135 Search Results for "Chen, Yi"


Document
Conversational Agents: A Framework for Evaluation (CAFE) (Dagstuhl Perspectives Workshop 24352)

Authors: Christine Bauer, Li Chen, Nicola Ferro, Norbert Fuhr, Avishek Anand, Timo Breuer, Guglielmo Faggioli, Ophir Frieder, Hideo Joho, Jussi Karlgren, Johannes Kiesel, Bart P. Knijnenburg, Aldo Lipani, Lien Michiels, Andrea Papenmeier, Maria Soledad Pera, Mark Sanderson, Scott Sanner, Benno Stein, Johanne R. Trippas, Karin Verspoor, and Martijn C. Willemsen

Published in: Dagstuhl Manifestos, Volume 11, Issue 1 (2025)


Abstract
During the workshop, we deeply discussed what CONversational Information ACcess (CONIAC) is and its unique features, proposing a world model abstracting it, and defined the Conversational Agents Framework for Evaluation (CAFE) for the evaluation of CONIAC systems, consisting of six major components: 1) goals of the system’s stakeholders, 2) user tasks to be studied in the evaluation, 3) aspects of the users carrying out the tasks, 4) evaluation criteria to be considered, 5) evaluation methodology to be applied, and 6) measures for the quantitative criteria chosen.

Cite as

Christine Bauer, Li Chen, Nicola Ferro, Norbert Fuhr, Avishek Anand, Timo Breuer, Guglielmo Faggioli, Ophir Frieder, Hideo Joho, Jussi Karlgren, Johannes Kiesel, Bart P. Knijnenburg, Aldo Lipani, Lien Michiels, Andrea Papenmeier, Maria Soledad Pera, Mark Sanderson, Scott Sanner, Benno Stein, Johanne R. Trippas, Karin Verspoor, and Martijn C. Willemsen. Conversational Agents: A Framework for Evaluation (CAFE) (Dagstuhl Perspectives Workshop 24352). In Dagstuhl Manifestos, Volume 11, Issue 1, pp. 19-67, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{bauer_et_al:DagMan.11.1.19,
  author =	{Bauer, Christine and Chen, Li and Ferro, Nicola and Fuhr, Norbert and Anand, Avishek and Breuer, Timo and Faggioli, Guglielmo and Frieder, Ophir and Joho, Hideo and Karlgren, Jussi and Kiesel, Johannes and Knijnenburg, Bart P. and Lipani, Aldo and Michiels, Lien and Papenmeier, Andrea and Pera, Maria Soledad and Sanderson, Mark and Sanner, Scott and Stein, Benno and Trippas, Johanne R. and Verspoor, Karin and Willemsen, Martijn C.},
  title =	{{Conversational Agents: A Framework for Evaluation (CAFE) (Dagstuhl Perspectives Workshop 24352)}},
  pages =	{19--67},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2025},
  volume =	{11},
  number =	{1},
  editor =	{Bauer, Christine and Chen, Li and Ferro, Nicola and Fuhr, Norbert and Anand, Avishek and Breuer, Timo and Faggioli, Guglielmo and Frieder, Ophir and Joho, Hideo and Karlgren, Jussi and Kiesel, Johannes and Knijnenburg, Bart P. and Lipani, Aldo and Michiels, Lien and Papenmeier, Andrea and Pera, Maria Soledad and Sanderson, Mark and Sanner, Scott and Stein, Benno and Trippas, Johanne R. and Verspoor, Karin and Willemsen, Martijn C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.11.1.19},
  URN =		{urn:nbn:de:0030-drops-252722},
  doi =		{10.4230/DagMan.11.1.19},
  annote =	{Keywords: Conversational Agents, Evaluation, Information Access}
}
Document
Overlay Network Construction: Improved Overall and Node-Wise Message Complexity

Authors: Yi-Jun Chang, Yanyu Chen, and Gopinath Mishra

Published in: LIPIcs, Volume 360, 45th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2025)


Abstract
We consider the problem of constructing distributed overlay networks, where nodes in a reconfigurable system can create or sever connections with nodes whose identifiers they know. Initially, each node knows only its own and its neighbors' identifiers, forming a local channel, while the evolving structure is termed the global channel. The goal is to reconfigure any connected graph into a desired topology, such as a bounded-degree expander graph or a well-formed tree (WFT) with a constant maximum degree and logarithmic diameter, minimizing the total number of rounds and message complexity. This problem mirrors real-world peer-to-peer network construction, where creating robust and efficient systems is desired. We study the overlay reconstruction problem in a network of n nodes in two models: GOSSIP-reply and HYBRID. In the GOSSIP-reply model, each node can send a message and receive a corresponding reply message in one round. In the HYBRID model, a node can send O(1) messages to each neighbor in the local channel and a total of O(log n) messages in the global channel. In both models, we propose protocols for WFT construction with O (n log n) message complexities using messages of O(log n) bits. In the GOSSIP-reply model, our protocol takes O(log n) rounds while in the HYBRID model, our protocol takes O(log² n) rounds. Both protocols use O (n log² n) bits of communication. We obtain improved bounds over prior work: GOSSIP-reply: A recent result by Dufoulon et al. (ITCS 2024) achieved O(log⁵ n) round complexity and O (n log⁵ n) message complexity using messages of at least Ω(log² n) bits in GOSSIP-reply. With messages of size O(log n), our protocol achieves an optimal round complexity of O(log n) and an improved message complexity of O(n log n). HYBRID: Götte et al. (Distributed Computing 2023) showed an optimal O(log n)-round algorithm with O(log² n) global messages per round which incurs a message complexity of Ω(m), where m is the number of edges in the initial topology. At the cost of increasing the round complexity to O(log² n) while using only O(log n) messages globally, our protocol achieves a message complexity that is independent of m. Our approach ensures that the total number of messages for node v, with degree deg(v) in the initial topology, is bounded by O(deg(v) + log n), while the algorithm of Götte et al. requires O(deg(v) + (log⁴ n)/(log log n)) messages per node.

Cite as

Yi-Jun Chang, Yanyu Chen, and Gopinath Mishra. Overlay Network Construction: Improved Overall and Node-Wise Message Complexity. In 45th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 360, pp. 21:1-21:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chang_et_al:LIPIcs.FSTTCS.2025.21,
  author =	{Chang, Yi-Jun and Chen, Yanyu and Mishra, Gopinath},
  title =	{{Overlay Network Construction: Improved Overall and Node-Wise Message Complexity}},
  booktitle =	{45th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2025)},
  pages =	{21:1--21:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-406-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{360},
  editor =	{Aiswarya, C. and Mehta, Ruta and Roy, Subhajit},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2025.21},
  URN =		{urn:nbn:de:0030-drops-251025},
  doi =		{10.4230/LIPIcs.FSTTCS.2025.21},
  annote =	{Keywords: Distributed algorithms, Overlay networks, Expander graphs}
}
Document
Climate Change: What is Computing’s Responsibility? (Dagstuhl Perspectives Workshop 25122)

Authors: Bran Knowles, Vicki L. Hanson, Christoph Becker, Mike Berners-Lee, Andrew A. Chien, Benoit Combemale, Vlad Coroamă, Koen De Bosschere, Yi Ding, Adrian Friday, Boris Gamazaychikov, Lynda Hardman, Simon Hinterholzer, Mattias Höjer, Lynn Kaack, Lenneke Kuijer, Anne-Laure Ligozat, Jan Tobias Muehlberg, Yunmook Nah, Thomas Olsson, Anne-Cécile Orgerie, Daniel Pargman, Birgit Penzenstadler, Tom Romanoff, Emma Strubell, Colin Venters, and Junhua Zhao

Published in: Dagstuhl Manifestos, Volume 11, Issue 1 (2025)


Abstract
This Manifesto was produced from the Perspectives Workshop 25122 entitled "Climate Change: What is Computing’s Responsibility?" held March 16-19, 2025 at Schloss Dagstuhl, Germany. The Workshop provided a forum for world-leading computer scientists and expert consultants on environmental policy and sustainable transition to engage in a critical and urgent conversation about computing’s responsibilities in addressing climate change - or more aptly, climate crisis. The resulting Manifesto outlines commitments and directions for future action which, if adopted as a basis for more responsible computing practices, will help ensure that these technologies do not threaten the long-term habitability of the planet. We preface our Manifesto with a recognition that humanity is on a path that is not in agreement with international global warming targets and explore how computing technologies are currently hastening the overshoot of these boundaries. We critically assess the vaunted potential for harnessing computing technologies for the mitigation of global warming, agreeing that, under current circumstances, computing is contributing to negative environmental impacts in other sectors. Computing primarily improves efficiency and reduces costs which leads to more consumption and more negative environmental impact. Relying solely on efficiency gains in computing has thus far proven to be insufficient to curb global greenhouse gas emissions. Therefore, computing’s purpose within a strategy for tackling climate change must be reimagined. Our recommendations cover changes that need to be urgently made to the design priorities of computing technologies, but also speak to the more systemic shift in mindset, with sustainability and human rights providing a necessary moral foundation for developing the kinds of computing technologies most needed by society. We also stress the importance of digital policy that accounts for both the direct material impacts of computing and the detrimental indirect impacts arising from computing-enabled efficiencies, and the role of computing professionals in informing policy making.

Cite as

Bran Knowles, Vicki L. Hanson, Christoph Becker, Mike Berners-Lee, Andrew A. Chien, Benoit Combemale, Vlad Coroamă, Koen De Bosschere, Yi Ding, Adrian Friday, Boris Gamazaychikov, Lynda Hardman, Simon Hinterholzer, Mattias Höjer, Lynn Kaack, Lenneke Kuijer, Anne-Laure Ligozat, Jan Tobias Muehlberg, Yunmook Nah, Thomas Olsson, Anne-Cécile Orgerie, Daniel Pargman, Birgit Penzenstadler, Tom Romanoff, Emma Strubell, Colin Venters, and Junhua Zhao. Climate Change: What is Computing’s Responsibility? (Dagstuhl Perspectives Workshop 25122). In Dagstuhl Manifestos, Volume 11, Issue 1, pp. 1-18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{knowles_et_al:DagMan.11.1.1,
  author =	{Knowles, Bran and Hanson, Vicki L. and Becker, Christoph and Berners-Lee, Mike and Chien, Andrew A. and Combemale, Benoit and Coroam\u{a}, Vlad and De Bosschere, Koen and Ding, Yi and Friday, Adrian and Gamazaychikov, Boris and Hardman, Lynda and Hinterholzer, Simon and H\"{o}jer, Mattias and Kaack, Lynn and Kuijer, Lenneke and Ligozat, Anne-Laure and Muehlberg, Jan Tobias and Nah, Yunmook and Olsson, Thomas and Orgerie, Anne-C\'{e}cile and Pargman, Daniel and Penzenstadler, Birgit and Romanoff, Tom and Strubell, Emma and Venters, Colin and Zhao, Junhua},
  title =	{{Climate Change: What is Computing’s Responsibility? (Dagstuhl Perspectives Workshop 25122)}},
  pages =	{1--18},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2025},
  volume =	{11},
  number =	{1},
  editor =	{Knowles, Bran and Hanson, Vicki L. and Becker, Christoph and Berners-Lee, Mike and Chien, Andrew A. and Combemale, Benoit and Coroam\u{a}, Vlad and De Bosschere, Koen and Ding, Yi and Friday, Adrian and Gamazaychikov, Boris and Hardman, Lynda and Hinterholzer, Simon and H\"{o}jer, Mattias and Kaack, Lynn and Kuijer, Lenneke and Ligozat, Anne-Laure and Muehlberg, Jan Tobias and Nah, Yunmook and Olsson, Thomas and Orgerie, Anne-C\'{e}cile and Pargman, Daniel and Penzenstadler, Birgit and Romanoff, Tom and Strubell, Emma and Venters, Colin and Zhao, Junhua},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.11.1.1},
  URN =		{urn:nbn:de:0030-drops-250724},
  doi =		{10.4230/DagMan.11.1.1},
  annote =	{Keywords: sustainability, climate change, efficiency, supply chain management, climate modelling}
}
Document
Content-Oblivious Leader Election in 2-Edge-Connected Networks

Authors: Jérémie Chalopin, Yi-Jun Chang, Lyuting Chen, Giuseppe A. Di Luna, and Haoran Zhou

Published in: LIPIcs, Volume 356, 39th International Symposium on Distributed Computing (DISC 2025)


Abstract
Censor-Hillel, Cohen, Gelles, and Sela (PODC 2022 & Distributed Computing 2023) studied fully-defective asynchronous networks, where communication channels may arbitrarily corrupt messages. The model is equivalent to content-oblivious computation, where nodes communicate solely via pulses. They showed that if the network is 2-edge-connected, then any algorithm for a noiseless setting can be simulated in the fully-defective setting; otherwise, no non-trivial computation is possible in the fully-defective setting. However, their simulation requires a predesignated leader, which they conjectured to be necessary for any non-trivial content-oblivious task. Recently, Frei, Gelles, Ghazy, and Nolin (DISC 2024) refuted this conjecture for the special case of oriented ring topology. They designed two asynchronous content-oblivious leader election algorithms with message complexity O(n ⋅ ID_{max}), where n is the number of nodes and ID_{max} is the maximum ID. The first algorithm stabilizes in unoriented rings without termination detection. The second algorithm quiescently terminates in oriented rings, thus enabling the execution of the simulation algorithm after leader election. In this work, we present two results: General 2-edge-connected topologies: First, we show an asynchronous content-oblivious leader election algorithm that quiescently terminates in any 2-edge-connected network with message complexity O(m ⋅ N ⋅ ID_{min}), where m is the number of edges, N is a known upper bound on the number of nodes, and ID_{min} is the smallest ID. Combined with the above simulation, this result shows that whenever a size bound N is known, any noiseless algorithm can be simulated in the fully-defective model without a preselected leader, fully refuting the conjecture. Unoriented rings: We then show that the knowledge of N can be dropped in unoriented ring topologies by presenting a quiescently terminating election algorithm with message complexity O(n ⋅ ID_{max}) that matches the previous bound. Consequently, this result constitutes a strict improvement over the previous state of the art and shows that, on rings, fully-defective and noiseless communication are computationally equivalent, with no additional assumptions.

Cite as

Jérémie Chalopin, Yi-Jun Chang, Lyuting Chen, Giuseppe A. Di Luna, and Haoran Zhou. Content-Oblivious Leader Election in 2-Edge-Connected Networks. In 39th International Symposium on Distributed Computing (DISC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 356, pp. 21:1-21:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chalopin_et_al:LIPIcs.DISC.2025.21,
  author =	{Chalopin, J\'{e}r\'{e}mie and Chang, Yi-Jun and Chen, Lyuting and Di Luna, Giuseppe A. and Zhou, Haoran},
  title =	{{Content-Oblivious Leader Election in 2-Edge-Connected Networks}},
  booktitle =	{39th International Symposium on Distributed Computing (DISC 2025)},
  pages =	{21:1--21:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-402-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{356},
  editor =	{Kowalski, Dariusz R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2025.21},
  URN =		{urn:nbn:de:0030-drops-248385},
  doi =		{10.4230/LIPIcs.DISC.2025.21},
  annote =	{Keywords: Asynchronous model, fault tolerance, quiescent termination}
}
Document
The Complexity Landscape of Dynamic Distributed Subgraph Finding

Authors: Yi-Jun Chang, Lyuting Chen, Yanyu Chen, Gopinath Mishra, and Mingyang Yang

Published in: LIPIcs, Volume 356, 39th International Symposium on Distributed Computing (DISC 2025)


Abstract
Bonne and Censor-Hillel (ICALP 2019) initiated the study of distributed subgraph finding in dynamic networks of limited bandwidth. For the case where the target subgraph is a clique, they determined the tight bandwidth complexity bounds in nearly all settings. However, several open questions remain, and very little is known about finding subgraphs beyond cliques. In this work, we consider these questions and explore subgraphs beyond cliques in the deterministic setting. For finding cliques, we establish an Ω(log log n) bandwidth lower bound for one-round membership-detection under edge insertions only and an Ω(log log log n) bandwidth lower bound for one-round detection under both edge insertions and node insertions. Moreover, we demonstrate new algorithms to show that our lower bounds are tight in bounded-degree networks when the target subgraph is a triangle. Prior to our work, no lower bounds were known for these problems. For finding subgraphs beyond cliques, we present a complete characterization of the bandwidth complexity of the membership-listing problem for every target subgraph, every number of rounds, and every type of topological change: node insertions, node deletions, edge insertions, and edge deletions. We also show partial characterizations for one-round membership-detection and listing.

Cite as

Yi-Jun Chang, Lyuting Chen, Yanyu Chen, Gopinath Mishra, and Mingyang Yang. The Complexity Landscape of Dynamic Distributed Subgraph Finding. In 39th International Symposium on Distributed Computing (DISC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 356, pp. 22:1-22:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chang_et_al:LIPIcs.DISC.2025.22,
  author =	{Chang, Yi-Jun and Chen, Lyuting and Chen, Yanyu and Mishra, Gopinath and Yang, Mingyang},
  title =	{{The Complexity Landscape of Dynamic Distributed Subgraph Finding}},
  booktitle =	{39th International Symposium on Distributed Computing (DISC 2025)},
  pages =	{22:1--22:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-402-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{356},
  editor =	{Kowalski, Dariusz R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2025.22},
  URN =		{urn:nbn:de:0030-drops-248399},
  doi =		{10.4230/LIPIcs.DISC.2025.22},
  annote =	{Keywords: Distributed algorithms, dynamic algorithms, subgraph finding}
}
Document
Brief Announcement
Brief Announcement: Non-Uniform Content-Oblivious Leader Election on Oriented Asynchronous Rings

Authors: Jérémie Chalopin, Yi-Jun Chang, Lyuting Chen, Giuseppe A. Di Luna, and Haoran Zhou

Published in: LIPIcs, Volume 356, 39th International Symposium on Distributed Computing (DISC 2025)


Abstract
In this paper, we study the leader election problem in oriented ring networks under content-oblivious asynchronous message-passing systems, where an adversary may arbitrarily corrupt message contents. Frei et al. (DISC 2024) recently presented a uniform terminating leader election algorithm for oriented rings in this setting, with message complexity O(n ID_{max}) on a ring of size n, where ID_{max} is the largest identifier in the system. In this paper, we investigate the message complexity of leader election in this model, showing that no uniform algorithm can solve the problem if each process is limited to sending a constant number of messages in one direction. Interestingly, this limitation hinges on the uniformity assumption. In the non-uniform setting - where processes know an upper bound U ≥ n on the ring size - we present an algorithm with message complexity O(n U ID_{min}), in which each process sends O(U ID_{min}) messages clockwise and only three messages counter-clockwise. Here, ID_{min} is the smallest identifier in the system. This dependence on the identifiers compares favorably with the dependence on ID_{max} of Frei et al. (DISC 2024). We also show a non-uniform algorithm where each process sends O(U logID_{min}) messages in one direction and O(logID_{min}) in the other. The factor log ID_{min} is optimal, matching the lower bound of Frei et al. (DISC 2024). Finally, in the anonymous setting, we propose a randomized algorithm where each process sends only O(log² U) messages, with a success probability of 1 - U^{-c}.

Cite as

Jérémie Chalopin, Yi-Jun Chang, Lyuting Chen, Giuseppe A. Di Luna, and Haoran Zhou. Brief Announcement: Non-Uniform Content-Oblivious Leader Election on Oriented Asynchronous Rings. In 39th International Symposium on Distributed Computing (DISC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 356, pp. 51:1-51:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chalopin_et_al:LIPIcs.DISC.2025.51,
  author =	{Chalopin, J\'{e}r\'{e}mie and Chang, Yi-Jun and Chen, Lyuting and Di Luna, Giuseppe A. and Zhou, Haoran},
  title =	{{Brief Announcement: Non-Uniform Content-Oblivious Leader Election on Oriented Asynchronous Rings}},
  booktitle =	{39th International Symposium on Distributed Computing (DISC 2025)},
  pages =	{51:1--51:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-402-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{356},
  editor =	{Kowalski, Dariusz R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2025.51},
  URN =		{urn:nbn:de:0030-drops-248675},
  doi =		{10.4230/LIPIcs.DISC.2025.51},
  annote =	{Keywords: Content-Oblivious Networks, Leader Election, Oriented Rings, Asynchronous Systems}
}
Document
Survey
Resilience in Knowledge Graph Embeddings

Authors: Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
In recent years, knowledge graphs have gained interest and witnessed widespread applications in various domains, such as information retrieval, question-answering, recommendation systems, amongst others. Large-scale knowledge graphs to this end have demonstrated their utility in effectively representing structured knowledge. To further facilitate the application of machine learning techniques, knowledge graph embedding models have been developed. Such models can transform entities and relationships within knowledge graphs into vectors. However, these embedding models often face challenges related to noise, missing information, distribution shift, adversarial attacks, etc. This can lead to sub-optimal embeddings and incorrect inferences, thereby negatively impacting downstream applications. While the existing literature has focused so far on adversarial attacks on KGE models, the challenges related to the other critical aspects remain unexplored. In this paper, we, first of all, give a unified definition of resilience, encompassing several factors such as generalisation, in-distribution generalization, distribution adaption, and robustness. After formalizing these concepts for machine learning in general, we define them in the context of knowledge graphs. To find the gap in the existing works on resilience in the context of knowledge graphs, we perform a systematic survey, taking into account all these aspects mentioned previously. Our survey results show that most of the existing works focus on a specific aspect of resilience, namely robustness. After categorizing such works based on their respective aspects of resilience, we discuss the challenges and future research directions.

Cite as

Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo. Resilience in Knowledge Graph Embeddings. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 1:1-1:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{sharma_et_al:TGDK.3.2.1,
  author =	{Sharma, Arnab and Kouagou, N'Dah Jean and Ngomo, Axel-Cyrille Ngonga},
  title =	{{Resilience in Knowledge Graph Embeddings}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{1:1--1:38},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.1},
  URN =		{urn:nbn:de:0030-drops-248117},
  doi =		{10.4230/TGDK.3.2.1},
  annote =	{Keywords: Knowledge graphs, Resilience, Robustness}
}
Document
Research
GraphRAG on Technical Documents - Impact of Knowledge Graph Schema

Authors: Henri Scaffidi, Melinda Hodkiewicz, Caitlin Woods, and Nicole Roocke

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
Retrieval Augmented Generation (RAG) is seeing rapid adoption in industry to enable employees to query information captured in proprietary data for their organisation. In this work, we test the impact of domain-relevant knowledge graph schemas on the results of Microsoft’s GraphRAG pipeline. Our approach aims to address the poor quality of GraphRAG responses on technical reports rich in domain-specific terms. The use case involves technical reports about geology, chemistry and mineral processing published by the Minerals Research Institute of Western Australia (MRIWA). Four schemas are considered: a simple five-class minerals domain expert-developed schema, an expanded minerals domain schema, the Microsoft GraphRAG auto-generated schema, and a schema-less GraphRAG. These are compared to a conventional baseline RAG. Performance is evaluated using a scoring approach that accounts for the mix of correct, incorrect, additional, and missing content in RAG responses. The results show that the simple five-class minerals domain schema extracts approximately 10% more entities from the MRIWA reports than the other schema options. Additionally, both the five-class and the expanded eight-class minerals domain schemas produce the most factually correct answers and the fewest hallucinations. We attribute this to the minerals-specific schemas extracting more relevant, domain-specific information during the Indexing stage. As a result, the Query stage’s context window includes more high-value content. This contributes to the observed improvement in answer quality compared to the other pipelines. In contrast, pipelines with fewer domain-related entities in the KG retrieve less valuable information, leaving more room for irrelevant content in the context window. Baseline RAG responses were typically shorter, less complete, and contained more hallucinations compared to our GraphRAG pipelines. We provide a complete set of resources at https://github.com/nlp-tlp/GraphRAG-on-Minerals-Domain/tree/main. These resources include links to the MRIWA reports, a set of questions (from simple to challenging) along with domain-expert curated answers, schemas, and evaluations of the pipelines.

Cite as

Henri Scaffidi, Melinda Hodkiewicz, Caitlin Woods, and Nicole Roocke. GraphRAG on Technical Documents - Impact of Knowledge Graph Schema. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 3:1-3:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{scaffidi_et_al:TGDK.3.2.3,
  author =	{Scaffidi, Henri and Hodkiewicz, Melinda and Woods, Caitlin and Roocke, Nicole},
  title =	{{GraphRAG on Technical Documents - Impact of Knowledge Graph Schema}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:24},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.3},
  URN =		{urn:nbn:de:0030-drops-248131},
  doi =		{10.4230/TGDK.3.2.3},
  annote =	{Keywords: RAG, minerals, local search, global search, entity extraction, competency questions}
}
Document
Invited Talk
Securing Dynamic Data: A Primer on Differentially Private Data Structures (Invited Talk)

Authors: Monika Henzinger and Roodabeh Safavi

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We give an introduction into differential privacy in the dynamic setting, called the continual observation setting.

Cite as

Monika Henzinger and Roodabeh Safavi. Securing Dynamic Data: A Primer on Differentially Private Data Structures (Invited Talk). In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 2:1-2:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.ESA.2025.2,
  author =	{Henzinger, Monika and Safavi, Roodabeh},
  title =	{{Securing Dynamic Data: A Primer on Differentially Private Data Structures}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{2:1--2:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.2},
  URN =		{urn:nbn:de:0030-drops-244702},
  doi =		{10.4230/LIPIcs.ESA.2025.2},
  annote =	{Keywords: Differential privacy, continual observation}
}
Document
Safe Sequences via Dominators in DAGs for Path-Covering Problems

Authors: Francisco Sena, Romeo Rizzi, and Alexandru I. Tomescu

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A path-covering problem on a directed acyclic graph (DAG) requires finding a set of source-to-sink paths that cover all the nodes, all the arcs, or subsets thereof, and additionally they are optimal with respect to some function. In this paper we study safe sequences of nodes or arcs, namely sequences that appear in some path of every path cover of a DAG. We show that safe sequences admit a simple characterization via cutnodes. Moreover, we establish a connection between maximal safe sequences and leaf-to-root paths in the source- and sink-dominator trees of the DAG, which may be of independent interest in the extensive literature on dominators. With dominator trees, safe sequences admit an O(n)-size representation and a linear-time output-sensitive enumeration algorithm running in time O(m + o), where n and m are the number of nodes and arcs, respectively, and o is the total length of the maximal safe sequences. We then apply maximal safe sequences to simplify Integer Linear Programs (ILPs) for two path-covering problems, LeastSquares and MinPathError, which are at the core of RNA transcript assembly problems from bioinformatics. On various datasets, maximal safe sequences can be computed in under 0.1 seconds per graph, on average, and ILP solvers whose search space is reduced in this manner exhibit significant speed-ups. For example on graphs with a large width, average speed-ups are in the range 50-250× for MinPathError and in the range 80-350× for LeastSquares. Optimizing ILPs using safe sequences can thus become a fast building block of practical RNA transcript assembly tools, and more generally, of path-covering problems.

Cite as

Francisco Sena, Romeo Rizzi, and Alexandru I. Tomescu. Safe Sequences via Dominators in DAGs for Path-Covering Problems. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 55:1-55:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{sena_et_al:LIPIcs.ESA.2025.55,
  author =	{Sena, Francisco and Rizzi, Romeo and Tomescu, Alexandru I.},
  title =	{{Safe Sequences via Dominators in DAGs for Path-Covering Problems}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{55:1--55:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.55},
  URN =		{urn:nbn:de:0030-drops-245230},
  doi =		{10.4230/LIPIcs.ESA.2025.55},
  annote =	{Keywords: directed acyclic graph, path cover, dominator tree, integer linear programming, least squares, minimum path error}
}
Document
Optimal Quantum Algorithm for Estimating Fidelity to a Pure State

Authors: Wang Fang and Qisheng Wang

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We present an optimal quantum algorithm for fidelity estimation between two quantum states when one of them is pure. In particular, the (square root) fidelity of a mixed state to a pure state can be estimated to within additive error ε by using Θ(1/ε) queries to their state-preparation circuits, achieving a quadratic speedup over the folklore O(1/ε²). Our approach is technically simple, and can moreover estimate the quantity √{tr(ρσ²)} that is not common in the literature. To the best of our knowledge, this is the first query-optimal approach to fidelity estimation involving mixed states.

Cite as

Wang Fang and Qisheng Wang. Optimal Quantum Algorithm for Estimating Fidelity to a Pure State. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 4:1-4:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fang_et_al:LIPIcs.ESA.2025.4,
  author =	{Fang, Wang and Wang, Qisheng},
  title =	{{Optimal Quantum Algorithm for Estimating Fidelity to a Pure State}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{4:1--4:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.4},
  URN =		{urn:nbn:de:0030-drops-244727},
  doi =		{10.4230/LIPIcs.ESA.2025.4},
  annote =	{Keywords: Quantum computing, fidelity estimation, quantum algorithms, quantum query complexity}
}
Document
An Improved Bound for Plane Covering Paths

Authors: Hugo A. Akitaya, Greg Aloupis, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, Cyril Gavoille, John Iacono, Linda Kleist, Michiel Smid, Diane Souvaine, and Leonidas Theocharous

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A covering path for a finite set P of points in the plane is a polygonal path such that every point of P lies on a segment of the path. The vertices of the path need not be at points of P. A covering path is plane if its segments do not cross each other. Let π(n) be the minimum number such that every set of n points in the plane admits a plane covering path with at most π(n) segments. We prove that π(n) ≤ ⌈6n/7⌉. This improves the previous best-known upper bound of ⌈21n/22⌉, due to Biniaz (SoCG 2023). Our proof is constructive and yields a simple O(n log n)-time algorithm for computing a plane covering path.

Cite as

Hugo A. Akitaya, Greg Aloupis, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, Cyril Gavoille, John Iacono, Linda Kleist, Michiel Smid, Diane Souvaine, and Leonidas Theocharous. An Improved Bound for Plane Covering Paths. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 75:1-75:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{a.akitaya_et_al:LIPIcs.ESA.2025.75,
  author =	{A. Akitaya, Hugo and Aloupis, Greg and Biniaz, Ahmad and Bose, Prosenjit and De Carufel, Jean-Lou and Gavoille, Cyril and Iacono, John and Kleist, Linda and Smid, Michiel and Souvaine, Diane and Theocharous, Leonidas},
  title =	{{An Improved Bound for Plane Covering Paths}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{75:1--75:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.75},
  URN =		{urn:nbn:de:0030-drops-245432},
  doi =		{10.4230/LIPIcs.ESA.2025.75},
  annote =	{Keywords: Covering Path, Upper Bound, Simple Algorithm}
}
Document
Constructing Long Paths in Graph Streams

Authors: Christian Konrad and Chhaya Trehan

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
In the graph stream model of computation, an algorithm processes the edges of an n-vertex input graph in one or more sequential passes while using a memory that is sublinear in the input size. The streaming model poses significant challenges for algorithmically constructing long paths. Many known algorithms that are tasked with extending an existing path as a subroutine require an entire pass over the input to add a single additional edge. This raises a fundamental question: Are multiple passes inherently necessary to construct paths of non-trivial lengths, or can a single pass suffice? To address this question, we systematically study the Longest Path problem in the one-pass streaming model. In this problem, given a desired approximation factor α, the objective is to compute a path of length at least lp(G)/α, where lp(G) is the length of a longest path in the input graph G. We study the problem in the insertion-only and the insertion-deletion streaming models, and we give algorithms as well as space lower bounds for both undirected and directed graphs. Our results are: 1) We show that for undirected graphs, in both the insertion-only and the insertion-deletion models, there are semi-streaming algorithms, i.e., algorithms that use space O(n poly log n), that compute a path of length at least d/3 with high probability, where d is the average degree of the input graph. These algorithms can also yield an α-approximation to Longest Path using space Õ(n²/α). 2) Next, we show that such a result cannot be achieved for directed graphs, even in the insertion-only model. We show that computing a (n^{1-o(1)})-approximation to Longest Path in directed graphs in the insertion-only model requires space Ω(n²). This result is in line with recent results that demonstrate that processing directed graphs is often significantly harder than undirected graphs in the streaming model. 3) We further complement our results with two additional lower bounds. First, we show that semi-streaming space is insufficient for small constant factor approximations to Longest Path for undirected graphs in the insertion-only model. Last, in undirected graphs in the insertion-deletion model, we show that computing an α-approximation requires space Ω(n²/α³).

Cite as

Christian Konrad and Chhaya Trehan. Constructing Long Paths in Graph Streams. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 22:1-22:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{konrad_et_al:LIPIcs.ESA.2025.22,
  author =	{Konrad, Christian and Trehan, Chhaya},
  title =	{{Constructing Long Paths in Graph Streams}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{22:1--22:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.22},
  URN =		{urn:nbn:de:0030-drops-244902},
  doi =		{10.4230/LIPIcs.ESA.2025.22},
  annote =	{Keywords: Longest Path Problem, Streaming Algorithms, One-way Two-party Communication Complexity}
}
Document
Improved Dominance Filtering for Unions and Minkowski Sums of Pareto Sets

Authors: Konstantinos Karathanasis, Spyros Kontogiannis, and Christos Zaroliagis

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A key task in multi-objective optimization is to compute the Pareto frontier (a.k.a. Pareto subset) P of a given d-dimensional objective space F; that is, a maximal subset P ⊆ F such that every element in P is non-dominated (i.e., it is better in at least one criterion, against any other point) within F. This process, called dominance-filtering, often involves handling objective spaces derived from either the union or the Minkowski sum of two given partial objective spaces which are Pareto sets themselves, and constitutes a major bottleneck in several multi-objective optimization techniques. In this work, we introduce three new data structures, ND^{+}-trees, QND^{+}-trees and TND^{+}-trees, which are designed for efficiently indexing non-dominated objective vectors and performing dominance-checks. We also devise three new algorithms that efficiently filter out dominated objective vectors from the union or the Minkowski sum of two Pareto sets. An extensive experimental evaluation on both synthetically generated and real-world data sets reveals that our new algorithms outperform state-of-art techniques for dominance-filtering of unions and Minkowski sums of Pareto sets, and scale well w.r.t. the number of d ≥ 3 criteria and the sets' sizes.

Cite as

Konstantinos Karathanasis, Spyros Kontogiannis, and Christos Zaroliagis. Improved Dominance Filtering for Unions and Minkowski Sums of Pareto Sets. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 59:1-59:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{karathanasis_et_al:LIPIcs.ESA.2025.59,
  author =	{Karathanasis, Konstantinos and Kontogiannis, Spyros and Zaroliagis, Christos},
  title =	{{Improved Dominance Filtering for Unions and Minkowski Sums of Pareto Sets}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{59:1--59:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.59},
  URN =		{urn:nbn:de:0030-drops-245277},
  doi =		{10.4230/LIPIcs.ESA.2025.59},
  annote =	{Keywords: Multi-Objective Optimization, Multi-Dimensional Data Structures, Pareto Sets, Algorithm Engineering}
}
Document
Streaming Diameter of High-Dimensional Points

Authors: Magnús M. Halldórsson, Nicolaos Matsakis, and Pavel Veselý

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We improve the space bound for streaming approximation of Diameter but also of Farthest Neighbor queries, Minimum Enclosing Ball and its Coreset, in high-dimensional Euclidean spaces. In particular, our deterministic streaming algorithms store 𝒪(ε^{-2}log(1/(ε))) points. This improves by a factor of ε^{-1} the previous space bound of Agarwal and Sharathkumar (SODA 2010), while retaining the state-of-the-art approximation guarantees, such as √2+ε for Diameter or Farthest Neighbor queries, and also offering a simpler and more complete argument. Moreover, we show that storing Ω(ε^{-1}) points is necessary for a streaming (√2+ε)-approximation of Farthest Pair and Farthest Neighbor queries.

Cite as

Magnús M. Halldórsson, Nicolaos Matsakis, and Pavel Veselý. Streaming Diameter of High-Dimensional Points. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 58:1-58:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{halldorsson_et_al:LIPIcs.ESA.2025.58,
  author =	{Halld\'{o}rsson, Magn\'{u}s M. and Matsakis, Nicolaos and Vesel\'{y}, Pavel},
  title =	{{Streaming Diameter of High-Dimensional Points}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{58:1--58:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.58},
  URN =		{urn:nbn:de:0030-drops-245263},
  doi =		{10.4230/LIPIcs.ESA.2025.58},
  annote =	{Keywords: streaming algorithm, farthest pair, diameter, minimum enclosing ball, coreset}
}
  • Refine by Type
  • 135 Document/PDF
  • 115 Document/HTML

  • Refine by Publication Year
  • 113 2025
  • 5 2024
  • 9 2023
  • 2 2022
  • 2 2021
  • Show More...

  • Refine by Author
  • 4 Chang, Yi-Jun
  • 3 Chen, Lyuting
  • 3 Lissandrini, Matteo
  • 2 Allen, Bradley P.
  • 2 Amburi, Sathwik
  • Show More...

  • Refine by Series/Journal
  • 102 LIPIcs
  • 12 OASIcs
  • 5 LITES
  • 13 TGDK
  • 2 DagMan
  • Show More...

  • Refine by Classification
  • 9 Theory of computation → Problems, reductions and completeness
  • 7 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 6 Computing methodologies → Machine learning
  • 6 Theory of computation → Distributed algorithms
  • 5 Computer systems organization → Real-time systems
  • Show More...

  • Refine by Keyword
  • 3 Formal verification
  • 3 Knowledge graphs
  • 3 real-time systems
  • 2 Complexity
  • 2 Complexity dichotomy
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail