26 Search Results for "Aggarwal, Divesh"


Volume

LIPIcs, Volume 304

5th Conference on Information-Theoretic Cryptography (ITC 2024)

ITC 2024, August 14-16, 2024, Stanford, CA, USA

Editors: Divesh Aggarwal

Document
APPROX
QSETH Strikes Again: Finer Quantum Lower Bounds for Lattice Problem, Strong Simulation, Hitting Set Problem, and More

Authors: Yanlin Chen, Yilei Chen, Rajendra Kumar, Subhasree Patro, and Florian Speelman

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
Despite the wide range of problems for which quantum computers offer a computational advantage over their classical counterparts, there are also many problems for which the best known quantum algorithm provides a speedup that is only quadratic, or even subquadratic. Such a situation could also be desirable if we don't want quantum computers to solve certain problems fast - say problems relevant to post-quantum cryptography. When searching for algorithms and when analyzing the security of cryptographic schemes, we would like to have evidence that these problems are difficult to solve on quantum computers; but how do we assess the exact complexity of these problems? For most problems, there are no known ways to directly prove time lower bounds, however it can still be possible to relate the hardness of disparate problems to show conditional lower bounds. This approach has been popular in the classical community, and is being actively developed for the quantum case [Aaronson et al., 2020; Buhrman et al., 2021; Harry Buhrman et al., 2022; Andris Ambainis et al., 2022]. In this paper, by the use of the QSETH framework [Buhrman et al., 2021] we are able to understand the quantum complexity of a few natural variants of CNFSAT, such as parity-CNFSAT or counting-CNFSAT, and also are able to comment on the non-trivial complexity of approximate versions of counting-CNFSAT. Without considering such variants, the best quantum lower bounds will always be quadratically lower than the equivalent classical bounds, because of Grover’s algorithm; however, we are able to show that quantum algorithms will likely not attain even a quadratic speedup for many problems. These results have implications for the complexity of (variations of) lattice problems, the strong simulation and hitting set problems, and more. In the process, we explore the QSETH framework in greater detail and present a useful guide on how to effectively use the QSETH framework.

Cite as

Yanlin Chen, Yilei Chen, Rajendra Kumar, Subhasree Patro, and Florian Speelman. QSETH Strikes Again: Finer Quantum Lower Bounds for Lattice Problem, Strong Simulation, Hitting Set Problem, and More. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 6:1-6:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.APPROX/RANDOM.2025.6,
  author =	{Chen, Yanlin and Chen, Yilei and Kumar, Rajendra and Patro, Subhasree and Speelman, Florian},
  title =	{{QSETH Strikes Again: Finer Quantum Lower Bounds for Lattice Problem, Strong Simulation, Hitting Set Problem, and More}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{6:1--6:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.6},
  URN =		{urn:nbn:de:0030-drops-243723},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.6},
  annote =	{Keywords: Quantum conditional lower bounds, Fine-grained complexity, Lattice problems, Quantum strong simulation, Hitting set problem, QSETH}
}
Document
Leakage-Resilience of Shamir’s Secret Sharing: Identifying Secure Evaluation Places

Authors: Jihun Hwang, Hemanta K. Maji, Hai H. Nguyen, and Xiuyu Ye

Published in: LIPIcs, Volume 343, 6th Conference on Information-Theoretic Cryptography (ITC 2025)


Abstract
Can Shamir’s secret-sharing protect its secret even when all shares are partially compromised? For instance, repairing Reed-Solomon codewords, when possible, recovers the entire secret in the corresponding Shamir’s secret sharing. Yet, Shamir’s secret sharing mitigates various side-channel threats, depending on where its "secret-sharing polynomial" is evaluated. Although most evaluation places yield secure schemes, none are known explicitly; even techniques to identify them are unknown. Our work initiates research into such classifier constructions and derandomization objectives. In this work, we focus on Shamir’s scheme over prime fields, where every share is required to reconstruct the secret. We investigate the security of these schemes against single-bit probes into shares stored in their native binary representation. Technical analysis is particularly challenging when dealing with Reed-Solomon codewords over prime fields, as observed recently in the code repair literature. Furthermore, ensuring the statistical independence of the leakage from the secret necessitates the elimination of any subtle correlations between them. In this context, we present: 1) An efficient algorithm to classify evaluation places as secure or vulnerable against the least-significant-bit leakage. 2) Modulus choices where the classifier above extends to any single-bit probe per share. 3) Explicit modulus choices and secure evaluation places for them. On the way, we discover new bit-probing attacks on Shamir’s scheme, revealing surprising correlations between the leakage and the secret, leading to vulnerabilities when choosing evaluation places naïvely. Our results rely on new techniques to analyze the security of secret-sharing schemes against side-channel threats. We connect their leakage resilience to the orthogonality of square wave functions, which, in turn, depends on the 2-adic valuation of rational approximations. These techniques, novel to the security analysis of secret sharings, can potentially be of broader interest.

Cite as

Jihun Hwang, Hemanta K. Maji, Hai H. Nguyen, and Xiuyu Ye. Leakage-Resilience of Shamir’s Secret Sharing: Identifying Secure Evaluation Places. In 6th Conference on Information-Theoretic Cryptography (ITC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 343, pp. 3:1-3:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hwang_et_al:LIPIcs.ITC.2025.3,
  author =	{Hwang, Jihun and Maji, Hemanta K. and Nguyen, Hai H. and Ye, Xiuyu},
  title =	{{Leakage-Resilience of Shamir’s Secret Sharing: Identifying Secure Evaluation Places}},
  booktitle =	{6th Conference on Information-Theoretic Cryptography (ITC 2025)},
  pages =	{3:1--3:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-385-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{343},
  editor =	{Gilboa, Niv},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2025.3},
  URN =		{urn:nbn:de:0030-drops-243531},
  doi =		{10.4230/LIPIcs.ITC.2025.3},
  annote =	{Keywords: Shamir’s secret sharing, leakage resilience, physical bit probing, secure evaluation places, secure modulus choice, square wave families, LLL algorithm, Fourier analysis}
}
Document
Online Condensing of Unpredictable Sources via Random Walks

Authors: Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
A natural model of a source of randomness consists of a long stream of symbols X = X_1∘…∘X_t, with some guarantee on the entropy of X_i conditioned on the outcome of the prefix x_1,… ,x_{i-1}. We study unpredictable sources, a generalization of the almost Chor-Goldreich (CG) sources considered in [Doron et al., 2023]. In an unpredictable source X, for a typical draw of x ∼ X, for most i-s, the element x_i has a low probability of occurring given x_1,… ,x_{i-1}. Such a model relaxes the often unrealistic assumption of a CG source that for every i, and every x_1,… ,x_{i-1}, the next symbol X_i has sufficiently large entropy. Unpredictable sources subsume all previously considered notions of almost CG sources, including notions that [Doron et al., 2023] failed to analyze, and including those that are equivalent to general sources with high min entropy. For a lossless expander G = (V,E) with m = log |V|, we consider a random walk V_0,V_1,…,V_t on G using unpredictable instructions that have sufficient entropy with respect to m. Our main theorem is that for almost all the steps t/2 ≤ i ≤ t in the walk, the vertex V_i is close to a distribution with min-entropy at least m-O(1). As a result, we obtain seeded online condensers with constant entropy gap, and seedless (deterministic) condensers outputting a constant fraction of the entropy. In particular, our condensers run in space comparable to the output entropy, as opposed to the size of the stream, and even when the length t of the stream is not known ahead of time. As another corollary, we obtain a new extractor based on expander random walks handling lower entropy than the classic expander based construction relying on spectral techniques [Gillman, 1998]. As our main technical tool, we provide a novel analysis covering a key case of adversarial random walks on lossless expanders that [Doron et al., 2023] fails to address. As part of the analysis, we provide a "chain rule for vertex probabilities". The standard chain rule states that for every x ∼ X and i, Pr(x_1,… ,x_i) = Pr[X_i = x_i|X_[1,i-1] = x_1,… ,x_{i-1}] ⋅ Pr(x_1,… ,x_{i-1}). If W(x₁,… ,x_i) is the vertex reached using x₁,… ,x_i, then the chain rule for vertex probabilities essentially states that the same phenomena occurs for a typical x: Pr [V_i = W(x_1,… ,x_i)] ≲ Pr[X_i = x_i|X_[1,i-1] = x_1,… ,x_{i-1}] ⋅ Pr[V_{i-1} = W(x_1,… ,x_{i-1})], where V_i is the vertex distribution of the random walk at step i using X.

Cite as

Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. Online Condensing of Unpredictable Sources via Random Walks. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 30:1-30:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{doron_et_al:LIPIcs.CCC.2025.30,
  author =	{Doron, Dean and Moshkovitz, Dana and Oh, Justin and Zuckerman, David},
  title =	{{Online Condensing of Unpredictable Sources via Random Walks}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{30:1--30:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.30},
  URN =		{urn:nbn:de:0030-drops-237243},
  doi =		{10.4230/LIPIcs.CCC.2025.30},
  annote =	{Keywords: Randomness Extractors, Expander Graphs}
}
Document
Survey
Uncertainty Management in the Construction of Knowledge Graphs: A Survey

Authors: Lucas Jarnac, Yoan Chabot, and Miguel Couceiro

Published in: TGDK, Volume 3, Issue 1 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 1


Abstract
Knowledge Graphs (KGs) are a major asset for companies thanks to their great flexibility in data representation and their numerous applications, e.g., vocabulary sharing, Q&A or recommendation systems. To build a KG, it is a common practice to rely on automatic methods for extracting knowledge from various heterogeneous sources. However, in a noisy and uncertain world, knowledge may not be reliable and conflicts between data sources may occur. Integrating unreliable data would directly impact the use of the KG, therefore such conflicts must be resolved. This could be done manually by selecting the best data to integrate. This first approach is highly accurate, but costly and time-consuming. That is why recent efforts focus on automatic approaches, which represent a challenging task since it requires handling the uncertainty of extracted knowledge throughout its integration into the KG. We survey state-of-the-art approaches in this direction and present constructions of both open and enterprise KGs. We then describe different knowledge extraction methods and discuss downstream tasks after knowledge acquisition, including KG completion using embedding models, knowledge alignment, and knowledge fusion in order to address the problem of knowledge uncertainty in KG construction. We conclude with a discussion on the remaining challenges and perspectives when constructing a KG taking into account uncertainty.

Cite as

Lucas Jarnac, Yoan Chabot, and Miguel Couceiro. Uncertainty Management in the Construction of Knowledge Graphs: A Survey. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 1, pp. 3:1-3:48, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{jarnac_et_al:TGDK.3.1.3,
  author =	{Jarnac, Lucas and Chabot, Yoan and Couceiro, Miguel},
  title =	{{Uncertainty Management in the Construction of Knowledge Graphs: A Survey}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:48},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.1.3},
  URN =		{urn:nbn:de:0030-drops-233733},
  doi =		{10.4230/TGDK.3.1.3},
  annote =	{Keywords: Knowledge reconciliation, Uncertainty, Heterogeneous sources, Knowledge graph construction}
}
Document
Simultaneous Haar Indistinguishability with Applications to Unclonable Cryptography

Authors: Prabhanjan Ananth, Fatih Kaleoglu, and Henry Yuen

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We study a novel question about nonlocal quantum state discrimination: how well can non-communicating - but entangled - players distinguish between different distributions over quantum states? We call this task simultaneous state indistinguishability. Our main technical result is to show that the players cannot distinguish between each player receiving independently-chosen Haar random states versus all players receiving the same Haar random state. We show that this question has implications to unclonable cryptography, which leverages the no-cloning principle to build cryptographic primitives that are classically impossible to achieve. Understanding the feasibility of unclonable encryption, one of the key unclonable primitives, satisfying indistinguishability security in the plain model has been a major open question in the area. So far, the existing constructions of unclonable encryption are either in the quantum random oracle model or are based on new conjectures. We leverage our main result to present the first construction of unclonable encryption satisfying indistinguishability security, with quantum decryption keys, in the plain model. We also show other implications to single-decryptor encryption and leakage-resilient secret sharing. These applications present evidence that simultaneous Haar indistinguishability could be useful in quantum cryptography.

Cite as

Prabhanjan Ananth, Fatih Kaleoglu, and Henry Yuen. Simultaneous Haar Indistinguishability with Applications to Unclonable Cryptography. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 7:1-7:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ananth_et_al:LIPIcs.ITCS.2025.7,
  author =	{Ananth, Prabhanjan and Kaleoglu, Fatih and Yuen, Henry},
  title =	{{Simultaneous Haar Indistinguishability with Applications to Unclonable Cryptography}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{7:1--7:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.7},
  URN =		{urn:nbn:de:0030-drops-226352},
  doi =		{10.4230/LIPIcs.ITCS.2025.7},
  annote =	{Keywords: Quantum, Haar, unclonable encryption}
}
Document
Improved Lower Bounds for 3-Query Matching Vector Codes

Authors: Divesh Aggarwal, Pranjal Dutta, Zeyong Li, Maciej Obremski, and Sidhant Saraogi

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
A Matching Vector (MV) family modulo a positive integer m ≥ 2 is a pair of ordered lists U = (u_1, ⋯, u_K) and V = (v_1, ⋯, v_K) where u_i, v_j ∈ ℤ_m^n with the following property: for any i ∈ [K], the inner product ⟨u_i, v_i⟩ = 0 mod m, and for any i ≠ j, ⟨u_i, v_j⟩ ≠ 0 mod m. An MV family is called r-restricted if inner products ⟨u_i, v_j⟩, for all i,j, take at most r different values. The r-restricted MV families are extremely important since the only known construction of constant-query subexponential locally decodable codes (LDCs) are based on them. Such LDCs constructed via matching vector families are called matching vector codes. Let MV(m,n) (respectively MV(m, n, r)) denote the largest K such that there exists an MV family (respectively r-restricted MV family) of size K in ℤ_m^n. Such a MV family can be transformed in a black-box manner to a good r-query locally decodable code taking messages of length K to codewords of length N = m^n. For small prime m, an almost tight bound MV(m,n) ≤ O(m^{n/2}) was first shown by Dvir, Gopalan, Yekhanin (FOCS'10, SICOMP'11), while for general m, the same paper established an upper bound of O(m^{n-1+o_m(1)}), with o_m(1) denoting a function that goes to zero when m grows. For any arbitrary constant r ≥ 3 and composite m, the best upper bound till date on MV(m,n,r) is O(m^{n/2}), is due to Bhowmick, Dvir and Lovett (STOC'13, SICOMP'14).In a breakthrough work, Alrabiah, Guruswami, Kothari and Manohar (STOC'23) implicitly improve this bound for 3-restricted families to MV(m, n, 3) ≤ O(m^{n/3}). In this work, we present an upper bound for r = 3 where MV(m,n,3) ≤ m^{n/6 +O(log n)}, and as a result, any 3-query matching vector code must have codeword length of N ≥ K^{6-o(1)}.

Cite as

Divesh Aggarwal, Pranjal Dutta, Zeyong Li, Maciej Obremski, and Sidhant Saraogi. Improved Lower Bounds for 3-Query Matching Vector Codes. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 2:1-2:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{aggarwal_et_al:LIPIcs.ITCS.2025.2,
  author =	{Aggarwal, Divesh and Dutta, Pranjal and Li, Zeyong and Obremski, Maciej and Saraogi, Sidhant},
  title =	{{Improved Lower Bounds for 3-Query Matching Vector Codes}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{2:1--2:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.2},
  URN =		{urn:nbn:de:0030-drops-226308},
  doi =		{10.4230/LIPIcs.ITCS.2025.2},
  annote =	{Keywords: Locally Decodable Codes, Matching Vector Families}
}
Document
The More the Merrier! On Total Coding and Lattice Problems and the Complexity of Finding Multicollisions

Authors: Huck Bennett, Surendra Ghentiyala, and Noah Stephens-Davidowitz

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We show a number of connections between two types of search problems: (1) the problem of finding an L-wise multicollision in the output of a function; and (2) the problem of finding two codewords in a code (or two vectors in a lattice) that are within distance d of each other. Specifically, we study these problems in the total regime, in which L and d are chosen so that such a solution is guaranteed to exist, though it might be hard to find. In more detail, we study the total search problem in which the input is a function 𝒞 : [A] → [B] (represented as a circuit) and the goal is to find L ≤ ⌈A/B⌉ distinct elements x_1,…, x_L ∈ A such that 𝒞(x_1) = ⋯ = 𝒞(x_L). The associated complexity classes Polynomial Multi-Pigeonhole Principle ((A,B)-PMPP^L) consist of all problems that reduce to this problem. We show close connections between (A,B)-PMPP^L and many celebrated upper bounds on the minimum distance of a code or lattice (and on the list-decoding radius). In particular, we show that the associated computational problems (i.e., the problem of finding two distinct codewords or lattice points that are close to each other) are in (A,B)-PMPP^L, with a more-or-less smooth tradeoff between the distance d and the parameters A, B, and L. These connections are particularly rich in the case of codes, in which case we show that multiple incomparable bounds on the minimum distance lie in seemingly incomparable complexity classes. Surprisingly, we also show that the computational problems associated with some bounds on the minimum distance of codes are actually hard for these classes (for codes represented by arbitrary circuits). In fact, we show that finding two vectors within a certain distance d is actually hard for the important (and well-studied) class PWPP = (B²,B)-PMPP² in essentially all parameter regimes for which an efficient algorithm is not known, so that our hardness results are essentially tight. In fact, for some d (depending on the block length, message length, and alphabet size), we obtain both hardness and containment. We therefore completely settle the complexity of this problem for such parameters and add coding problems to the short list of problems known to be complete for PWPP. We also study (A,B)-PMPP^L as an interesting family of complexity classes in its own right, and we uncover a rich structure. Specifically, we use recent techniques from the cryptographic literature on multicollision-resistant hash functions to (1) show inclusions of the form (A,B)-PMPP^L ⊆ (A',B')-PMPP^L' for certain non-trivial parameters; (2) black-box separations between such classes in different parameter regimes; and (3) a non-black-box proof that (A,B)-PMPP^L ∈ FP if (A',B')-PMPP^L' ∈ FP for yet another parameter regime. We also show that (A,B)-PMPP^L lies in the recently introduced complexity class Polynomial Long Choice for some parameters.

Cite as

Huck Bennett, Surendra Ghentiyala, and Noah Stephens-Davidowitz. The More the Merrier! On Total Coding and Lattice Problems and the Complexity of Finding Multicollisions. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 14:1-14:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bennett_et_al:LIPIcs.ITCS.2025.14,
  author =	{Bennett, Huck and Ghentiyala, Surendra and Stephens-Davidowitz, Noah},
  title =	{{The More the Merrier! On Total Coding and Lattice Problems and the Complexity of Finding Multicollisions}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{14:1--14:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.14},
  URN =		{urn:nbn:de:0030-drops-226424},
  doi =		{10.4230/LIPIcs.ITCS.2025.14},
  annote =	{Keywords: Multicollisions, Error-correcting codes, Lattices}
}
Document
Complete Volume
LIPIcs, Volume 304, ITC 2024, Complete Volume

Authors: Divesh Aggarwal

Published in: LIPIcs, Volume 304, 5th Conference on Information-Theoretic Cryptography (ITC 2024)


Abstract
LIPIcs, Volume 304, ITC 2024, Complete Volume

Cite as

5th Conference on Information-Theoretic Cryptography (ITC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 304, pp. 1-232, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Proceedings{aggarwal:LIPIcs.ITC.2024,
  title =	{{LIPIcs, Volume 304, ITC 2024, Complete Volume}},
  booktitle =	{5th Conference on Information-Theoretic Cryptography (ITC 2024)},
  pages =	{1--232},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-333-1},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{304},
  editor =	{Aggarwal, Divesh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2024},
  URN =		{urn:nbn:de:0030-drops-205075},
  doi =		{10.4230/LIPIcs.ITC.2024},
  annote =	{Keywords: LIPIcs, Volume 304, ITC 2024, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Divesh Aggarwal

Published in: LIPIcs, Volume 304, 5th Conference on Information-Theoretic Cryptography (ITC 2024)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

5th Conference on Information-Theoretic Cryptography (ITC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 304, pp. 0:i-0:xii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aggarwal:LIPIcs.ITC.2024.0,
  author =	{Aggarwal, Divesh},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{5th Conference on Information-Theoretic Cryptography (ITC 2024)},
  pages =	{0:i--0:xii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-333-1},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{304},
  editor =	{Aggarwal, Divesh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2024.0},
  URN =		{urn:nbn:de:0030-drops-205087},
  doi =		{10.4230/LIPIcs.ITC.2024.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Information-Theoretic Topology-Hiding Broadcast: Wheels, Stars, Friendship, and Beyond

Authors: D'or Banoun, Elette Boyle, and Ran Cohen

Published in: LIPIcs, Volume 304, 5th Conference on Information-Theoretic Cryptography (ITC 2024)


Abstract
Topology-hiding broadcast (THB) enables parties communicating over an incomplete network to broadcast messages while hiding the network topology from within a given class of graphs. Although broadcast is a privacy-free task, it is known that THB for certain graph classes necessitates computational assumptions, even against "honest but curious" adversaries, and even given a single corrupted party. Recent works have tried to understand when THB can be obtained with information-theoretic (IT) security (without cryptography or setup assumptions) as a function of properties of the corresponding graph class. We revisit this question through a case study of the class of wheel graphs and their subgraphs. The nth wheel graph is established by connecting n nodes who form a cycle with another "center" node, thus providing a natural extension that captures and enriches previously studied graph classes in the setting of IT-THB. We present a series of new findings in this line. We fully characterize feasibility of IT-THB for any class of subgraphs of the wheel, each possessing an embedded star (i.e., a well-defined center connected to all other nodes). Our characterization provides evidence that IT-THB feasibility may correlate with a more fine-grained degree structure - as opposed to pure connectivity - of the corresponding graphs. We provide positive results achieving perfect IT-THB for new graph classes, including ones where the number of nodes is unknown. Further, we provide the first feasibility of IT-THB on non-degenerate graph-classes with t > 1 corruptions, for the class of friendship graphs (Erdös, Rényi, Sós '66).

Cite as

D'or Banoun, Elette Boyle, and Ran Cohen. Information-Theoretic Topology-Hiding Broadcast: Wheels, Stars, Friendship, and Beyond. In 5th Conference on Information-Theoretic Cryptography (ITC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 304, pp. 1:1-1:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{banoun_et_al:LIPIcs.ITC.2024.1,
  author =	{Banoun, D'or and Boyle, Elette and Cohen, Ran},
  title =	{{Information-Theoretic Topology-Hiding Broadcast: Wheels, Stars, Friendship, and Beyond}},
  booktitle =	{5th Conference on Information-Theoretic Cryptography (ITC 2024)},
  pages =	{1:1--1:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-333-1},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{304},
  editor =	{Aggarwal, Divesh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2024.1},
  URN =		{urn:nbn:de:0030-drops-205090},
  doi =		{10.4230/LIPIcs.ITC.2024.1},
  annote =	{Keywords: broadcast, topology-hiding protocols, information-theoretic security}
}
Document
Communication Complexity vs Randomness Complexity in Interactive Proofs

Authors: Benny Applebaum, Kaartik Bhushan, and Manoj Prabhakaran

Published in: LIPIcs, Volume 304, 5th Conference on Information-Theoretic Cryptography (ITC 2024)


Abstract
In this work, we study the interplay between the communication from a verifier in a general private-coin interactive protocol and the number of random bits it uses in the protocol. Under worst-case derandomization assumptions, we show that it is possible to transform any I-round interactive protocol that uses ρ random bits into another one for the same problem with the additional property that the verifier’s communication is bounded by O(I⋅ ρ). Importantly, this is done with a minor, logarithmic, increase in the communication from the prover to the verifier and while preserving the randomness complexity. Along the way, we introduce a new compression game between computationally-bounded compressor and computationally-unbounded decompressor and a new notion of conditioned efficient distributions that may be of independent interest. Our solutions are based on a combination of perfect hashing and pseudorandom generators.

Cite as

Benny Applebaum, Kaartik Bhushan, and Manoj Prabhakaran. Communication Complexity vs Randomness Complexity in Interactive Proofs. In 5th Conference on Information-Theoretic Cryptography (ITC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 304, pp. 2:1-2:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{applebaum_et_al:LIPIcs.ITC.2024.2,
  author =	{Applebaum, Benny and Bhushan, Kaartik and Prabhakaran, Manoj},
  title =	{{Communication Complexity vs Randomness Complexity in Interactive Proofs}},
  booktitle =	{5th Conference on Information-Theoretic Cryptography (ITC 2024)},
  pages =	{2:1--2:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-333-1},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{304},
  editor =	{Aggarwal, Divesh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2024.2},
  URN =		{urn:nbn:de:0030-drops-205103},
  doi =		{10.4230/LIPIcs.ITC.2024.2},
  annote =	{Keywords: Interactive Proof Systems, Communication Complexity, Hash Functions, Pseudo-Random Generators, Compression}
}
Document
Are Your Keys Protected? Time Will Tell

Authors: Yoav Ben Dov, Liron David, Moni Naor, and Elad Tzalik

Published in: LIPIcs, Volume 304, 5th Conference on Information-Theoretic Cryptography (ITC 2024)


Abstract
Side channel attacks, and in particular timing attacks, are a fundamental obstacle to obtaining secure implementation of algorithms and cryptographic protocols, and have been widely researched for decades. While cryptographic definitions for the security of cryptographic systems have been well established for decades, none of these accepted definitions take into account the running time information leaked from executing the system. In this work, we give the foundation of new cryptographic definitions for cryptographic systems that take into account information about their leaked running time, focusing mainly on keyed functions such as signature and encryption schemes. Specifically, [(1)] 1) We define several cryptographic properties to express the claim that the timing information does not help an adversary to extract sensitive information, e.g. the key or the queries made. We highlight the definition of key-obliviousness, which means that an adversary cannot tell whether it received the timing of the queries with the actual key or the timing of the same queries with a random key. 2) We present a construction of key-oblivious pseudorandom permutations on a small or medium-sized domain. This construction is not "fixed-time," and at the same time is secure against any number of queries even in case the adversary knows the running time exactly. Our construction, which we call Janus Sometimes Recurse, is a variant of the "Sometimes Recurse" shuffle by Morris and Rogaway. 3) We suggest a new security notion for keyed functions, called noticeable security, and prove that cryptographic schemes that have noticeable security remain secure even when the exact timings are leaked, provided the implementation is key-oblivious. We show that our notion applies to cryptographic signatures, private key encryption and PRPs.

Cite as

Yoav Ben Dov, Liron David, Moni Naor, and Elad Tzalik. Are Your Keys Protected? Time Will Tell. In 5th Conference on Information-Theoretic Cryptography (ITC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 304, pp. 3:1-3:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bendov_et_al:LIPIcs.ITC.2024.3,
  author =	{Ben Dov, Yoav and David, Liron and Naor, Moni and Tzalik, Elad},
  title =	{{Are Your Keys Protected? Time Will Tell}},
  booktitle =	{5th Conference on Information-Theoretic Cryptography (ITC 2024)},
  pages =	{3:1--3:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-333-1},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{304},
  editor =	{Aggarwal, Divesh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2024.3},
  URN =		{urn:nbn:de:0030-drops-205119},
  doi =		{10.4230/LIPIcs.ITC.2024.3},
  annote =	{Keywords: Side channel attacks, Timing attacks, Keyed functions, Key oblivious, Noticeable security}
}
Document
Pure-DP Aggregation in the Shuffle Model: Error-Optimal and Communication-Efficient

Authors: Badih Ghazi, Ravi Kumar, and Pasin Manurangsi

Published in: LIPIcs, Volume 304, 5th Conference on Information-Theoretic Cryptography (ITC 2024)


Abstract
We obtain a new protocol for binary counting in the ε-DP_shuffle model with error O(1/ε) and expected communication Õ((log n)/ε) messages per user. Previous protocols incur either an error of O(1/ε^1.5) with O_ε(log n) messages per user (Ghazi et al., ITC 2020) or an error of O(1/ε) with O_ε(n²) messages per user (Cheu and Yan, TPDP 2022). Using the new protocol, we obtained improved ε-DP_shuffle protocols for real summation and histograms.

Cite as

Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. Pure-DP Aggregation in the Shuffle Model: Error-Optimal and Communication-Efficient. In 5th Conference on Information-Theoretic Cryptography (ITC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 304, pp. 4:1-4:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ghazi_et_al:LIPIcs.ITC.2024.4,
  author =	{Ghazi, Badih and Kumar, Ravi and Manurangsi, Pasin},
  title =	{{Pure-DP Aggregation in the Shuffle Model: Error-Optimal and Communication-Efficient}},
  booktitle =	{5th Conference on Information-Theoretic Cryptography (ITC 2024)},
  pages =	{4:1--4:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-333-1},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{304},
  editor =	{Aggarwal, Divesh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2024.4},
  URN =		{urn:nbn:de:0030-drops-205127},
  doi =		{10.4230/LIPIcs.ITC.2024.4},
  annote =	{Keywords: Differential Privacy, Shuffle Model, Aggregation, Pure Differential Privacy}
}
Document
On the Power of Adaptivity for Function Inversion

Authors: Karthik Gajulapalli, Alexander Golovnev, and Samuel King

Published in: LIPIcs, Volume 304, 5th Conference on Information-Theoretic Cryptography (ITC 2024)


Abstract
We study the problem of function inversion with preprocessing where, given a function f : [N] → [N] and a point y in its image, the goal is to find an x such that f(x) = y using at most T oracle queries to f and S bits of preprocessed advice that depend on f. The seminal work of Corrigan-Gibbs and Kogan [TCC 2019] initiated a line of research that shows many exciting connections between the non-adaptive setting of this problem and other areas of theoretical computer science. Specifically, they introduced a very weak class of algorithms (strongly non-adaptive) where the points queried by the oracle depend only on the inversion point y, and are independent of the answers to the previous queries and the S bits of advice. They showed that proving even mild lower bounds on strongly non-adaptive algorithms for function inversion would imply a breakthrough result in circuit complexity. We prove that every strongly non-adaptive algorithm for function inversion (and even for its special case of permutation inversion) must have ST = Ω(N log (N) log (T)). This gives the first improvement to the long-standing lower bound of ST = Ω(N log N) due to Yao [STOC 90]. As a corollary, we conclude the first separation between strongly non-adaptive and adaptive algorithms for permutation inversion, where the adaptive algorithm by Hellman [TOIT 80] achieves the trade-off ST = O(N log N). Additionally, we show equivalence between lower bounds for strongly non-adaptive data structures and the one-way communication complexity of certain partial functions. As an example, we recover our lower bound on function inversion in the communication complexity framework.

Cite as

Karthik Gajulapalli, Alexander Golovnev, and Samuel King. On the Power of Adaptivity for Function Inversion. In 5th Conference on Information-Theoretic Cryptography (ITC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 304, pp. 5:1-5:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gajulapalli_et_al:LIPIcs.ITC.2024.5,
  author =	{Gajulapalli, Karthik and Golovnev, Alexander and King, Samuel},
  title =	{{On the Power of Adaptivity for Function Inversion}},
  booktitle =	{5th Conference on Information-Theoretic Cryptography (ITC 2024)},
  pages =	{5:1--5:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-333-1},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{304},
  editor =	{Aggarwal, Divesh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2024.5},
  URN =		{urn:nbn:de:0030-drops-205137},
  doi =		{10.4230/LIPIcs.ITC.2024.5},
  annote =	{Keywords: Function Inversion, Non-Adaptive lower bounds, Communication Complexity}
}
  • Refine by Type
  • 25 Document/PDF
  • 7 Document/HTML
  • 1 Volume

  • Refine by Publication Year
  • 7 2025
  • 14 2024
  • 1 2022
  • 1 2021
  • 1 2020
  • Show More...

  • Refine by Author
  • 8 Aggarwal, Divesh
  • 3 Obremski, Maciej
  • 3 Stephens-Davidowitz, Noah
  • 2 Chen, Yanlin
  • 2 Kumar, Rajendra
  • Show More...

  • Refine by Series/Journal
  • 23 LIPIcs
  • 1 OASIcs
  • 1 TGDK

  • Refine by Classification
  • 8 Security and privacy → Information-theoretic techniques
  • 4 Theory of computation → Cryptographic primitives
  • 3 Security and privacy → Cryptography
  • 3 Theory of computation → Computational complexity and cryptography
  • 3 Theory of computation → Cryptographic protocols
  • Show More...

  • Refine by Keyword
  • 3 Lattices
  • 2 Communication Complexity
  • 2 Shortest Vector Problem
  • 1 Aggregation
  • 1 Algebraic Restriction Codes
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail