12 Search Results for "Luca, Florian"


Document
Invited Talk
Learning Temporal Logic Formulas from Time-Series Data (Invited Talk)

Authors: Laura Nenzi

Published in: LIPIcs, Volume 278, 30th International Symposium on Temporal Representation and Reasoning (TIME 2023)


Abstract
In this talk, we provide an overview of recent advancements in the field of mining formal specifications from time-series data, with a specific focus on learning Signal Temporal Logic (STL) formulae.

Cite as

Laura Nenzi. Learning Temporal Logic Formulas from Time-Series Data (Invited Talk). In 30th International Symposium on Temporal Representation and Reasoning (TIME 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 278, pp. 1:1-1:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{nenzi:LIPIcs.TIME.2023.1,
  author =	{Nenzi, Laura},
  title =	{{Learning Temporal Logic Formulas from Time-Series Data}},
  booktitle =	{30th International Symposium on Temporal Representation and Reasoning (TIME 2023)},
  pages =	{1:1--1:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-298-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{278},
  editor =	{Artikis, Alexander and Bruse, Florian and Hunsberger, Luke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2023.1},
  URN =		{urn:nbn:de:0030-drops-190917},
  doi =		{10.4230/LIPIcs.TIME.2023.1},
  annote =	{Keywords: Temporal Logic, Mining Specifications}
}
Document
LTL over Finite Words Can Be Exponentially More Succinct Than Pure-Past LTL, and vice versa

Authors: Alessandro Artale, Luca Geatti, Nicola Gigante, Andrea Mazzullo, and Angelo Montanari

Published in: LIPIcs, Volume 278, 30th International Symposium on Temporal Representation and Reasoning (TIME 2023)


Abstract
Linear Temporal Logic over finite traces (LTL_𝖿) has proved itself to be an important and effective formalism in formal verification as well as in artificial intelligence. Pure past LTL_𝖿 (pLTL) is the logic obtained from LTL_𝖿 by replacing each (future) temporal operator by a corresponding past one, and is naturally interpreted at the end of a finite trace. It is known that each property definable in LTL_𝖿 is also definable in pLTL, and ǐceversa. However, despite being extensively used in practice, to the best of our knowledge, there is no systematic study of their succinctness. In this paper, we investigate the succinctness of LTL_𝖿 and pLTL. First, we prove that pLTL can be exponentially more succinct than LTL_𝖿 by showing that there exists a property definable with a pLTL formula of size n such that the size of all LTL_𝖿 formulas defining it is at least exponential in n. Then, we prove that LTL_𝖿 can be exponentially more succinct than pLTL as well. This result shows that, although being expressively equivalent, LTL_𝖿 and pLTL are incomparable when succinctness is concerned. In addition, we study the succinctness of Safety-LTL (the syntactic safety fragment of LTL over infinite traces) with respect to its canonical form G(pLTL), whose formulas are of the form G(α), G being the globally operator and α a pLTL formula. We prove that G(pLTL) can be exponentially more succinct than Safety-LTL, and that the same holds for the dual cosafety fragment.

Cite as

Alessandro Artale, Luca Geatti, Nicola Gigante, Andrea Mazzullo, and Angelo Montanari. LTL over Finite Words Can Be Exponentially More Succinct Than Pure-Past LTL, and vice versa. In 30th International Symposium on Temporal Representation and Reasoning (TIME 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 278, pp. 2:1-2:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{artale_et_al:LIPIcs.TIME.2023.2,
  author =	{Artale, Alessandro and Geatti, Luca and Gigante, Nicola and Mazzullo, Andrea and Montanari, Angelo},
  title =	{{LTL over Finite Words Can Be Exponentially More Succinct Than Pure-Past LTL, and vice versa}},
  booktitle =	{30th International Symposium on Temporal Representation and Reasoning (TIME 2023)},
  pages =	{2:1--2:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-298-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{278},
  editor =	{Artikis, Alexander and Bruse, Florian and Hunsberger, Luke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2023.2},
  URN =		{urn:nbn:de:0030-drops-190927},
  doi =		{10.4230/LIPIcs.TIME.2023.2},
  annote =	{Keywords: Temporal Logic, Succinctness, LTLf, Finite Traces, Pure past LTL}
}
Document
Extended Abstract
Torwards Infinite-State Verification and Planning with Linear Temporal Logic Modulo Theories (Extended Abstract)

Authors: Luca Geatti, Alessandro Gianola, and Nicola Gigante

Published in: LIPIcs, Volume 278, 30th International Symposium on Temporal Representation and Reasoning (TIME 2023)


Abstract
In this extended abstract, we discuss about Linear Temporal Logic Modulo Theories over finite traces (LTL_f^MT), a temporal logic that we recently introduced with the goal of providing an equilibrium between generality of the formalism and decidability of the logic. After recalling its distinguishing features, we discuss some future applications.

Cite as

Luca Geatti, Alessandro Gianola, and Nicola Gigante. Torwards Infinite-State Verification and Planning with Linear Temporal Logic Modulo Theories (Extended Abstract). In 30th International Symposium on Temporal Representation and Reasoning (TIME 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 278, pp. 21:1-21:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{geatti_et_al:LIPIcs.TIME.2023.21,
  author =	{Geatti, Luca and Gianola, Alessandro and Gigante, Nicola},
  title =	{{Torwards Infinite-State Verification and Planning with Linear Temporal Logic Modulo Theories}},
  booktitle =	{30th International Symposium on Temporal Representation and Reasoning (TIME 2023)},
  pages =	{21:1--21:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-298-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{278},
  editor =	{Artikis, Alexander and Bruse, Florian and Hunsberger, Luke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2023.21},
  URN =		{urn:nbn:de:0030-drops-191110},
  doi =		{10.4230/LIPIcs.TIME.2023.21},
  annote =	{Keywords: Linear Temporal Logic, Satisfiability Modulo Theories}
}
Document
Extended Abstract
Qualitative past Timeline-Based Games (Extended Abstract)

Authors: Renato Acampora, Luca Geatti, Nicola Gigante, and Angelo Montanari

Published in: LIPIcs, Volume 278, 30th International Symposium on Temporal Representation and Reasoning (TIME 2023)


Abstract
This extended abstract discusses timeline-based planning, a modeling approach that offers a unique way to model complex systems. Recently, the timeline-based planning framework has been extended to handle general nondeterminism in a game-theoretic setting, resulting in timeline-based games. In this context, the problem of establishing whether a timeline-based game admits a winning strategy and synthesizing such a strategy have been addressed. We propose exploring simpler yet expressive fragments of timeline-based games by leveraging results about the role of past operators in synthesis from temporal logic specifications. The qualitative fragment of timeline-based planning is a good starting point for this exploration. We suggest introducing syntactic restrictions on synchronization rules so that they only constrain the behavior of the system before the current time point, which is expected to lower the complexity of synthesizing timeline-based games to EXPTIME.

Cite as

Renato Acampora, Luca Geatti, Nicola Gigante, and Angelo Montanari. Qualitative past Timeline-Based Games (Extended Abstract). In 30th International Symposium on Temporal Representation and Reasoning (TIME 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 278, pp. 22:1-22:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{acampora_et_al:LIPIcs.TIME.2023.22,
  author =	{Acampora, Renato and Geatti, Luca and Gigante, Nicola and Montanari, Angelo},
  title =	{{Qualitative past Timeline-Based Games}},
  booktitle =	{30th International Symposium on Temporal Representation and Reasoning (TIME 2023)},
  pages =	{22:1--22:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-298-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{278},
  editor =	{Artikis, Alexander and Bruse, Florian and Hunsberger, Luke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2023.22},
  URN =		{urn:nbn:de:0030-drops-191125},
  doi =		{10.4230/LIPIcs.TIME.2023.22},
  annote =	{Keywords: Automata, Planning, Temporal Reasoning}
}
Document
Skolem Meets Schanuel

Authors: Yuri Bilu, Florian Luca, Joris Nieuwveld, Joël Ouaknine, David Purser, and James Worrell

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
The celebrated Skolem-Mahler-Lech Theorem states that the set of zeros of a linear recurrence sequence is the union of a finite set and finitely many arithmetic progressions. The corresponding computational question, the Skolem Problem, asks to determine whether a given linear recurrence sequence has a zero term. Although the Skolem-Mahler-Lech Theorem is almost 90 years old, decidability of the Skolem Problem remains open. The main contribution of this paper is an algorithm to solve the Skolem Problem for simple linear recurrence sequences (those with simple characteristic roots). Whenever the algorithm terminates, it produces a stand-alone certificate that its output is correct - a set of zeros together with a collection of witnesses that no further zeros exist. We give a proof that the algorithm always terminates assuming two classical number-theoretic conjectures: the Skolem Conjecture (also known as the Exponential Local-Global Principle) and the p-adic Schanuel Conjecture. Preliminary experiments with an implementation of this algorithm within the tool Skolem point to the practical applicability of this method.

Cite as

Yuri Bilu, Florian Luca, Joris Nieuwveld, Joël Ouaknine, David Purser, and James Worrell. Skolem Meets Schanuel. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 20:1-20:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bilu_et_al:LIPIcs.MFCS.2022.20,
  author =	{Bilu, Yuri and Luca, Florian and Nieuwveld, Joris and Ouaknine, Jo\"{e}l and Purser, David and Worrell, James},
  title =	{{Skolem Meets Schanuel}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{20:1--20:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.20},
  URN =		{urn:nbn:de:0030-drops-168180},
  doi =		{10.4230/LIPIcs.MFCS.2022.20},
  annote =	{Keywords: Skolem Problem, Skolem Conjecture, Exponential Local-Global Principle, p-adic Schanuel Conjecture}
}
Document
On the Skolem Problem for Reversible Sequences

Authors: George Kenison

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
Given an integer linear recurrence sequence ⟨X_n⟩, the Skolem Problem asks to determine whether there is a natural number n such that X_n = 0. Recent work by Lipton, Luca, Nieuwveld, Ouaknine, Purser, and Worrell proved that the Skolem Problem is decidable for a class of reversible sequences of order at most seven. Here we give an alternative proof of their result. Our novel approach employs a powerful result for Galois conjugates that lie on two concentric circles due to Dubickas and Smyth.

Cite as

George Kenison. On the Skolem Problem for Reversible Sequences. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 61:1-61:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kenison:LIPIcs.MFCS.2022.61,
  author =	{Kenison, George},
  title =	{{On the Skolem Problem for Reversible Sequences}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{61:1--61:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.61},
  URN =		{urn:nbn:de:0030-drops-168590},
  doi =		{10.4230/LIPIcs.MFCS.2022.61},
  annote =	{Keywords: The Skolem Problem, Linear Recurrences, Verification}
}
Document
A Universal Skolem Set of Positive Lower Density

Authors: Florian Luca, Joël Ouaknine, and James Worrell

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
The Skolem Problem asks to decide whether a given integer linear recurrence sequence (LRS) has a zero term. Decidability of this problem has been open for many decades, with little progress since the 1980s. Recently, a new approach was initiated via the notion of a Skolem set - a set of positive integers relative to which the Skolem Problem is decidable. More precisely, 𝒮 is a Skolem set for a class ℒ of integer LRS if there is an effective procedure that, given an LRS in ℒ, decides whether the sequence has a zero in 𝒮. A recent work exhibited a Skolem set for the class of all LRS that, while infinite, had density zero. In the present work we construct a Skolem set of positive lower density for the class of simple LRS .

Cite as

Florian Luca, Joël Ouaknine, and James Worrell. A Universal Skolem Set of Positive Lower Density. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 73:1-73:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{luca_et_al:LIPIcs.MFCS.2022.73,
  author =	{Luca, Florian and Ouaknine, Jo\"{e}l and Worrell, James},
  title =	{{A Universal Skolem Set of Positive Lower Density}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{73:1--73:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.73},
  URN =		{urn:nbn:de:0030-drops-168711},
  doi =		{10.4230/LIPIcs.MFCS.2022.73},
  annote =	{Keywords: Linear Recurrence Sequences, Skolem Problem, Exponential Diophantine Equations, Sieve Methods}
}
Document
On Positivity and Minimality for Second-Order Holonomic Sequences

Authors: George Kenison, Oleksiy Klurman, Engel Lefaucheux, Florian Luca, Pieter Moree, Joël Ouaknine, Markus A. Whiteland, and James Worrell

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
An infinite sequence ⟨u_n⟩_n of real numbers is holonomic (also known as P-recursive or P-finite) if it satisfies a linear recurrence relation with polynomial coefficients. Such a sequence is said to be positive if each u_n ≥ 0, and minimal if, given any other linearly independent sequence ⟨v_n⟩_n satisfying the same recurrence relation, the ratio u_n/v_n → 0 as n → ∞. In this paper we give a Turing reduction of the problem of deciding positivity of second-order holonomic sequences to that of deciding minimality of such sequences. More specifically, we give a procedure for determining positivity of second-order holonomic sequences that terminates in all but an exceptional number of cases, and we show that in these exceptional cases positivity can be determined using an oracle for deciding minimality.

Cite as

George Kenison, Oleksiy Klurman, Engel Lefaucheux, Florian Luca, Pieter Moree, Joël Ouaknine, Markus A. Whiteland, and James Worrell. On Positivity and Minimality for Second-Order Holonomic Sequences. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 67:1-67:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kenison_et_al:LIPIcs.MFCS.2021.67,
  author =	{Kenison, George and Klurman, Oleksiy and Lefaucheux, Engel and Luca, Florian and Moree, Pieter and Ouaknine, Jo\"{e}l and Whiteland, Markus A. and Worrell, James},
  title =	{{On Positivity and Minimality for Second-Order Holonomic Sequences}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{67:1--67:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.67},
  URN =		{urn:nbn:de:0030-drops-145071},
  doi =		{10.4230/LIPIcs.MFCS.2021.67},
  annote =	{Keywords: Holonomic sequences, Minimal solutions, Positivity Problem}
}
Document
The Orbit Problem for Parametric Linear Dynamical Systems

Authors: Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Florian Luca, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell

Published in: LIPIcs, Volume 203, 32nd International Conference on Concurrency Theory (CONCUR 2021)


Abstract
We study a parametric version of the Kannan-Lipton Orbit Problem for linear dynamical systems. We show decidability in the case of one parameter and Skolem-hardness with two or more parameters. More precisely, consider a d-dimensional square matrix M whose entries are algebraic functions in one or more real variables. Given initial and target vectors u,v ∈ ℚ^d, the parametric point-to-point orbit problem asks whether there exist values of the parameters giving rise to a concrete matrix N ∈ ℝ^{d× d}, and a positive integer n ∈ ℕ, such that N^{n} u = v. We show decidability for the case in which M depends only upon a single parameter, and we exhibit a reduction from the well-known Skolem Problem for linear recurrence sequences, suggesting intractability in the case of two or more parameters.

Cite as

Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Florian Luca, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell. The Orbit Problem for Parametric Linear Dynamical Systems. In 32nd International Conference on Concurrency Theory (CONCUR 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 203, pp. 28:1-28:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.CONCUR.2021.28,
  author =	{Baier, Christel and Funke, Florian and Jantsch, Simon and Karimov, Toghrul and Lefaucheux, Engel and Luca, Florian and Ouaknine, Jo\"{e}l and Purser, David and Whiteland, Markus A. and Worrell, James},
  title =	{{The Orbit Problem for Parametric Linear Dynamical Systems}},
  booktitle =	{32nd International Conference on Concurrency Theory (CONCUR 2021)},
  pages =	{28:1--28:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-203-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{203},
  editor =	{Haddad, Serge and Varacca, Daniele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2021.28},
  URN =		{urn:nbn:de:0030-drops-144053},
  doi =		{10.4230/LIPIcs.CONCUR.2021.28},
  annote =	{Keywords: Orbit problem, parametric, linear dynamical systems}
}
Document
Toward Contention Analysis for Parallel Executing Real-Time Tasks

Authors: Fabrice Guet, Luca Santinelli, Jérôme Morio, Guillaume Phavorin, and Eric Jenn

Published in: OASIcs, Volume 63, 18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018)


Abstract
In measurement-based probabilistic timing analysis, the execution conditions imposed to tasks as measurement scenarios, have a strong impact to the worst-case execution time estimates. The scenarios and their effects on the task execution behavior have to be deeply investigated. The aim has to be to identify and to guarantee the scenarios that lead to the maximum measurements, i.e. the worst-case scenarios, and use them to assure the worst-case execution time estimates. We propose a contention analysis in order to identify the worst contentions that a task can suffer from concurrent executions. The work focuses on the interferences on shared resources (cache memories and memory buses) from parallel executions in multi-core real-time systems. Our approach consists of searching for possible task contenders for parallel executions, modeling their contentiousness, and classifying the measurement scenarios accordingly. We identify the most contentious ones and their worst-case effects on task execution times. The measurement-based probabilistic timing analysis is then used to verify the analysis proposed, qualify the scenarios with contentiousness, and compare them. A parallel execution simulator for multi-core real-time system is developed and used for validating our framework. The framework applies heuristics and assumptions that simplify the system behavior. It represents a first step for developing a complete approach which would be able to guarantee the worst-case behavior.

Cite as

Fabrice Guet, Luca Santinelli, Jérôme Morio, Guillaume Phavorin, and Eric Jenn. Toward Contention Analysis for Parallel Executing Real-Time Tasks. In 18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018). Open Access Series in Informatics (OASIcs), Volume 63, pp. 4:1-4:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{guet_et_al:OASIcs.WCET.2018.4,
  author =	{Guet, Fabrice and Santinelli, Luca and Morio, J\'{e}r\^{o}me and Phavorin, Guillaume and Jenn, Eric},
  title =	{{Toward Contention Analysis for Parallel Executing Real-Time Tasks}},
  booktitle =	{18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018)},
  pages =	{4:1--4:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-073-6},
  ISSN =	{2190-6807},
  year =	{2018},
  volume =	{63},
  editor =	{Brandner, Florian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2018.4},
  URN =		{urn:nbn:de:0030-drops-97506},
  doi =		{10.4230/OASIcs.WCET.2018.4},
  annote =	{Keywords: Contention analysis, parallel executions, measurement-based probabilistic timing analysis, probabilistic worst-case execution time}
}
Document
A Lazy SMT-Solver for a Non-Linear Subset of Real Algebra

Authors: Erika Abraham, Florian Corzilius, Ulrich Loup, and Thomas Sturm

Published in: Dagstuhl Seminar Proceedings, Volume 10271, Verification over discrete-continuous boundaries (2010)


Abstract
There are several methods for the synthesis and analysis of hybrid systems that require efficient algorithms and tools for satisfiability checking. For analysis, e.g., bounded model checking describes counterexamples of a fixed length by logical formulas, whose satisfiability corresponds to the existence of such a counterexample. As an example for parameter synthesis, we can state the correctness of a parameterized system by a logical formula; the solution set of the formula gives us possible safe instances of the parameters. For discrete systems, which can be described by propositional logic formulas, SAT-solvers can be used for the satisfiability checks. For hybrid systems, having mixed discrete-continuous behavior, SMT-solvers are needed. SMT-solving extends SAT with theories, and has its main focus on linear arithmetic, which is sufficient to handle, e.g., linear hybrid systems. However, there are only few solvers for more expressive but still decidable logics like the first-order theory of the reals with addition and multiplication -- real algebra. Since the synthesis and analysis of non-linear hybrid systems requires such a powerful logic, we need efficient SMT-solvers for real algebra. Our goal is to develop such an SMT-solver for the real algebra, which is both complete and efficient.

Cite as

Erika Abraham, Florian Corzilius, Ulrich Loup, and Thomas Sturm. A Lazy SMT-Solver for a Non-Linear Subset of Real Algebra. In Verification over discrete-continuous boundaries. Dagstuhl Seminar Proceedings, Volume 10271, pp. 1-9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{abraham_et_al:DagSemProc.10271.2,
  author =	{Abraham, Erika and Corzilius, Florian and Loup, Ulrich and Sturm, Thomas},
  title =	{{A Lazy SMT-Solver for a Non-Linear Subset of Real Algebra}},
  booktitle =	{Verification over discrete-continuous boundaries},
  pages =	{1--9},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10271},
  editor =	{Bernd Becker and Luca Cardelli and Holger Hermanns and Sofiene Tahar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.10271.2},
  URN =		{urn:nbn:de:0030-drops-27907},
  doi =		{10.4230/DagSemProc.10271.2},
  annote =	{Keywords: SMT-solving, Real Algebra, Hybrid Systems, Verification, Synthesis}
}
Document
Towards more Dependable Verification of Mixed-Signal Systems

Authors: Florian Schupfer and Christoph Grimm

Published in: Dagstuhl Seminar Proceedings, Volume 10271, Verification over discrete-continuous boundaries (2010)


Abstract
The verification of complex mixed-signal systems is a challenge, especially considering the impact of parameter variations. Besides the established approaches like Monte-Carlo or Corner-Case simulation, a novel semi-symbolic approach emerged in recent years. In this approach, parameter variations and tolerances are maintained as symbolic ranges during numerical simulation runs by using affine arithmetic. Maintaining parameter variations and tolerances in a symbolic way significantly increases verification coverage. In the following we give a brief introduction and an overview of research on semi-symbolic simulation of both circuits and systems and discuss possible application for system level verification and optimization.

Cite as

Florian Schupfer and Christoph Grimm. Towards more Dependable Verification of Mixed-Signal Systems. In Verification over discrete-continuous boundaries. Dagstuhl Seminar Proceedings, Volume 10271, pp. 1-13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{schupfer_et_al:DagSemProc.10271.4,
  author =	{Schupfer, Florian and Grimm, Christoph},
  title =	{{Towards more Dependable Verification of Mixed-Signal Systems}},
  booktitle =	{Verification over discrete-continuous boundaries},
  pages =	{1--13},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10271},
  editor =	{Bernd Becker and Luca Cardelli and Holger Hermanns and Sofiene Tahar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.10271.4},
  URN =		{urn:nbn:de:0030-drops-27911},
  doi =		{10.4230/DagSemProc.10271.4},
  annote =	{Keywords: Affine Arithmetic, Range based methods, Verification, Semi-symbolic simulation}
}
  • Refine by Author
  • 4 Luca, Florian
  • 4 Ouaknine, Joël
  • 4 Worrell, James
  • 3 Geatti, Luca
  • 3 Gigante, Nicola
  • Show More...

  • Refine by Classification
  • 5 Theory of computation → Logic and verification
  • 2 Theory of computation → Modal and temporal logics
  • 1 Computer systems organization → Real-time system architecture
  • 1 Computing methodologies → Algebraic algorithms
  • 1 Computing methodologies → Number theory algorithms
  • Show More...

  • Refine by Keyword
  • 3 Verification
  • 2 Skolem Problem
  • 2 Temporal Logic
  • 1 Affine Arithmetic
  • 1 Automata
  • Show More...

  • Refine by Type
  • 12 document

  • Refine by Publication Year
  • 4 2023
  • 3 2022
  • 2 2010
  • 2 2021
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail