32 Search Results for "Majumdar, Rupak"


Document
The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

Authors: Karl Bringmann, Allan Grønlund, Marvin Künnemann, and Kasper Green Larsen

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We pose the fine-grained hardness hypothesis that the textbook algorithm for the NFA Acceptance problem is optimal up to subpolynomial factors, even for dense NFAs and fixed alphabets. We show that this barrier appears in many variations throughout the algorithmic literature by introducing a framework of Colored Walk problems. These yield fine-grained equivalent formulations of the NFA Acceptance problem as problems concerning detection of an s-t-walk with a prescribed color sequence in a given edge- or node-colored graph. For NFA Acceptance on sparse NFAs (or equivalently, Colored Walk in sparse graphs), a tight lower bound under the Strong Exponential Time Hypothesis has been rediscovered several times in recent years. We show that our hardness hypothesis, which concerns dense NFAs, has several interesting implications: - It gives a tight lower bound for Context-Free Language Reachability. This proves conditional optimality for the class of 2NPDA-complete problems, explaining the cubic bottleneck of interprocedural program analysis. - It gives a tight (n+nm^{1/3})^{1-o(1)} lower bound for the Word Break problem on strings of length n and dictionaries of total size m. - It implies the popular OMv hypothesis. Since the NFA acceptance problem is a static (i.e., non-dynamic) problem, this provides a static reason for the hardness of many dynamic problems. Thus, a proof of the NFA Acceptance hypothesis would resolve several interesting barriers. Conversely, a refutation of the NFA Acceptance hypothesis may lead the way to attacking the current barriers observed for Context-Free Language Reachability, the Word Break problem and the growing list of dynamic problems proven hard under the OMv hypothesis.

Cite as

Karl Bringmann, Allan Grønlund, Marvin Künnemann, and Kasper Green Larsen. The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 22:1-22:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bringmann_et_al:LIPIcs.ITCS.2024.22,
  author =	{Bringmann, Karl and Gr{\o}nlund, Allan and K\"{u}nnemann, Marvin and Larsen, Kasper Green},
  title =	{{The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{22:1--22:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.22},
  URN =		{urn:nbn:de:0030-drops-195500},
  doi =		{10.4230/LIPIcs.ITCS.2024.22},
  annote =	{Keywords: Fine-grained complexity theory, non-deterministic finite automata}
}
Document
Counter Machines with Infrequent Reversals

Authors: Alain Finkel, Shankara Narayanan Krishna, Khushraj Madnani, Rupak Majumdar, and Georg Zetzsche

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
Bounding the number of reversals in a counter machine is one of the most prominent restrictions to achieve decidability of the reachability problem. Given this success, we explore whether this notion can be relaxed while retaining decidability. To this end, we introduce the notion of an f-reversal-bounded counter machine for a monotone function f: ℕ → ℕ. In such a machine, every run of length n makes at most f(n) reversals. Our first main result is a dichotomy theorem: We show that for every monotone function f, one of the following holds: Either (i) f grows so slowly that every f-reversal bounded counter machine is already k-reversal bounded for some constant k or (ii) f belongs to Ω(log(n)) and reachability in f-reversal bounded counter machines is undecidable. This shows that classical reversal bounding already captures the decidable cases of f-reversal bounding for any monotone function f. The key technical ingredient is an analysis of the growth of small solutions of iterated compositions of Presburger-definable constraints. In our second contribution, we investigate whether imposing f-reversal boundedness improves the complexity of the reachability problem in vector addition systems with states (VASS). Here, we obtain an analogous dichotomy: We show that either (i) f grows so slowly that every f-reversal-bounded VASS is already k-reversal-bounded for some constant k or (ii) f belongs to Ω(n) and the reachability problem for f-reversal-bounded VASS remains Ackermann-complete. This result is proven using run amalgamation in VASS. Overall, our results imply that classical restriction of reversal boundedness is a robust one.

Cite as

Alain Finkel, Shankara Narayanan Krishna, Khushraj Madnani, Rupak Majumdar, and Georg Zetzsche. Counter Machines with Infrequent Reversals. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 42:1-42:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{finkel_et_al:LIPIcs.FSTTCS.2023.42,
  author =	{Finkel, Alain and Krishna, Shankara Narayanan and Madnani, Khushraj and Majumdar, Rupak and Zetzsche, Georg},
  title =	{{Counter Machines with Infrequent Reversals}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{42:1--42:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.42},
  URN =		{urn:nbn:de:0030-drops-194152},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.42},
  annote =	{Keywords: Counter machines, reversal-bounded, reachability, decidability, complexity}
}
Document
Satisfiability Checking of Multi-Variable TPTL with Unilateral Intervals Is PSPACE-Complete

Authors: Shankara Narayanan Krishna, Khushraj Nanik Madnani, Rupak Majumdar, and Paritosh Pandya

Published in: LIPIcs, Volume 279, 34th International Conference on Concurrency Theory (CONCUR 2023)


Abstract
We investigate the decidability of the {0,∞} fragment of Timed Propositional Temporal Logic (TPTL). We show that the satisfiability checking of TPTL^{0,∞} is PSPACE-complete. Moreover, even its 1-variable fragment (1-TPTL^{0,∞}) is strictly more expressive than Metric Interval Temporal Logic (MITL) for which satisfiability checking is EXPSPACE complete. Hence, we have a strictly more expressive logic with computationally easier satisfiability checking. To the best of our knowledge, TPTL^{0,∞} is the first multi-variable fragment of TPTL for which satisfiability checking is decidable without imposing any bounds/restrictions on the timed words (e.g. bounded variability, bounded time, etc.). The membership in PSPACE is obtained by a reduction to the emptiness checking problem for a new "non-punctual’’ subclass of Alternating Timed Automata with multiple clocks called Unilateral Very Weak Alternating Timed Automata (VWATA^{0,∞}) which we prove to be in PSPACE. We show this by constructing a simulation equivalent non-deterministic timed automata whose number of clocks is polynomial in the size of the given VWATA^{0,∞}.

Cite as

Shankara Narayanan Krishna, Khushraj Nanik Madnani, Rupak Majumdar, and Paritosh Pandya. Satisfiability Checking of Multi-Variable TPTL with Unilateral Intervals Is PSPACE-Complete. In 34th International Conference on Concurrency Theory (CONCUR 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 279, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{krishna_et_al:LIPIcs.CONCUR.2023.23,
  author =	{Krishna, Shankara Narayanan and Madnani, Khushraj Nanik and Majumdar, Rupak and Pandya, Paritosh},
  title =	{{Satisfiability Checking of Multi-Variable TPTL with Unilateral Intervals Is PSPACE-Complete}},
  booktitle =	{34th International Conference on Concurrency Theory (CONCUR 2023)},
  pages =	{23:1--23:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-299-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{279},
  editor =	{P\'{e}rez, Guillermo A. and Raskin, Jean-Fran\c{c}ois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2023.23},
  URN =		{urn:nbn:de:0030-drops-190171},
  doi =		{10.4230/LIPIcs.CONCUR.2023.23},
  annote =	{Keywords: TPTL, Satisfiability, Non-Punctuality, Decidability, Expressiveness, ATA}
}
Document
Asynchronous Multiparty Session Type Implementability is Decidable - Lessons Learned from Message Sequence Charts

Authors: Felix Stutz

Published in: LIPIcs, Volume 263, 37th European Conference on Object-Oriented Programming (ECOOP 2023)


Abstract
Multiparty session types (MSTs) provide efficient means to specify and verify asynchronous message-passing systems. For a global type, which specifies all interactions between roles in a system, the implementability problem asks whether there are local specifications for all roles such that their composition is deadlock-free and generates precisely the specified executions. Decidability of the implementability problem is an open question. We answer it positively for global types with sender-driven choice, which allow a sender to send to different receivers upon branching and a receiver to receive from different senders. To achieve this, we generalise results from the domain of high-level message sequence charts (HMSCs). This connection also allows us to comprehensively investigate how HMSC techniques can be adapted to the MST setting. This comprises techniques to make the problem algorithmically more tractable as well as a variant of implementability that may open new design space for MSTs. Inspired by potential performance benefits, we introduce a generalisation of the implementability problem that we, unfortunately, prove to be undecidable.

Cite as

Felix Stutz. Asynchronous Multiparty Session Type Implementability is Decidable - Lessons Learned from Message Sequence Charts. In 37th European Conference on Object-Oriented Programming (ECOOP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 263, pp. 32:1-32:31, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{stutz:LIPIcs.ECOOP.2023.32,
  author =	{Stutz, Felix},
  title =	{{Asynchronous Multiparty Session Type Implementability is Decidable - Lessons Learned from Message Sequence Charts}},
  booktitle =	{37th European Conference on Object-Oriented Programming (ECOOP 2023)},
  pages =	{32:1--32:31},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-281-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{263},
  editor =	{Ali, Karim and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.32},
  URN =		{urn:nbn:de:0030-drops-182251},
  doi =		{10.4230/LIPIcs.ECOOP.2023.32},
  annote =	{Keywords: Multiparty session types, Verification, Message sequence charts}
}
Document
Invited Talk
Context-Bounded Analysis of Concurrent Programs (Invited Talk)

Authors: Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Context-bounded analysis of concurrent programs is a technique to compute a sequence of under-approximations of all behaviors of the program. For a fixed bound k, a context bounded analysis considers only those runs in which a single process is interrupted at most k times. As k grows, we capture more and more behaviors of the program. Practically, context-bounding has been very effective as a bug-finding tool: many bugs can be found even with small bounds. Theoretically, context-bounded analysis is decidable for a large number of programming models for which verification problems are undecidable. In this paper, we survey some recent work in context-bounded analysis of multithreaded programs. In particular, we show a general decidability result. We study context-bounded reachability in a language-theoretic setup. We fix a class of languages (satisfying some mild conditions) from which each thread is chosen. We show context-bounded safety and termination verification problems are decidable iff emptiness is decidable for the underlying class of languages and context-bounded boundedness is decidable iff finiteness is decidable for the underlying class.

Cite as

Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. Context-Bounded Analysis of Concurrent Programs (Invited Talk). In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 3:1-3:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{baumann_et_al:LIPIcs.ICALP.2023.3,
  author =	{Baumann, Pascal and Ganardi, Moses and Majumdar, Rupak and Thinniyam, Ramanathan S. and Zetzsche, Georg},
  title =	{{Context-Bounded Analysis of Concurrent Programs}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{3:1--3:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.3},
  URN =		{urn:nbn:de:0030-drops-180559},
  doi =		{10.4230/LIPIcs.ICALP.2023.3},
  annote =	{Keywords: Context-bounded analysis, Multi-threaded programs, Decidability}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Checking Refinement of Asynchronous Programs Against Context-Free Specifications

Authors: Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
In the language-theoretic approach to refinement verification, we check that the language of traces of an implementation all belong to the language of a specification. We consider the refinement verification problem for asynchronous programs against specifications given by a Dyck language. We show that this problem is EXPSPACE-complete - the same complexity as that of language emptiness and for refinement verification against a regular specification. Our algorithm uses several technical ingredients. First, we show that checking if the coverability language of a succinctly described vector addition system with states (VASS) is contained in a Dyck language is EXPSPACE-complete. Second, in the more technical part of the proof, we define an ordering on words and show a downward closure construction that allows replacing the (context-free) language of each task in an asynchronous program by a regular language. Unlike downward closure operations usually considered in infinite-state verification, our ordering is not a well-quasi-ordering, and we have to construct the regular language ab initio. Once the tasks can be replaced, we show a reduction to an appropriate VASS and use our first ingredient. In addition to the inherent theoretical interest, refinement verification with Dyck specifications captures common practical resource usage patterns based on reference counting, for which few algorithmic techniques were known.

Cite as

Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. Checking Refinement of Asynchronous Programs Against Context-Free Specifications. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 110:1-110:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{baumann_et_al:LIPIcs.ICALP.2023.110,
  author =	{Baumann, Pascal and Ganardi, Moses and Majumdar, Rupak and Thinniyam, Ramanathan S. and Zetzsche, Georg},
  title =	{{Checking Refinement of Asynchronous Programs Against Context-Free Specifications}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{110:1--110:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.110},
  URN =		{urn:nbn:de:0030-drops-181622},
  doi =		{10.4230/LIPIcs.ICALP.2023.110},
  annote =	{Keywords: Asynchronous programs, VASS, Dyck languages, Language inclusion, Refinement verification}
}
Document
Invited Talk
Sequential Decision Making With Information Asymmetry (Invited Talk)

Authors: Jiarui Gan, Rupak Majumdar, Goran Radanovic, and Adish Singla

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
We survey some recent results in sequential decision making under uncertainty, where there is an information asymmetry among the decision-makers. We consider two versions of the problem: persuasion and mechanism design. In persuasion, a more-informed principal influences the actions of a less-informed agent by signaling information. In mechanism design, a less-informed principal incentivizes a more-informed agent to reveal information by committing to a mechanism, so that the principal can make more informed decisions. We define Markov persuasion processes and Markov mechanism processes that model persuasion and mechanism design into dynamic models. Then we survey results on optimal persuasion and optimal mechanism design on myopic and far-sighted agents. These problems are solvable in polynomial time for myopic agents but hard for far-sighted agents.

Cite as

Jiarui Gan, Rupak Majumdar, Goran Radanovic, and Adish Singla. Sequential Decision Making With Information Asymmetry (Invited Talk). In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 4:1-4:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gan_et_al:LIPIcs.CONCUR.2022.4,
  author =	{Gan, Jiarui and Majumdar, Rupak and Radanovic, Goran and Singla, Adish},
  title =	{{Sequential Decision Making With Information Asymmetry}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{4:1--4:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.4},
  URN =		{urn:nbn:de:0030-drops-170673},
  doi =		{10.4230/LIPIcs.CONCUR.2022.4},
  annote =	{Keywords: Bayesian persuasion, Automated mechanism design, Markov persuasion processes, Markov mechanism processes, Myopic agents}
}
Document
The Pseudo-Reachability Problem for Diagonalisable Linear Dynamical Systems

Authors: Julian D'Costa, Toghrul Karimov, Rupak Majumdar, Joël Ouaknine, Mahmoud Salamati, and James Worrell

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
We study fundamental reachability problems on pseudo-orbits of linear dynamical systems. Pseudo-orbits can be viewed as a model of computation with limited precision and pseudo-reachability can be thought of as a robust version of classical reachability. Using an approach based on o-minimality of ℝ_exp we prove decidability of the discrete-time pseudo-reachability problem with arbitrary semialgebraic targets for diagonalisable linear dynamical systems. We also show that our method can be used to reduce the continuous-time pseudo-reachability problem to the (classical) time-bounded reachability problem, which is known to be conditionally decidable.

Cite as

Julian D'Costa, Toghrul Karimov, Rupak Majumdar, Joël Ouaknine, Mahmoud Salamati, and James Worrell. The Pseudo-Reachability Problem for Diagonalisable Linear Dynamical Systems. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 40:1-40:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dcosta_et_al:LIPIcs.MFCS.2022.40,
  author =	{D'Costa, Julian and Karimov, Toghrul and Majumdar, Rupak and Ouaknine, Jo\"{e}l and Salamati, Mahmoud and Worrell, James},
  title =	{{The Pseudo-Reachability Problem for Diagonalisable Linear Dynamical Systems}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{40:1--40:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.40},
  URN =		{urn:nbn:de:0030-drops-168380},
  doi =		{10.4230/LIPIcs.MFCS.2022.40},
  annote =	{Keywords: pseudo-orbits, Orbit problem, Skolem problem, linear dynamical systems, reachability}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Reachability in Bidirected Pushdown VASS

Authors: Moses Ganardi, Rupak Majumdar, Andreas Pavlogiannis, Lia Schütze, and Georg Zetzsche

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
A pushdown vector addition system with states (PVASS) extends the model of vector addition systems with a pushdown store. A PVASS is said to be bidirected if every transition (pushing/popping a symbol or modifying a counter) has an accompanying opposite transition that reverses the effect. Bidirectedness arises naturally in many models; it can also be seen as a overapproximation of reachability. We show that the reachability problem for bidirected PVASS is decidable in Ackermann time and primitive recursive for any fixed dimension. For the special case of one-dimensional bidirected PVASS, we show reachability is in PSPACE, and in fact in polynomial time if the stack is polynomially bounded. Our results are in contrast to the directed setting, where decidability of reachability is a long-standing open problem already for one dimensional PVASS, and there is a PSPACE-lower bound already for one-dimensional PVASS with bounded stack. The reachability relation in the bidirected (stateless) case is a congruence over ℕ^d. Our upper bounds exploit saturation techniques over congruences. In particular, we show novel elementary-time constructions of semilinear representations of congruences generated by finitely many vector pairs. In the case of one-dimensional PVASS, we employ a saturation procedure over bounded-size counters. We complement our upper bound with a TOWER-hardness result for arbitrary dimension and k-EXPSPACE hardness in dimension 2k+6 using a technique by Lazić and Totzke to implement iterative exponentiations.

Cite as

Moses Ganardi, Rupak Majumdar, Andreas Pavlogiannis, Lia Schütze, and Georg Zetzsche. Reachability in Bidirected Pushdown VASS. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 124:1-124:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ganardi_et_al:LIPIcs.ICALP.2022.124,
  author =	{Ganardi, Moses and Majumdar, Rupak and Pavlogiannis, Andreas and Sch\"{u}tze, Lia and Zetzsche, Georg},
  title =	{{Reachability in Bidirected Pushdown VASS}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{124:1--124:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.124},
  URN =		{urn:nbn:de:0030-drops-164651},
  doi =		{10.4230/LIPIcs.ICALP.2022.124},
  annote =	{Keywords: Vector addition systems, Pushdown, Reachability, Decidability, Complexity}
}
Document
The Pseudo-Skolem Problem is Decidable

Authors: Julian D'Costa, Toghrul Karimov, Rupak Majumdar, Joël Ouaknine, Mahmoud Salamati, Sadegh Soudjani, and James Worrell

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We study fundamental decision problems on linear dynamical systems in discrete time. We focus on pseudo-orbits, the collection of trajectories of the dynamical system for which there is an arbitrarily small perturbation at each step. Pseudo-orbits are generalizations of orbits in the topological theory of dynamical systems. We study the pseudo-orbit problem, whether a state belongs to the pseudo-orbit of another state, and the pseudo-Skolem problem, whether a hyperplane is reachable by an ε-pseudo-orbit for every ε. These problems are analogous to the well-studied orbit problem and Skolem problem on unperturbed dynamical systems. Our main results show that the pseudo-orbit problem is decidable in polynomial time and the Skolem problem on pseudo-orbits is decidable. The former extends the seminal result of Kannan and Lipton from orbits to pseudo-orbits. The latter is in contrast to the Skolem problem for linear dynamical systems, which remains open for proper orbits.

Cite as

Julian D'Costa, Toghrul Karimov, Rupak Majumdar, Joël Ouaknine, Mahmoud Salamati, Sadegh Soudjani, and James Worrell. The Pseudo-Skolem Problem is Decidable. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 34:1-34:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dcosta_et_al:LIPIcs.MFCS.2021.34,
  author =	{D'Costa, Julian and Karimov, Toghrul and Majumdar, Rupak and Ouaknine, Jo\"{e}l and Salamati, Mahmoud and Soudjani, Sadegh and Worrell, James},
  title =	{{The Pseudo-Skolem Problem is Decidable}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{34:1--34:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.34},
  URN =		{urn:nbn:de:0030-drops-144742},
  doi =		{10.4230/LIPIcs.MFCS.2021.34},
  annote =	{Keywords: Pseudo-orbits, Orbit problem, Skolem problem, linear dynamical systems}
}
Document
Generalising Projection in Asynchronous Multiparty Session Types

Authors: Rupak Majumdar, Madhavan Mukund, Felix Stutz, and Damien Zufferey

Published in: LIPIcs, Volume 203, 32nd International Conference on Concurrency Theory (CONCUR 2021)


Abstract
Multiparty session types (MSTs) provide an efficient methodology for specifying and verifying message passing software systems. In the theory of MSTs, a global type specifies the interaction among the roles at the global level. A local specification for each role is generated by projecting from the global type on to the message exchanges it participates in. Whenever a global type can be projected on to each role, the composition of the projections is deadlock free and has exactly the behaviours specified by the global type. The key to the usability of MSTs is the projection operation: a more expressive projection allows more systems to be type-checked but requires a more difficult soundness argument. In this paper, we generalise the standard projection operation in MSTs. This allows us to model and type-check many design patterns in distributed systems, such as load balancing, that are rejected by the standard projection. The key to the new projection is an analysis that tracks causality between messages. Our soundness proof uses novel graph-theoretic techniques from the theory of message-sequence charts. We demonstrate the efficacy of the new projection operation by showing many global types for common patterns that can be projected under our projection but not under the standard projection operation.

Cite as

Rupak Majumdar, Madhavan Mukund, Felix Stutz, and Damien Zufferey. Generalising Projection in Asynchronous Multiparty Session Types. In 32nd International Conference on Concurrency Theory (CONCUR 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 203, pp. 35:1-35:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{majumdar_et_al:LIPIcs.CONCUR.2021.35,
  author =	{Majumdar, Rupak and Mukund, Madhavan and Stutz, Felix and Zufferey, Damien},
  title =	{{Generalising Projection in Asynchronous Multiparty Session Types}},
  booktitle =	{32nd International Conference on Concurrency Theory (CONCUR 2021)},
  pages =	{35:1--35:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-203-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{203},
  editor =	{Haddad, Serge and Varacca, Daniele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2021.35},
  URN =		{urn:nbn:de:0030-drops-144125},
  doi =		{10.4230/LIPIcs.CONCUR.2021.35},
  annote =	{Keywords: Multiparty session types, Verification, Communicating state machines}
}
Document
Invited Talk
From Verification to Causality-Based Explications (Invited Talk)

Authors: Christel Baier, Clemens Dubslaff, Florian Funke, Simon Jantsch, Rupak Majumdar, Jakob Piribauer, and Robin Ziemek

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
In view of the growing complexity of modern software architectures, formal models are increasingly used to understand why a system works the way it does, opposed to simply verifying that it behaves as intended. This paper surveys approaches to formally explicate the observable behavior of reactive systems. We describe how Halpern and Pearl’s notion of actual causation inspired verification-oriented studies of cause-effect relationships in the evolution of a system. A second focus lies on applications of the Shapley value to responsibility ascriptions, aimed to measure the influence of an event on an observable effect. Finally, formal approaches to probabilistic causation are collected and connected, and their relevance to the understanding of probabilistic systems is discussed.

Cite as

Christel Baier, Clemens Dubslaff, Florian Funke, Simon Jantsch, Rupak Majumdar, Jakob Piribauer, and Robin Ziemek. From Verification to Causality-Based Explications (Invited Talk). In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.ICALP.2021.1,
  author =	{Baier, Christel and Dubslaff, Clemens and Funke, Florian and Jantsch, Simon and Majumdar, Rupak and Piribauer, Jakob and Ziemek, Robin},
  title =	{{From Verification to Causality-Based Explications}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{1:1--1:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.1},
  URN =		{urn:nbn:de:0030-drops-140709},
  doi =		{10.4230/LIPIcs.ICALP.2021.1},
  annote =	{Keywords: Model Checking, Causality, Responsibility, Counterfactuals, Shapley value}
}
Document
Algebraic Invariants for Linear Hybrid Automata

Authors: Rupak Majumdar, Joël Ouaknine, Amaury Pouly, and James Worrell

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
We exhibit an algorithm to compute the strongest algebraic (or polynomial) invariants that hold at each location of a given guard-free linear hybrid automaton (i.e., a hybrid automaton having only unguarded transitions, all of whose assignments are given by affine expressions, and all of whose continuous dynamics are given by linear differential equations). Our main tool is a control-theoretic result of independent interest: given such a linear hybrid automaton, we show how to discretise the continuous dynamics in such a way that the resulting automaton has precisely the same algebraic invariants.

Cite as

Rupak Majumdar, Joël Ouaknine, Amaury Pouly, and James Worrell. Algebraic Invariants for Linear Hybrid Automata. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 32:1-32:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{majumdar_et_al:LIPIcs.CONCUR.2020.32,
  author =	{Majumdar, Rupak and Ouaknine, Jo\"{e}l and Pouly, Amaury and Worrell, James},
  title =	{{Algebraic Invariants for Linear Hybrid Automata}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{32:1--32:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.32},
  URN =		{urn:nbn:de:0030-drops-128443},
  doi =		{10.4230/LIPIcs.CONCUR.2020.32},
  annote =	{Keywords: Hybrid automata, algebraic invariants}
}
Document
Flatness and Complexity of Immediate Observation Petri Nets

Authors: Mikhail Raskin, Chana Weil-Kennedy, and Javier Esparza

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
In a previous paper we introduced immediate observation (IO) Petri nets, a class of interest in the study of population protocols and enzymatic chemical networks. In the first part of this paper we show that IO nets are globally flat, and so their safety properties can be checked by efficient symbolic model checking tools using acceleration techniques, like FAST. In the second part we study Branching IO nets (BIO nets), whose transitions can create tokens. BIO nets extend both IO nets and communication-free nets, also called BPP nets, a widely studied class. We show that, while BIO nets are no longer globally flat, and their sets of reachable markings may be non-semilinear, they are still locally flat. As a consequence, the coverability and reachability problem for BIO nets, and even a certain set-parameterized version of them, are in PSPACE. This makes BIO nets the first natural net class with non-semilinear reachability relation for which the reachability problem is provably simpler than for general Petri nets.

Cite as

Mikhail Raskin, Chana Weil-Kennedy, and Javier Esparza. Flatness and Complexity of Immediate Observation Petri Nets. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 45:1-45:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{raskin_et_al:LIPIcs.CONCUR.2020.45,
  author =	{Raskin, Mikhail and Weil-Kennedy, Chana and Esparza, Javier},
  title =	{{Flatness and Complexity of Immediate Observation Petri Nets}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{45:1--45:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.45},
  URN =		{urn:nbn:de:0030-drops-128574},
  doi =		{10.4230/LIPIcs.CONCUR.2020.45},
  annote =	{Keywords: Petri Nets, Reachability Analysis, Parameterized Verification, Flattability}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
The Complexity of Bounded Context Switching with Dynamic Thread Creation

Authors: Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
Dynamic networks of concurrent pushdown systems (DCPS) are a theoretical model for multi-threaded recursive programs with shared global state and dynamical creation of threads. The (global) state reachability problem for DCPS is undecidable in general, but Atig et al. (2009) showed that it becomes decidable, and is in 2EXPSPACE, when each thread is restricted to a fixed number of context switches. The best known lower bound for the problem is EXPSPACE-hard and this lower bound follows already when each thread is a finite-state machine and runs atomically to completion (i.e., does not switch contexts). In this paper, we close the gap by showing that state reachability is 2EXPSPACE-hard already with only one context switch. Interestingly, state reachability analysis is in EXPSPACE both for pushdown threads without context switches as well as for finite-state threads with arbitrary context switches. Thus, recursive threads together with a single context switch provide an exponential advantage. Our proof techniques are of independent interest for 2EXPSPACE-hardness results. We introduce transducer-defined Petri nets, a succinct representation for Petri nets, and show coverability is 2EXPSPACE-hard for this model. To show 2EXPSPACE-hardness, we present a modified version of Lipton’s simulation of counter machines by Petri nets, where the net programs can make explicit recursive procedure calls up to a bounded depth.

Cite as

Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. The Complexity of Bounded Context Switching with Dynamic Thread Creation. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 111:1-111:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{baumann_et_al:LIPIcs.ICALP.2020.111,
  author =	{Baumann, Pascal and Majumdar, Rupak and Thinniyam, Ramanathan S. and Zetzsche, Georg},
  title =	{{The Complexity of Bounded Context Switching with Dynamic Thread Creation}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{111:1--111:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.111},
  URN =		{urn:nbn:de:0030-drops-125187},
  doi =		{10.4230/LIPIcs.ICALP.2020.111},
  annote =	{Keywords: Dynamic thread creation, Bounded context switching, Asynchronous Programs, Safety verification, State reachability, Petri nets, Complexity, Succinctness, Counter Programs}
}
  • Refine by Author
  • 28 Majumdar, Rupak
  • 5 Zetzsche, Georg
  • 4 Esparza, Javier
  • 3 Baumann, Pascal
  • 3 Ganardi, Moses
  • Show More...

  • Refine by Classification
  • 5 Theory of computation → Concurrency
  • 4 Theory of computation → Models of computation
  • 3 Theory of computation → Distributed computing models
  • 2 Software and its engineering → Software verification
  • 2 Theory of computation → Logic and verification
  • Show More...

  • Refine by Keyword
  • 3 Decidability
  • 2 Asynchronous programs
  • 2 Complexity
  • 2 Multiparty session types
  • 2 Orbit problem
  • Show More...

  • Refine by Type
  • 32 document

  • Refine by Publication Year
  • 5 2023
  • 4 2015
  • 4 2020
  • 3 2017
  • 3 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail