA 30)},
  pages =	{5:1--5:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-344-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{314},
  editor =	{Seki, Shinnosuke and Stewart, Jaimie Marie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DNA.30.5},
  URN =		{urn:nbn:de:0030-drops-209330},
  doi =		{10.4230/LIPIcs.DNA.30.5},
  annote =	{Keywords: multicomponent liquid, Boltzmann machine, phase separation}
}
Document
Revealing Differences in Public Transport Share Through District-Wise Comparison and Relating Them to Network Properties

Authors: Manuela Canestrini, Ioanna Gogousou, Dimitrios Michail, and Ioannis Giannopoulos

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Sustainable transport is becoming an increasingly pressing issue, with two major pillars being the reduction of car usage and the promotion of public transport. One way to approach both of these pillars is through the large number of daily commute trips in urban areas, and their modal split. Previous research gathered knowledge on influencing factors on the modal split mainly through travel surveys. We take a different approach by analysing the "raw" network and the time-optimised trips on a multi-modal graph. For the case study of Vienna, Austria we investigate how the option to use a private car influences the modal split of routes towards the city centre. Additionally, we compare the modal split across seven inner districts and we relate properties of the public transport network to the respective share of public transport. The results suggest that different districts have varying options of public transport connections towards the city centre, with a share of public transport between about 5% up to a share of 45%. This reveals areas where investments in public transport could reduce commute times to the city centre. Regarding network properties, our findings suggest, that it is not sufficient to analyse the joint public transport network. Instead, individual public transport modalities should be examined. We show that the network length and the direction of the lines towards the city centre influence the proportion of subway and tram in the modal split.

Cite as

Manuela Canestrini, Ioanna Gogousou, Dimitrios Michail, and Ioannis Giannopoulos. Revealing Differences in Public Transport Share Through District-Wise Comparison and Relating Them to Network Properties. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{canestrini_et_al:LIPIcs.COSIT.2024.10,
  author =	{Canestrini, Manuela and Gogousou, Ioanna and Michail, Dimitrios and Giannopoulos, Ioannis},
  title =	{{Revealing Differences in Public Transport Share Through District-Wise Comparison and Relating Them to Network Properties}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.10},
  URN =		{urn:nbn:de:0030-drops-208255},
  doi =		{10.4230/LIPIcs.COSIT.2024.10},
  annote =	{Keywords: Mobility, Modal Split, Transportation Networks}
}
Document
Short Paper
Towards Statistically Significant Taxonomy Aware Co-Location Pattern Detection (Short Paper)

Authors: Subhankar Ghosh, Arun Sharma, Jayant Gupta, and Shashi Shekhar

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Given a collection of Boolean spatial feature types, their instances, a neighborhood relation (e.g., proximity), and a hierarchical taxonomy of the feature types, the goal is to find the subsets of feature types or their parents whose spatial interaction is statistically significant. This problem is for taxonomy-reliant applications such as ecology (e.g., finding new symbiotic relationships across the food chain), spatial pathology (e.g., immunotherapy for cancer), retail, etc. The problem is computationally challenging due to the exponential number of candidate co-location patterns generated by the taxonomy. Most approaches for co-location pattern detection overlook the hierarchical relationships among spatial features, and the statistical significance of the detected patterns is not always considered, leading to potential false discoveries. This paper introduces two methods for incorporating taxonomies and assessing the statistical significance of co-location patterns. The baseline approach iteratively checks the significance of co-locations between leaf nodes or their ancestors in the taxonomy. Using the Benjamini-Hochberg procedure, an advanced approach is proposed to control the false discovery rate. This approach effectively reduces the risk of false discoveries while maintaining the power to detect true co-location patterns. Experimental evaluation and case study results show the effectiveness of the approach.

Cite as

Subhankar Ghosh, Arun Sharma, Jayant Gupta, and Shashi Shekhar. Towards Statistically Significant Taxonomy Aware Co-Location Pattern Detection (Short Paper). In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 25:1-25:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ghosh_et_al:LIPIcs.COSIT.2024.25,
  author =	{Ghosh, Subhankar and Sharma, Arun and Gupta, Jayant and Shekhar, Shashi},
  title =	{{Towards Statistically Significant Taxonomy Aware Co-Location Pattern Detection}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{25:1--25:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.25},
  URN =		{urn:nbn:de:0030-drops-208404},
  doi =		{10.4230/LIPIcs.COSIT.2024.25},
  annote =	{Keywords: Co-location patterns, spatial data mining, taxonomy, hierarchy, statistical significance, false discovery rate, family-wise error rate}
}
Document
An Operational Semantics in Isabelle/HOL-CSP

Authors: Benoît Ballenghien and Burkhart Wolff

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
The theory of Communicating Sequential Processes going back to Hoare and Roscoe is still today a reference model for concurrency. In the fairly rich literature, several versions of operational semantics have been discussed, which should be consistent with the denotational one. This work is based on Isabelle/HOL-CSP 2.0, a shallow embedding of the failure-divergence model of denotational semantics proposed by Hoare, Roscoe and Brookes in the eighties. In several ways, HOL-CSP is actually an extension of the original setting in the sense that it admits higher-order processes and infinite alphabets. In this paper, we present a construction and formal equivalence proofs between operational CSP semantics and the underlying denotational failure-divergence semantics. The construction is based on a definition of the operational transition operator P ⇝e P’ basically via the After operator and the classical failure-divergence refinement. Several choices are discussed to formally derive the operational semantics leading to subtle differences. The derived operational semantics for symbolic Labelled Transition Systems (LTSs) can be potentially used for certifications of model-checker logs as well as combined proof techniques.

Cite as

Benoît Ballenghien and Burkhart Wolff. An Operational Semantics in Isabelle/HOL-CSP. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ballenghien_et_al:LIPIcs.ITP.2024.7,
  author =	{Ballenghien, Beno\^{i}t and Wolff, Burkhart},
  title =	{{An Operational Semantics in Isabelle/HOL-CSP}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.7},
  URN =		{urn:nbn:de:0030-drops-207355},
  doi =		{10.4230/LIPIcs.ITP.2024.7},
  annote =	{Keywords: Process-Algebra, Semantics, Concurrency, Computational Models, Theorem Proving, Isabelle/HOL}
}
Document
AlfaPang: Alignment Free Algorithm for Pangenome Graph Construction

Authors: Adam Cicherski, Anna Lisiecka, and Norbert Dojer

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
The success of pangenome-based approaches to genomics analysis depends largely on the existence of efficient methods for constructing pangenome graphs that are applicable to large genome collections. In the current paper we present AlfaPang, a new pangenome graph building algorithm. AlfaPang is based on a novel alignment-free approach that allows to construct pangenome graphs using significantly less computational resources than state-of-the-art tools. The code of AlfaPang is freely available at https://github.com/AdamCicherski/AlfaPang.

Cite as

Adam Cicherski, Anna Lisiecka, and Norbert Dojer. AlfaPang: Alignment Free Algorithm for Pangenome Graph Construction. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cicherski_et_al:LIPIcs.WABI.2024.23,
  author =	{Cicherski, Adam and Lisiecka, Anna and Dojer, Norbert},
  title =	{{AlfaPang: Alignment Free Algorithm for Pangenome Graph Construction}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{23:1--23:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.23},
  URN =		{urn:nbn:de:0030-drops-206673},
  doi =		{10.4230/LIPIcs.WABI.2024.23},
  annote =	{Keywords: pangenome, variation graph, genome alignment, population genomics}
}
Document
Engineering Weighted Connectivity Augmentation Algorithms

Authors: Marcelo Fonseca Faraj, Ernestine Großmann, Felix Joos, Thomas Möller, and Christian Schulz

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Increasing the connectivity of a graph is a pivotal challenge in robust network design. The weighted connectivity augmentation problem is a common version of the problem that takes link costs into consideration. The problem is then to find a minimum cost subset of a given set of weighted links that increases the connectivity of a graph by one when the links are added to the edge set of the input instance. In this work, we give a first implementation of recently discovered better-than-2 approximations. Furthermore, we propose three new heuristics and one exact approach. These include a greedy algorithm considering link costs and the number of unique cuts covered, an approach based on minimum spanning trees and a local search algorithm that may improve a given solution by swapping links of paths. Our exact approach uses an ILP formulation with efficient cut enumeration as well as a fast initialization routine. We then perform an extensive experimental evaluation which shows that our algorithms are faster and yield the best solutions compared to the current state-of-the-art as well as the recently discovered better-than-2 approximation algorithms. Our novel local search algorithm can improve solution quality even further.

Cite as

Marcelo Fonseca Faraj, Ernestine Großmann, Felix Joos, Thomas Möller, and Christian Schulz. Engineering Weighted Connectivity Augmentation Algorithms. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 11:1-11:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{faraj_et_al:LIPIcs.SEA.2024.11,
  author =	{Faraj, Marcelo Fonseca and Gro{\ss}mann, Ernestine and Joos, Felix and M\"{o}ller, Thomas and Schulz, Christian},
  title =	{{Engineering Weighted Connectivity Augmentation Algorithms}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{11:1--11:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.11},
  URN =		{urn:nbn:de:0030-drops-203768},
  doi =		{10.4230/LIPIcs.SEA.2024.11},
  annote =	{Keywords: weighted connectivity augmentation, approximation, heuristic, integer linear program, algorithm engineering}
}
Document
Track A: Algorithms, Complexity and Games
Cut Sparsification and Succinct Representation of Submodular Hypergraphs

Authors: Yotam Kenneth and Robert Krauthgamer

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In cut sparsification, all cuts of a hypergraph H = (V,E,w) are approximated within 1±ε factor by a small hypergraph H'. This widely applied method was generalized recently to a setting where the cost of cutting each hyperedge e is provided by a splitting function g_e: 2^e → ℝ_+. This generalization is called a submodular hypergraph when the functions {g_e}_{e ∈ E} are submodular, and it arises in machine learning, combinatorial optimization, and algorithmic game theory. Previous work studied the setting where H' is a reweighted sub-hypergraph of H, and measured the size of H' by the number of hyperedges in it. In this setting, we present two results: (i) all submodular hypergraphs admit sparsifiers of size polynomial in n = |V| and ε^{-1}; (ii) we propose a new parameter, called spread, and use it to obtain smaller sparsifiers in some cases. We also show that for a natural family of splitting functions, relaxing the requirement that H' be a reweighted sub-hypergraph of H yields a substantially smaller encoding of the cuts of H (almost a factor n in the number of bits). This is in contrast to graphs, where the most succinct representation is attained by reweighted subgraphs. A new tool in our construction of succinct representation is the notion of deformation, where a splitting function g_e is decomposed into a sum of functions of small description, and we provide upper and lower bounds for deformation of common splitting functions.

Cite as

Yotam Kenneth and Robert Krauthgamer. Cut Sparsification and Succinct Representation of Submodular Hypergraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 97:1-97:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kenneth_et_al:LIPIcs.ICALP.2024.97,
  author =	{Kenneth, Yotam and Krauthgamer, Robert},
  title =	{{Cut Sparsification and Succinct Representation of Submodular Hypergraphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{97:1--97:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.97},
  URN =		{urn:nbn:de:0030-drops-202406},
  doi =		{10.4230/LIPIcs.ICALP.2024.97},
  annote =	{Keywords: Cut Sparsification, Submodular Hypergraphs, Succinct Representation}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
  • Refine by Author
  • 2 Heintz, Fredrik
  • 1 Allen, Bradley P.
  • 1 Arzt, Steven
  • 1 Ballenghien, Benoît
  • 1 Bonneau, Joseph
  • Show More...

  • Refine by Classification
  • 2 Computing methodologies → Knowledge representation and reasoning
  • 2 Theory of computation → Approximation algorithms analysis
  • 2 Theory of computation → Semantics and reasoning
  • 1 Applied computing → Computational genomics
  • 1 Applied computing → Systems biology
  • Show More...

  • Refine by Keyword
  • 1 Anomaly
  • 1 Applications of logics
  • 1 Bayesian inference
  • 1 Boltzmann machine
  • 1 Co-location patterns
  • Show More...

  • Refine by Type
  • 17 document

  • Refine by Publication Year
  • 16 2024
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail