18 Search Results for "Lin, Guohui"


Document
Maximizing Social Welfare Among EF1 Allocations at the Presence of Two Types of Agents

Authors: Jiaxuan Ma, Yong Chen, Guangting Chen, Mingyang Gong, Guohui Lin, and An Zhang

Published in: LIPIcs, Volume 359, 36th International Symposium on Algorithms and Computation (ISAAC 2025)


Abstract
We study the fair allocation of indivisible items to n agents to maximize the utilitarian social welfare, where the fairness criterion is envy-free up to one item and there are only two different utility functions shared by the agents. We present a 2-approximation algorithm when the two utility functions are normalized, improving the previous best ratio of 16 √n shown for general normalized utility functions; thus this constant ratio approximation algorithm confirms the APX-completeness in this special case previously shown APX-hard. When there are only three agents, i.e., n = 3, the previous best ratio is 3 shown for general utility functions, and we present an improved and tight 5/3-approximation algorithm when the two utility functions are normalized, and a best possible and tight 2-approximation algorithm when the two utility functions are unnormalized.

Cite as

Jiaxuan Ma, Yong Chen, Guangting Chen, Mingyang Gong, Guohui Lin, and An Zhang. Maximizing Social Welfare Among EF1 Allocations at the Presence of Two Types of Agents. In 36th International Symposium on Algorithms and Computation (ISAAC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 359, pp. 49:1-49:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ma_et_al:LIPIcs.ISAAC.2025.49,
  author =	{Ma, Jiaxuan and Chen, Yong and Chen, Guangting and Gong, Mingyang and Lin, Guohui and Zhang, An},
  title =	{{Maximizing Social Welfare Among EF1 Allocations at the Presence of Two Types of Agents}},
  booktitle =	{36th International Symposium on Algorithms and Computation (ISAAC 2025)},
  pages =	{49:1--49:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-408-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{359},
  editor =	{Chen, Ho-Lin and Hon, Wing-Kai and Tsai, Meng-Tsung},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2025.49},
  URN =		{urn:nbn:de:0030-drops-249570},
  doi =		{10.4230/LIPIcs.ISAAC.2025.49},
  annote =	{Keywords: Fair allocation, utilitarian social welfare, envy-free up to one item, envy-cycle elimination, round robin, approximation algorithm}
}
Document
Assessing Map Reproducibility with Visual Question-Answering: An Empirical Evaluation

Authors: Eftychia Koukouraki, Auriol Degbelo, and Christian Kray

Published in: LIPIcs, Volume 346, 13th International Conference on Geographic Information Science (GIScience 2025)


Abstract
Reproducibility is a key principle of the modern scientific method. Maps, as an important means of communicating scientific results in GIScience and across disciplines, should be reproducible. Currently, map reproducibility assessment is done manually, which makes the assessment process tedious and time-consuming, ultimately limiting its efficiency. Hence, this work explores the extent to which Visual Question-Answering (VQA) can be used to automate some tasks relevant to map reproducibility assessment. We selected five state-of-the-art vision language models (VLMs) and followed a three-step approach to evaluate their ability to discriminate between maps and other images, interpret map content, and compare two map images using VQA. Our results show that current VLMs already possess map-reading capabilities and demonstrate understanding of spatial concepts, such as cardinal directions, geographic scope, and legend interpretation. Our paper demonstrates the potential of using VQA to support reproducibility assessment and highlights the outstanding issues that need to be addressed to achieve accurate, trustworthy map descriptions, thereby reducing the time and effort required by human evaluators.

Cite as

Eftychia Koukouraki, Auriol Degbelo, and Christian Kray. Assessing Map Reproducibility with Visual Question-Answering: An Empirical Evaluation. In 13th International Conference on Geographic Information Science (GIScience 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 346, pp. 13:1-13:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{koukouraki_et_al:LIPIcs.GIScience.2025.13,
  author =	{Koukouraki, Eftychia and Degbelo, Auriol and Kray, Christian},
  title =	{{Assessing Map Reproducibility with Visual Question-Answering: An Empirical Evaluation}},
  booktitle =	{13th International Conference on Geographic Information Science (GIScience 2025)},
  pages =	{13:1--13:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-378-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{346},
  editor =	{Sila-Nowicka, Katarzyna and Moore, Antoni and O'Sullivan, David and Adams, Benjamin and Gahegan, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2025.13},
  URN =		{urn:nbn:de:0030-drops-238426},
  doi =		{10.4230/LIPIcs.GIScience.2025.13},
  annote =	{Keywords: map comparison, computational reproducibility, visual question answering, large language models, GeoAI}
}
Document
Approximability of Longest Run Subsequence and Complementary Minimization Problems

Authors: Yuichi Asahiro, Mingyang Gong, Jesper Jansson, Guohui Lin, Sichen Lu, Eiji Miyano, Hirotaka Ono, Toshiki Saitoh, and Shunichi Tanaka

Published in: LIPIcs, Volume 344, 25th International Conference on Algorithms for Bioinformatics (WABI 2025)


Abstract
We study the polynomial-time approximability of the Longest Run Subsequence problem (LRS for short) and its complementary minimization variant Minimum Run Subsequence Deletion problem (MRSD for short). For a string S = s₁ ⋯ s_n over an alphabet Σ, a subsequence S' of S is S' = s_{i₁} ⋯ s_{i_p}, such that 1 ≤ i₁ < i₂ < … < i_p ≤ |S|. A run of a symbol σ ∈ Σ in S is a maximal substring of consecutive occurrences of σ. A run subsequence S' of S is a subsequence of S in which every symbol σ ∈ Σ occurs in at most one run. The co-subsequence ̅{S'} of the subsequence S' = s_{i₁} ⋯ s_{i_p} in S is the subsequence obtained by deleting all the characters in S' from S, i.e., ̅{S'} = s_{j₁} ⋯ s_{j_{n-p}} such that j₁ < j₂ < … < j_{n-p} and {j₁, …, j_{n-p}} = {1, …, n}⧵ {i₁, …, i_p}. Given a string S, the goal of LRS (resp., MRSD) is to find a run subsequence S^* of S such that the length |S^*| is maximized (resp., the number | ̅{S^*}| of deleted symbols from S is minimized) over all the run subsequences of S. Let k be the maximum number of symbol occurrences in the input S. It is known that LRS and MRSD are APX-hard even if k = 2. In this paper, we show that LRS can be approximated in polynomial time within factors of (k+2)/3 for k = 2 or 3, and 2(k+1)/5 for every k ≥ 4. Furthermore, we show that MRSD can be approximated in linear time within a factor of (k+4)/4 if k is even and (k+3)/4 if k is odd.

Cite as

Yuichi Asahiro, Mingyang Gong, Jesper Jansson, Guohui Lin, Sichen Lu, Eiji Miyano, Hirotaka Ono, Toshiki Saitoh, and Shunichi Tanaka. Approximability of Longest Run Subsequence and Complementary Minimization Problems. In 25th International Conference on Algorithms for Bioinformatics (WABI 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 344, pp. 3:1-3:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{asahiro_et_al:LIPIcs.WABI.2025.3,
  author =	{Asahiro, Yuichi and Gong, Mingyang and Jansson, Jesper and Lin, Guohui and Lu, Sichen and Miyano, Eiji and Ono, Hirotaka and Saitoh, Toshiki and Tanaka, Shunichi},
  title =	{{Approximability of Longest Run Subsequence and Complementary Minimization Problems}},
  booktitle =	{25th International Conference on Algorithms for Bioinformatics (WABI 2025)},
  pages =	{3:1--3:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-386-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{344},
  editor =	{Brejov\'{a}, Bro\v{n}a and Patro, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2025.3},
  URN =		{urn:nbn:de:0030-drops-239290},
  doi =		{10.4230/LIPIcs.WABI.2025.3},
  annote =	{Keywords: Longest run subsequence, minimum run subsequence deletion, approximation algorithm}
}
Document
Research
Subsequence-Based Indices for Genome Sequence Analysis

Authors: Giovanni Buzzega, Alessio Conte, Veronica Guerrini, Giulia Punzi, Giovanna Rosone, and Lorenzo Tattini

Published in: OASIcs, Volume 132, From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday (2025)


Abstract
Compact indices are a fundamental tool in string analysis, even more so in bioinformatics, where genomic sequences can reach billions in length. This paper presents some recent results in which Roberto Grossi has been involved, showing how some of these indices do more than just efficiently represent data, but rather are able to bring out salient information within it, which can be exploited for their downstream analysis. Specifically, we first review a recently-introduced method [Guerrini et al., 2023] that employs the Burrows-Wheeler Transform to build reasonably accurate phylogenetic trees in an assembly-free scenario. We then describe a recent practical tool [Buzzega et al., 2025] for indexing Maximal Common Subsequences between strings, which can enable analysis of genomic sequence similarity. Experimentally, we show that the results produced by the one index are consistent with the expectations about the results of the other index.

Cite as

Giovanni Buzzega, Alessio Conte, Veronica Guerrini, Giulia Punzi, Giovanna Rosone, and Lorenzo Tattini. Subsequence-Based Indices for Genome Sequence Analysis. In From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday. Open Access Series in Informatics (OASIcs), Volume 132, pp. 20:1-20:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{buzzega_et_al:OASIcs.Grossi.20,
  author =	{Buzzega, Giovanni and Conte, Alessio and Guerrini, Veronica and Punzi, Giulia and Rosone, Giovanna and Tattini, Lorenzo},
  title =	{{Subsequence-Based Indices for Genome Sequence Analysis}},
  booktitle =	{From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday},
  pages =	{20:1--20:21},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-391-1},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{132},
  editor =	{Conte, Alessio and Marino, Andrea and Rosone, Giovanna and Vitter, Jeffrey Scott},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Grossi.20},
  URN =		{urn:nbn:de:0030-drops-238199},
  doi =		{10.4230/OASIcs.Grossi.20},
  annote =	{Keywords: String Indices, Burrows-Wheeler Transform, Maximal Common Subsequences, Sequence Analysis, Phylogeny}
}
Document
Representing Paths in Digraphs

Authors: Riccardo Dondi and Alexandru Popa

Published in: LIPIcs, Volume 331, 36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025)


Abstract
In this contribution we consider two combinatorial problems related to graph string matching, motivated by recent approaches in computational genomics. Given a DAG where each node is labeled by a symbol, the problems aim to find a path in the DAG whose nodes contain all (or the maximum number of) symbols of the alphabet. We introduce a decision problem, Σ-Representing Path, that asks whether there exists a path that contains all the symbols of the alphabet, and an optimization problem, called Maximum Representing Path, that asks for a path that contains the maximum number of symbols. We analyze the complexity of the problems, showing the NP-completeness of {Σ-Representing Path} when each symbol labels at most three nodes in the DAG, and showing the APX-hardness of Maximum Representing Path when each symbol labels at most two nodes in the DAG. We complement the first result by giving a polynomial-time algorithm for Σ-Representing Path when each symbol labels at most two nodes in the DAG. Then we investigate the parameterized complexity of the two problems when the DAG has a limited distance from a set of disjoint paths and we show that both problems are W[1]-hard for this parameter. We consider the approximation of Maximum Representing Path, giving an approximation algorithm of factor √OPT, where OPT is the value of an optimal solution of the problem. We also show that Maximum Representing Path cannot be approximated within factor e/(e-1) - α, for any constant α > 0, unless NP ⊆ DTIME(|V|^{O(log log |V|)}) (V is the set of nodes of the DAG).

Cite as

Riccardo Dondi and Alexandru Popa. Representing Paths in Digraphs. In 36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 331, pp. 1:1-1:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dondi_et_al:LIPIcs.CPM.2025.1,
  author =	{Dondi, Riccardo and Popa, Alexandru},
  title =	{{Representing Paths in Digraphs}},
  booktitle =	{36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025)},
  pages =	{1:1--1:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-369-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{331},
  editor =	{Bonizzoni, Paola and M\"{a}kinen, Veli},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2025.1},
  URN =		{urn:nbn:de:0030-drops-230954},
  doi =		{10.4230/LIPIcs.CPM.2025.1},
  annote =	{Keywords: Graph String Matching, Computational Complexity, Parameterized Complexity, Algorithms}
}
Document
Hardness and Approximation Algorithms for Balanced Districting Problems

Authors: Prathamesh Dharangutte, Jie Gao, Shang-En Huang, and Fang-Yi Yu

Published in: LIPIcs, Volume 329, 6th Symposium on Foundations of Responsible Computing (FORC 2025)


Abstract
We introduce and study the problem of balanced districting, where given an undirected graph with vertices carrying two types of weights (different population, resource types, etc) the goal is to maximize the total weights covered in vertex disjoint districts such that each district is a star or (in general) a connected induced subgraph with the two weights to be balanced. This problem is strongly motivated by political redistricting, where contiguity, population balance, and compactness are essential. We provide hardness and approximation algorithms for this problem. In particular, we show NP-hardness for an approximation better than n^{1/2-δ} for any constant δ > 0 in general graphs even when the districts are star graphs, as well as NP-hardness on complete graphs, tree graphs, planar graphs and other restricted settings. On the other hand, we develop an algorithm for balanced star districting that gives an O(√n)-approximation on any graph (which is basically tight considering matching hardness of approximation results), an O(log n) approximation on planar graphs with extensions to minor-free graphs. Our algorithm uses a modified Whack-a-Mole algorithm [Bhattacharya, Kiss, and Saranurak, SODA 2023] to find a sparse solution of a fractional packing linear program (despite exponentially many variables) which requires a new design of a separation oracle specific for our balanced districting problem. To turn the fractional solution to a feasible integer solution, we adopt the randomized rounding algorithm by [Chan and Har-Peled, SoCG 2009]. To get a good approximation ratio of the rounding procedure, a crucial element in the analysis is the balanced scattering separators for planar graphs and minor-free graphs - separators that can be partitioned into a small number of k-hop independent sets for some constant k - which may find independent interest in solving other packing style problems. Further, our algorithm is versatile - the very same algorithm can be analyzed in different ways on various graph classes, which leads to class-dependent approximation ratios. We also provide a FPTAS algorithm for complete graphs and tree graphs, as well as greedy algorithms and approximation ratios when the district cardinality is bounded, the graph has bounded degree or the weights are binary. We refer the readers to the full version of the paper for complete set of results and proofs.

Cite as

Prathamesh Dharangutte, Jie Gao, Shang-En Huang, and Fang-Yi Yu. Hardness and Approximation Algorithms for Balanced Districting Problems. In 6th Symposium on Foundations of Responsible Computing (FORC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 329, pp. 4:1-4:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dharangutte_et_al:LIPIcs.FORC.2025.4,
  author =	{Dharangutte, Prathamesh and Gao, Jie and Huang, Shang-En and Yu, Fang-Yi},
  title =	{{Hardness and Approximation Algorithms for Balanced Districting Problems}},
  booktitle =	{6th Symposium on Foundations of Responsible Computing (FORC 2025)},
  pages =	{4:1--4:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-367-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{329},
  editor =	{Bun, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2025.4},
  URN =		{urn:nbn:de:0030-drops-231310},
  doi =		{10.4230/LIPIcs.FORC.2025.4},
  annote =	{Keywords: Approximation algorithms, algorithmic fairness}
}
Document
Spanner Enumeration for Temporal Graphs

Authors: Kazuhiro Kurita, Andrea Marino, Jason Schoeters, and Takeaki Uno

Published in: LIPIcs, Volume 330, 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)


Abstract
A spanner of a temporal graph is a subset of edges that preserves connectivity over time between vertices. A minimal spanner is one in which no additional edges can be removed without breaking this connectivity. Our focus is on enumerating minimal spanners for a given temporal graph. We explore several variations of this problem based on the type of connectivity that must be maintained, ranging from one-to-all connectivity to one-to-all-to-one, many-to-all, and finally all-to-all connectivity. We establish that these problems become progressively harder: (i) We present a polynomial-delay enumeration algorithm for one-to-all connectivity; (ii) We prove Dual-hardness for both one-to-all-to-one and many-to-all connectivity, even in the restricted case of two-to-all; (iii) Finally, for all-to-all connectivity, we show that enumeration cannot be performed in output-polynomial time unless P = NP.

Cite as

Kazuhiro Kurita, Andrea Marino, Jason Schoeters, and Takeaki Uno. Spanner Enumeration for Temporal Graphs. In 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 330, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kurita_et_al:LIPIcs.SAND.2025.9,
  author =	{Kurita, Kazuhiro and Marino, Andrea and Schoeters, Jason and Uno, Takeaki},
  title =	{{Spanner Enumeration for Temporal Graphs}},
  booktitle =	{4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)},
  pages =	{9:1--9:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-368-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{330},
  editor =	{Meeks, Kitty and Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2025.9},
  URN =		{urn:nbn:de:0030-drops-230621},
  doi =		{10.4230/LIPIcs.SAND.2025.9},
  annote =	{Keywords: temporal graphs, temporal spanners, one-to-all connectivity, all-to-all connectivity enumeration, NP-completeness, Dual-hardness, binary partition tree, flashlight search, polynomial delay}
}
Document
On Deciding the Data Complexity of Answering Linear Monadic Datalog Queries with LTL Operators

Authors: Alessandro Artale, Anton Gnatenko, Vladislav Ryzhikov, and Michael Zakharyaschev

Published in: LIPIcs, Volume 328, 28th International Conference on Database Theory (ICDT 2025)


Abstract
Our concern is the data complexity of answering linear monadic datalog queries whose atoms in the rule bodies can be prefixed by operators of linear temporal logic LTL. We first observe that, for data complexity, answering any connected query with operators ○/○- (at the next/previous moment) is either in AC⁰, or in ACC⁰\AC⁰, or NC¹-complete, or L-hard and in NL. Then we show that the problem of deciding L-hardness of answering such queries is PSpace-complete, while checking membership in the classes AC⁰ and ACC⁰ as well as NC¹-completeness can be done in ExpSpace. Finally, we prove that membership in AC⁰ or in ACC⁰, NC¹-completeness, and L-hardness are undecidable for queries with operators ◇/◇- (sometime in the future/past) provided that NC¹ ≠ NL and L ≠ NL.

Cite as

Alessandro Artale, Anton Gnatenko, Vladislav Ryzhikov, and Michael Zakharyaschev. On Deciding the Data Complexity of Answering Linear Monadic Datalog Queries with LTL Operators. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 31:1-31:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{artale_et_al:LIPIcs.ICDT.2025.31,
  author =	{Artale, Alessandro and Gnatenko, Anton and Ryzhikov, Vladislav and Zakharyaschev, Michael},
  title =	{{On Deciding the Data Complexity of Answering Linear Monadic Datalog Queries with LTL Operators}},
  booktitle =	{28th International Conference on Database Theory (ICDT 2025)},
  pages =	{31:1--31:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-364-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{328},
  editor =	{Roy, Sudeepa and Kara, Ahmet},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.31},
  URN =		{urn:nbn:de:0030-drops-229723},
  doi =		{10.4230/LIPIcs.ICDT.2025.31},
  annote =	{Keywords: Linear monadic datalog, linear temporal logic, data complexity}
}
Document
Revisit the Scheduling Problem with Calibrations

Authors: Lin Chen, Yixiong Gao, Minming Li, Guohui Lin, and Kai Wang

Published in: LIPIcs, Volume 322, 35th International Symposium on Algorithms and Computation (ISAAC 2024)


Abstract
The research about scheduling with calibrations was initiated from the Integrated Stockpile Evaluation (ISE) program which tests nuclear weapons periodically. The tests for these weapons require calibrations that are expensive in the monetary sense. This model has many industrial applications where the machines need to be calibrated periodically to ensure high-quality products, including robotics and digital cameras. In 2013, Bender et al. (SPAA '13) proposed a theoretical framework for the ISE problem. In this model, a machine can only be trusted to run a job when it is calibrated and the calibration remains valid for a time period of length T, after which it must be recalibrated before running more jobs. The objective is to find a schedule that completes all jobs by their deadlines and minimizes the total number of calibrations. In this paper, we study the scheduling problem with calibrations on multiple parallel machines where we consider unit-time processing jobs with release times and deadlines. We propose a dynamic programming algorithm with polynomial running time when the number of machines is constant. Then, we propose another dynamic programming approach with polynomial running time when the length of the calibrated period is constant. Also, we propose a PTAS, that is, for any constant ε > 0, we give a (1+ε) - approximation solution with m machines.

Cite as

Lin Chen, Yixiong Gao, Minming Li, Guohui Lin, and Kai Wang. Revisit the Scheduling Problem with Calibrations. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 20:1-20:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ISAAC.2024.20,
  author =	{Chen, Lin and Gao, Yixiong and Li, Minming and Lin, Guohui and Wang, Kai},
  title =	{{Revisit the Scheduling Problem with Calibrations}},
  booktitle =	{35th International Symposium on Algorithms and Computation (ISAAC 2024)},
  pages =	{20:1--20:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-354-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{322},
  editor =	{Mestre, Juli\'{a}n and Wirth, Anthony},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.20},
  URN =		{urn:nbn:de:0030-drops-221476},
  doi =		{10.4230/LIPIcs.ISAAC.2024.20},
  annote =	{Keywords: Approximation Algorithm, Scheduling, Calibration, Resource Augmentation}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Survey
Semantic Web: Past, Present, and Future

Authors: Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Ever since the vision was formulated, the Semantic Web has inspired many generations of innovations. Semantic technologies have been used to share vast amounts of information on the Web, enhance them with semantics to give them meaning, and enable inference and reasoning on them. Throughout the years, semantic technologies, and in particular knowledge graphs, have been used in search engines, data integration, enterprise settings, and machine learning. In this paper, we recap the classical concepts and foundations of the Semantic Web as well as modern and recent concepts and applications, building upon these foundations. The classical topics we cover include knowledge representation, creating and validating knowledge on the Web, reasoning and linking, and distributed querying. We enhance this classical view of the so-called "Semantic Web Layer Cake" with an update of recent concepts that include provenance, security and trust, as well as a discussion of practical impacts from industry-led contributions. We conclude with an outlook on the future directions of the Semantic Web. This is a living document. If you like to contribute, please contact the first author and visit: https://github.com/ascherp/semantic-web-primer

Cite as

Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal. Semantic Web: Past, Present, and Future. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 3:1-3:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{scherp_et_al:TGDK.2.1.3,
  author =	{Scherp, Ansgar and Groener, Gerd and \v{S}koda, Petr and Hose, Katja and Vidal, Maria-Esther},
  title =	{{Semantic Web: Past, Present, and Future}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:37},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.3},
  URN =		{urn:nbn:de:0030-drops-198607},
  doi =		{10.4230/TGDK.2.1.3},
  annote =	{Keywords: Linked Open Data, Semantic Web Graphs, Knowledge Graphs}
}
Document
Survey
Logics for Conceptual Data Modelling: A Review

Authors: Pablo R. Fillottrani and C. Maria Keet

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Information modelling for databases and object-oriented information systems avails of conceptual data modelling languages such as EER and UML Class Diagrams. Many attempts exist to add logical rigour to them, for various reasons and with disparate strengths. In this paper we aim to provide a structured overview of the many efforts. We focus on aims, approaches to the formalisation, including key dimensions of choice points, popular logics used, and the main relevant reasoning services. We close with current challenges and research directions.

Cite as

Pablo R. Fillottrani and C. Maria Keet. Logics for Conceptual Data Modelling: A Review. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 4:1-4:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{fillottrani_et_al:TGDK.2.1.4,
  author =	{Fillottrani, Pablo R. and Keet, C. Maria},
  title =	{{Logics for Conceptual Data Modelling: A Review}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{4:1--4:30},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.4},
  URN =		{urn:nbn:de:0030-drops-198616},
  doi =		{10.4230/TGDK.2.1.4},
  annote =	{Keywords: Conceptual Data Modelling, EER, UML, Description Logics, OWL}
}
Document
Position
Large Language Models and Knowledge Graphs: Opportunities and Challenges

Authors: Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo, Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Hajira Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo Lissandrini, Russa Biswas, Gerard de Melo, Angela Bonifati, Edlira Vakaj, Mauro Dragoni, and Damien Graux

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Large Language Models (LLMs) have taken Knowledge Representation - and the world - by storm. This inflection point marks a shift from explicit knowledge representation to a renewed focus on the hybrid representation of both explicit knowledge and parametric knowledge. In this position paper, we will discuss some of the common debate points within the community on LLMs (parametric knowledge) and Knowledge Graphs (explicit knowledge) and speculate on opportunities and visions that the renewed focus brings, as well as related research topics and challenges.

Cite as

Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo, Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Hajira Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo Lissandrini, Russa Biswas, Gerard de Melo, Angela Bonifati, Edlira Vakaj, Mauro Dragoni, and Damien Graux. Large Language Models and Knowledge Graphs: Opportunities and Challenges. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 2:1-2:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{pan_et_al:TGDK.1.1.2,
  author =	{Pan, Jeff Z. and Razniewski, Simon and Kalo, Jan-Christoph and Singhania, Sneha and Chen, Jiaoyan and Dietze, Stefan and Jabeen, Hajira and Omeliyanenko, Janna and Zhang, Wen and Lissandrini, Matteo and Biswas, Russa and de Melo, Gerard and Bonifati, Angela and Vakaj, Edlira and Dragoni, Mauro and Graux, Damien},
  title =	{{Large Language Models and Knowledge Graphs: Opportunities and Challenges}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:38},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.2},
  URN =		{urn:nbn:de:0030-drops-194766},
  doi =		{10.4230/TGDK.1.1.2},
  annote =	{Keywords: Large Language Models, Pre-trained Language Models, Knowledge Graphs, Ontology, Retrieval Augmented Language Models}
}
Document
Approximation Algorithms for the Longest Run Subsequence Problem

Authors: Yuichi Asahiro, Hiroshi Eto, Mingyang Gong, Jesper Jansson, Guohui Lin, Eiji Miyano, Hirotaka Ono, and Shunichi Tanaka

Published in: LIPIcs, Volume 259, 34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)


Abstract
We study the approximability of the Longest Run Subsequence problem (LRS for short). For a string S = s_1 ⋯ s_n over an alphabet Σ, a run of a symbol σ ∈ Σ in S is a maximal substring of consecutive occurrences of σ. A run subsequence S' of S is a sequence in which every symbol σ ∈ Σ occurs in at most one run. Given a string S, the goal of LRS is to find a longest run subsequence S^* of S such that the length |S^*| is maximized over all the run subsequences of S. It is known that LRS is APX-hard even if each symbol has at most two occurrences in the input string, and that LRS admits a polynomial-time k-approximation algorithm if the number of occurrences of every symbol in the input string is bounded by k. In this paper, we design a polynomial-time (k+1)/2-approximation algorithm for LRS under the k-occurrence constraint on input strings. For the case k = 2, we further improve the approximation ratio from 3/2 to 4/3.

Cite as

Yuichi Asahiro, Hiroshi Eto, Mingyang Gong, Jesper Jansson, Guohui Lin, Eiji Miyano, Hirotaka Ono, and Shunichi Tanaka. Approximation Algorithms for the Longest Run Subsequence Problem. In 34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 259, pp. 2:1-2:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{asahiro_et_al:LIPIcs.CPM.2023.2,
  author =	{Asahiro, Yuichi and Eto, Hiroshi and Gong, Mingyang and Jansson, Jesper and Lin, Guohui and Miyano, Eiji and Ono, Hirotaka and Tanaka, Shunichi},
  title =	{{Approximation Algorithms for the Longest Run Subsequence Problem}},
  booktitle =	{34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)},
  pages =	{2:1--2:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-276-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{259},
  editor =	{Bulteau, Laurent and Lipt\'{a}k, Zsuzsanna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2023.2},
  URN =		{urn:nbn:de:0030-drops-179560},
  doi =		{10.4230/LIPIcs.CPM.2023.2},
  annote =	{Keywords: Longest run subsequence problem, bounded occurrence, approximation algorithm}
}
Document
Approximation Algorithms for Covering Vertices by Long Paths

Authors: Mingyang Gong, Jing Fan, Guohui Lin, and Eiji Miyano

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
Given a graph, the general problem to cover the maximum number of vertices by a collection of vertex-disjoint long paths seemingly escapes from the literature. A path containing at least k vertices is considered long. When k ≤ 3, the problem is polynomial time solvable; when k is the total number of vertices, the problem reduces to the Hamiltonian path problem, which is NP-complete. For a fixed k ≥ 4, the problem is NP-hard and the best known approximation algorithm for the weighted set packing problem implies a k-approximation algorithm. To the best of our knowledge, there is no approximation algorithm directly designed for the general problem; when k = 4, the problem admits a 4-approximation algorithm which was presented recently. We propose the first (0.4394 k + O(1))-approximation algorithm for the general problem and an improved 2-approximation algorithm when k = 4. Both algorithms are based on local improvement, and their performance analyses are done via amortization.

Cite as

Mingyang Gong, Jing Fan, Guohui Lin, and Eiji Miyano. Approximation Algorithms for Covering Vertices by Long Paths. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 53:1-53:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gong_et_al:LIPIcs.MFCS.2022.53,
  author =	{Gong, Mingyang and Fan, Jing and Lin, Guohui and Miyano, Eiji},
  title =	{{Approximation Algorithms for Covering Vertices by Long Paths}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{53:1--53:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.53},
  URN =		{urn:nbn:de:0030-drops-168517},
  doi =		{10.4230/LIPIcs.MFCS.2022.53},
  annote =	{Keywords: Path cover, k-path, local improvement, amortized analysis, approximation algorithm}
}
  • Refine by Type
  • 18 Document/PDF
  • 11 Document/HTML

  • Refine by Publication Year
  • 8 2025
  • 4 2024
  • 2 2023
  • 2 2022
  • 1 2017
  • Show More...

  • Refine by Author
  • 8 Lin, Guohui
  • 4 Gong, Mingyang
  • 4 Miyano, Eiji
  • 3 Asahiro, Yuichi
  • 3 Jansson, Jesper
  • Show More...

  • Refine by Series/Journal
  • 13 LIPIcs
  • 1 OASIcs
  • 4 TGDK

  • Refine by Classification
  • 6 Theory of computation → Design and analysis of algorithms
  • 2 Computing methodologies → Description logics
  • 2 Computing methodologies → Knowledge representation and reasoning
  • 2 Information systems → Semantic web description languages
  • 2 Theory of computation → Graph algorithms analysis
  • Show More...

  • Refine by Keyword
  • 4 approximation algorithm
  • 2 Knowledge Graphs
  • 2 Scheduling
  • 1 Algorithms
  • 1 Approximation Algorithm
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail