30 Search Results for "Minzer, Dor"


Document
Testing Sumsets Is Hard

Authors: Xi Chen, Shivam Nadimpalli, Tim Randolph, Rocco A. Servedio, and Or Zamir

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A subset S of the Boolean hypercube 𝔽₂ⁿ is a sumset if S = {a + b : a, b ∈ A} for some A ⊆ 𝔽₂ⁿ. Sumsets are central objects of study in additive combinatorics, where they play a role in several of the field’s most important results. We prove a lower bound of Ω(2^{n/2}) for the number of queries needed to test whether a Boolean function f:𝔽₂ⁿ → {0,1} is the indicator function of a sumset, ruling out an efficient testing algorithm for sumsets. Our lower bound for testing sumsets follows from sharp bounds on the related problem of shift testing, which may be of independent interest. We also give a near-optimal {2^{n/2} ⋅ poly(n)}-query algorithm for a smoothed analysis formulation of the sumset refutation problem. Finally, we include a simple proof that the number of different sumsets in 𝔽₂ⁿ is 2^{(1±o(1))2^{n-1}}.

Cite as

Xi Chen, Shivam Nadimpalli, Tim Randolph, Rocco A. Servedio, and Or Zamir. Testing Sumsets Is Hard. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 14:1-14:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ESA.2025.14,
  author =	{Chen, Xi and Nadimpalli, Shivam and Randolph, Tim and Servedio, Rocco A. and Zamir, Or},
  title =	{{Testing Sumsets Is Hard}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{14:1--14:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.14},
  URN =		{urn:nbn:de:0030-drops-244822},
  doi =		{10.4230/LIPIcs.ESA.2025.14},
  annote =	{Keywords: Sumsets, additive combinatorics, property testing, Boolean functions}
}
Document
Algebra Is Half the Battle: Verifying Presentations of Graded Unipotent Chevalley Groups

Authors: Eric Wang, Arohee Bhoja, Cayden Codel, and Noah G. Singer

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Graded unipotent Chevalley groups are an important family of groups on matrices with polynomial entries over a finite field. Using the Lean theorem prover, we verify that three such groups, namely, the A₃- and the two B₃-type groups, satisfy a useful group-theoretic condition. Specifically, these groups are defined by a set of equations called Steinberg relations, and we prove that a certain canonical "smaller" set of Steinberg relations suffices to derive the rest. Our work is motivated by an application for building topologically-interesting objects called higher-dimensional expanders (HDXs). In the past decade, HDXs have formed the basis for many new results in theoretical computer science, such as in quantum error correction and in property testing. Yet despite the increasing prevalence of HDXs, only two methods of constructing them are known. One such method builds an HDX from groups that satisfy the aforementioned property, and the Chevalley groups we use are (essentially) the only ones currently known to satisfy it.

Cite as

Eric Wang, Arohee Bhoja, Cayden Codel, and Noah G. Singer. Algebra Is Half the Battle: Verifying Presentations of Graded Unipotent Chevalley Groups. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 9:1-9:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{wang_et_al:LIPIcs.ITP.2025.9,
  author =	{Wang, Eric and Bhoja, Arohee and Codel, Cayden and Singer, Noah G.},
  title =	{{Algebra Is Half the Battle: Verifying Presentations of Graded Unipotent Chevalley Groups}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{9:1--9:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.9},
  URN =		{urn:nbn:de:0030-drops-246071},
  doi =		{10.4230/LIPIcs.ITP.2025.9},
  annote =	{Keywords: Group presentations, term rewriting, metaprogramming, proof automation, the Lean theorem prover}
}
Document
RANDOM
On the Spectral Expansion of Monotone Subsets of the Hypercube

Authors: Yumou Fei and Renato Ferreira Pinto Jr.

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We study the spectral gap of subgraphs of the hypercube induced by monotone subsets of vertices. For a monotone subset A ⊆ {0,1}ⁿ of density μ(A), the previous best lower bound on the spectral gap, due to Cohen [Cohen, 2016], was γ ≳ μ(A)/n², improving upon the earlier bound γ ≳ μ(A)²/n² established by Ding and Mossel [Ding and Mossel, 2014]. In this paper, we prove the optimal lower bound γ ≳ μ(A)/n. As a corollary, we improve the mixing time upper bound of the random walk on constant-density monotone sets from O(n³), as shown by Ding and Mossel, to O(n²). Along the way, we develop two new inequalities that may be of independent interest: (1) a directed L²-Poincaré inequality on the hypercube, and (2) an "approximate" FKG inequality for monotone sets.

Cite as

Yumou Fei and Renato Ferreira Pinto Jr.. On the Spectral Expansion of Monotone Subsets of the Hypercube. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 42:1-42:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fei_et_al:LIPIcs.APPROX/RANDOM.2025.42,
  author =	{Fei, Yumou and Ferreira Pinto Jr., Renato},
  title =	{{On the Spectral Expansion of Monotone Subsets of the Hypercube}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{42:1--42:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.42},
  URN =		{urn:nbn:de:0030-drops-244081},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.42},
  annote =	{Keywords: Random walks, mixing time, FKG inequality, Poincar\'{e} inequality, directed isoperimetry}
}
Document
RANDOM
Pseudorandomness of Expander Walks via Fourier Analysis on Groups

Authors: Fernando Granha Jeronimo, Tushant Mittal, and Sourya Roy

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
A long line of work has studied the pseudorandomness properties of walks on expander graphs. A central goal is to measure how closely the distribution over n-length walks on an expander approximates the uniform distribution of n-independent elements. One approach to do so is to label the vertices of an expander with elements from an alphabet Σ, and study closeness of the mean of functions over Σⁿ, under these two distributions. We say expander walks ε-fool a function if the expander walk mean is ε-close to the true mean. There has been a sequence of works studying this question for various functions, such as the XOR function, the AND function, etc. We show that: - The class of symmetric functions is O(|Σ|λ)-fooled by expander walks over any generic λ-expander, and any alphabet Σ . This generalizes the result of Cohen, Peri, Ta-Shma [STOC'21] which analyzes it for |Σ| = 2, and exponentially improves the previous bound of O(|Σ|^O(|Σ|) λ), by Golowich and Vadhan [CCC'22]. Moreover, if the expander is a Cayley graph over ℤ_|Σ|, we get a further improved bound of O(√{|Σ|} λ). Morever, when Σ is a finite group G, we show the following for functions over Gⁿ: - The class of symmetric class functions is O({√|G|}/D λ}-fooled by expander walks over "structured" λ-expanders, if G is D-quasirandom. - We show a lower bound of Ω(λ) for symmetric functions for any finite group G (even for "structured" λ-expanders). - We study the Fourier spectrum of a class of non-symmetric functions arising from word maps, and show that they are exponentially fooled by expander walks. Our proof employs Fourier analysis over general groups, which contrasts with earlier works that have studied either the case of ℤ₂ or ℤ. This enables us to get quantitatively better bounds even for unstructured sets.

Cite as

Fernando Granha Jeronimo, Tushant Mittal, and Sourya Roy. Pseudorandomness of Expander Walks via Fourier Analysis on Groups. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 49:1-49:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{jeronimo_et_al:LIPIcs.APPROX/RANDOM.2025.49,
  author =	{Jeronimo, Fernando Granha and Mittal, Tushant and Roy, Sourya},
  title =	{{Pseudorandomness of Expander Walks via Fourier Analysis on Groups}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{49:1--49:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.49},
  URN =		{urn:nbn:de:0030-drops-244157},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.49},
  annote =	{Keywords: Expander graphs, pseudorandomness}
}
Document
APPROX
Sparsest Cut and Eigenvalue Multiplicities on Low Degree Abelian Cayley Graphs

Authors: Tommaso d'Orsi, Chris Jones, Jake Ruotolo, Salil Vadhan, and Jiyu Zhang

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
Whether or not the Sparsest Cut problem admits an efficient O(1)-approximation algorithm is a fundamental algorithmic question with connections to geometry and the Unique Games Conjecture. Revisiting spectral algorithms for Sparsest Cut, we present a novel, simple algorithm that combines eigenspace enumeration with a new algorithm for the Cut Improvement problem. The runtime of our algorithm is parametrized by a quantity that we call the solution dimension SD_ε(G): the smallest k such that the subspace spanned by the first k Laplacian eigenvectors contains all but ε fraction of a sparsest cut. Our algorithm matches the guarantees of prior methods based on the threshold-rank paradigm, while also extending beyond them. To illustrate this, we study its performance on low degree Cayley graphs over Abelian groups - canonical examples of graphs with poor expansion properties. We prove that low degree Abelian Cayley graphs have small solution dimension, yielding an algorithm that computes a (1+ε)-approximation to the uniform Sparsest Cut of a degree-d Cayley graph over an Abelian group of size n in time n^O(1) ⋅ exp{(d/ε)^O(d)}. Along the way to bounding the solution dimension of Abelian Cayley graphs, we analyze their sparse cuts and spectra, proving that the collection of O(1)-approximate sparsest cuts has an ε-net of size exp{(d/ε)^O(d)} and that the multiplicity of λ₂ is bounded by 2^O(d). The latter bound is tight and improves on a previous bound of 2^O(d²) by Lee and Makarychev.

Cite as

Tommaso d'Orsi, Chris Jones, Jake Ruotolo, Salil Vadhan, and Jiyu Zhang. Sparsest Cut and Eigenvalue Multiplicities on Low Degree Abelian Cayley Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 16:1-16:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dorsi_et_al:LIPIcs.APPROX/RANDOM.2025.16,
  author =	{d'Orsi, Tommaso and Jones, Chris and Ruotolo, Jake and Vadhan, Salil and Zhang, Jiyu},
  title =	{{Sparsest Cut and Eigenvalue Multiplicities on Low Degree Abelian Cayley Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{16:1--16:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.16},
  URN =		{urn:nbn:de:0030-drops-243827},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.16},
  annote =	{Keywords: Sparsest Cut, Spectral Graph Theory, Cayley Graphs, Approximation Algorithms}
}
Document
APPROX
A Randomized Rounding Approach for DAG Edge Deletion

Authors: Sina Kalantarzadeh, Nathan Klein, and Victor Reis

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
In the DAG Edge Deletion problem, we are given an edge-weighted directed acyclic graph and a parameter k, and the goal is to delete the minimum weight set of edges so that the resulting graph has no paths of length k. This problem, which has applications to scheduling, was introduced in 2015 by Kenkre, Pandit, Purohit, and Saket. They gave a k-approximation and showed that it is UGC-Hard to approximate better than ⌊0.5k⌋ for any constant k ≥ 4 using a work of Svensson from 2012. The approximation ratio was improved to 2/3(k+1) by Klein and Wexler in 2016. In this work, we introduce a randomized rounding framework based on distributions over vertex labels in [0,1]. The most natural distribution is to sample labels independently from the uniform distribution over [0,1]. We show this leads to a (2-√2)(k+1) ≈ 0.585(k+1)-approximation. By using a modified (but still independent) label distribution, we obtain a 0.549(k+1)-approximation for the problem, as well as show that no independent distribution over labels can improve our analysis to below 0.542(k+1). Finally, we show a 0.5(k+1)-approximation for bipartite graphs and for instances with structured LP solutions. Whether this ratio can be obtained in general is open.

Cite as

Sina Kalantarzadeh, Nathan Klein, and Victor Reis. A Randomized Rounding Approach for DAG Edge Deletion. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 18:1-18:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kalantarzadeh_et_al:LIPIcs.APPROX/RANDOM.2025.18,
  author =	{Kalantarzadeh, Sina and Klein, Nathan and Reis, Victor},
  title =	{{A Randomized Rounding Approach for DAG Edge Deletion}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{18:1--18:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.18},
  URN =		{urn:nbn:de:0030-drops-243840},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.18},
  annote =	{Keywords: Approximation Algorithms, Randomized Algorithms, Linear Programming, Graph Algorithms, Scheduling}
}
Document
New Hardness Results for Low-Rank Matrix Completion

Authors: Dror Chawin and Ishay Haviv

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
The low-rank matrix completion problem asks whether a given real matrix with missing values can be completed so that the resulting matrix has low rank or is close to a low-rank matrix. The completed matrix is often required to satisfy additional structural constraints, such as positive semi-definiteness or a bounded infinity norm. The problem arises in various research fields, including machine learning, statistics, and theoretical computer science, and has broad real-world applications. This paper presents new NP-hardness results for low-rank matrix completion problems. We show that for every sufficiently large integer d and any real number ε ∈ [2^{-O(d)},1/7], given a partial matrix A with exposed values of magnitude at most 1 that admits a positive semi-definite completion of rank d, it is NP-hard to find a positive semi-definite matrix that agrees with each given value of A up to an additive error of at most ε, even when the rank is allowed to exceed d by a multiplicative factor of O (1/(ε²⋅log(1/ε))). This strengthens a result of Hardt, Meka, Raghavendra, and Weitz (COLT, 2014), which applies to multiplicative factors smaller than 2 and to ε that decays polynomially in d. We establish similar NP-hardness results for the case where the completed matrix is constrained to have a bounded infinity norm (rather than be positive semi-definite), for which all previous hardness results rely on complexity assumptions related to the Unique Games Conjecture. Our proofs involve a novel notion of nearly orthonormal representations of graphs, the concept of line digraphs, and bounds on the rank of perturbed identity matrices.

Cite as

Dror Chawin and Ishay Haviv. New Hardness Results for Low-Rank Matrix Completion. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 37:1-37:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chawin_et_al:LIPIcs.MFCS.2025.37,
  author =	{Chawin, Dror and Haviv, Ishay},
  title =	{{New Hardness Results for Low-Rank Matrix Completion}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{37:1--37:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.37},
  URN =		{urn:nbn:de:0030-drops-241448},
  doi =		{10.4230/LIPIcs.MFCS.2025.37},
  annote =	{Keywords: hardness of approximation, low-rank matrix completion, graph coloring}
}
Document
New Codes on High Dimensional Expanders

Authors: Irit Dinur, Siqi Liu, and Rachel Yun Zhang

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
We describe a new parameterized family of symmetric error-correcting codes with low-density parity-check matrices (LDPC). Our codes can be described in two seemingly different ways. First, in relation to Reed-Muller codes: our codes are functions on a subset of the points in 𝔽ⁿ whose restrictions to a prescribed set of affine lines has low degree. Alternatively, they are Tanner codes on high dimensional expanders, where the coordinates of the codeword correspond to triangles of a 2-dimensional expander, such that around every edge the local view forms a Reed-Solomon codeword. For some range of parameters our codes are provably locally testable, and their dimension is some fixed power of the block length. For another range of parameters our codes have distance and dimension that are both linear in the block length, but we do not know if they are locally testable. The codes also have the multiplication property: the coordinate-wise product of two codewords is a codeword in a related code. The definition of the codes relies on the construction of a specific family of simplicial complexes which is a slight variant on the coset complexes of Kaufman and Oppenheim. We show a novel way to embed the triangles of these complexes into 𝔽ⁿ, with the property that links of edges embed as affine lines in 𝔽ⁿ. We rely on this embedding to lower bound the rate of these codes in a way that avoids constraint-counting and thereby achieves non-trivial rate even when the local codes themselves have arbitrarily small rate, and in particular below 1/2.

Cite as

Irit Dinur, Siqi Liu, and Rachel Yun Zhang. New Codes on High Dimensional Expanders. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 27:1-27:42, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dinur_et_al:LIPIcs.CCC.2025.27,
  author =	{Dinur, Irit and Liu, Siqi and Zhang, Rachel Yun},
  title =	{{New Codes on High Dimensional Expanders}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{27:1--27:42},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.27},
  URN =		{urn:nbn:de:0030-drops-237217},
  doi =		{10.4230/LIPIcs.CCC.2025.27},
  annote =	{Keywords: error correcting codes, high dimensional expanders, multiplication property}
}
Document
Sparser Abelian High Dimensional Expanders

Authors: Yotam Dikstein, Siqi Liu, and Avi Wigderson

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
The focus of this paper is the development of new elementary techniques for the construction and analysis of high dimensional expanders. Specifically, we present two new explicit constructions of Cayley high dimensional expanders (HDXs) over the abelian group 𝔽₂ⁿ. Our expansion proofs use only linear algebra and combinatorial arguments. The first construction gives local spectral HDXs of any constant dimension and subpolynomial degree exp(n^ε) for every ε > 0, improving on a construction by Golowich [Golowich, 2023] which achieves ε = 1/2. [Golowich, 2023] derives these HDXs by sparsifying the complete Grassmann poset of subspaces. The novelty in our construction is the ability to sparsify any expanding Grassmann posets, leading to iterated sparsification and much smaller degrees. The sparse Grassmannian (which is of independent interest in the theory of HDXs) serves as the generating set of the Cayley graph. Our second construction gives a 2-dimensional HDX of any polynomial degree exp(ε n) for any constant ε > 0, which is simultaneously a spectral expander and a coboundary expander. To the best of our knowledge, this is the first such non-trivial construction. We name it the Johnson complex, as it is derived from the classical Johnson scheme, whose vertices serve as the generating set of this Cayley graph. This construction may be viewed as a derandomization of the recent random geometric complexes of [Liu et al., 2023]. Establishing coboundary expansion through Gromov’s "cone method" and the associated isoperimetric inequalities is the most intricate aspect of this construction. While these two constructions are quite different, we show that they both share a common structure, resembling the intersection patterns of vectors in the Hadamard code. We propose a general framework of such "Hadamard-like" constructions in the hope that it will yield new HDXs.

Cite as

Yotam Dikstein, Siqi Liu, and Avi Wigderson. Sparser Abelian High Dimensional Expanders. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 7:1-7:98, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dikstein_et_al:LIPIcs.CCC.2025.7,
  author =	{Dikstein, Yotam and Liu, Siqi and Wigderson, Avi},
  title =	{{Sparser Abelian High Dimensional Expanders}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{7:1--7:98},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.7},
  URN =		{urn:nbn:de:0030-drops-237013},
  doi =		{10.4230/LIPIcs.CCC.2025.7},
  annote =	{Keywords: Local spectral expander, coboundary expander, Grassmannian expander}
}
Document
List Decoding Quotient Reed-Muller Codes

Authors: Omri Gotlib, Tali Kaufman, and Shachar Lovett

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
Reed-Muller codes consist of evaluations of n-variate polynomials over a finite field 𝔽 with degree at most d. Much like every linear code, Reed-Muller codes can be characterized by constraints, where a codeword is valid if and only if it satisfies all degree-d constraints. For a subset X̃ ⊆ 𝔽ⁿ, we introduce the notion of X̃-quotient Reed-Muller code. A function F:X̃ → 𝔽 is a valid codeword in the quotient code if it satisfies all the constraints of degree-d polynomials lying in X̃. This gives rise to a novel phenomenon: a quotient codeword may have many extensions to original codewords. This weakens the connection between original codewords and quotient codewords which introduces a richer range of behaviors along with substantial new challenges. Our goal is to answer the following question: what properties of X̃ will imply that the quotient code inherits its distance and list-decoding radius from the original code? We address this question using techniques developed by Bhowmick and Lovett [Abhishek Bhowmick and Shachar Lovett, 2014], identifying key properties of 𝔽ⁿ used in their proof and extending them to general subsets X̃ ⊆ 𝔽ⁿ. By introducing a new tool, we overcome the novel challenge in analyzing the quotient code that arises from the weak connection between original and quotient codewords. This enables us to apply known results from additive combinatorics and algebraic geometry [David Kazhdan and Tamar Ziegler, 2018; David Kazhdan and Tamar Ziegler, 2019; Amichai Lampert and Tamar Ziegler, 2021] to show that when X̃ is a high rank variety, X̃-quotient Reed-Muller codes inherit the distance and list-decoding parameters from the original Reed-Muller codes.

Cite as

Omri Gotlib, Tali Kaufman, and Shachar Lovett. List Decoding Quotient Reed-Muller Codes. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 1:1-1:44, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gotlib_et_al:LIPIcs.CCC.2025.1,
  author =	{Gotlib, Omri and Kaufman, Tali and Lovett, Shachar},
  title =	{{List Decoding Quotient Reed-Muller Codes}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{1:1--1:44},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.1},
  URN =		{urn:nbn:de:0030-drops-236957},
  doi =		{10.4230/LIPIcs.CCC.2025.1},
  annote =	{Keywords: Reed-Muller Codes, Quotient Code, Quotient Reed-Muller Code, List Decoding, High Rank Variety, High-Order Fourier Analysis, Error-Correcting Codes}
}
Document
Biased Linearity Testing in the 1% Regime

Authors: Subhash Khot and Kunal Mittal

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
We study linearity testing over the p-biased hypercube ({0,1}ⁿ, μ_p^{⊗n}) in the 1% regime. For a distribution ν supported over {x ∈ {0,1}^k:∑_{i=1}^k x_i = 0 (mod 2)}, with marginal distribution μ_p in each coordinate, the corresponding k-query linearity test Lin(ν) proceeds as follows: Given query access to a function f:{0,1}ⁿ → {-1,1}, sample (x_1,… ,x_k)∼ ν^{⊗n}, query f on x_1,… ,x_k, and accept if and only if ∏_{i ∈ [k]} f(x_i) = 1. Building on the work of Bhangale, Khot, and Minzer (STOC '23), we show, for 0 < p ≤ 1/2, that if k ≥ 1+1/p, then there exists a distribution ν such that the test Lin(ν) works in the 1% regime; that is, any function f:{0,1}ⁿ → {-1,1} passing the test Lin(ν) with probability ≥ 1/2+ε, for some constant ε > 0, satisfies Pr_{x∼μ_p^{⊗n}}[f(x) = g(x)] ≥ 1/2+δ, for some linear function g, and a constant δ = δ(ε) > 0. Conversely, we show that if k < 1+1/p, then no such test Lin(ν) works in the 1% regime. Our key observation is that the linearity test Lin(ν) works if and only if the distribution ν satisfies a certain pairwise independence property.

Cite as

Subhash Khot and Kunal Mittal. Biased Linearity Testing in the 1% Regime. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 10:1-10:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{khot_et_al:LIPIcs.CCC.2025.10,
  author =	{Khot, Subhash and Mittal, Kunal},
  title =	{{Biased Linearity Testing in the 1\% Regime}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{10:1--10:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.10},
  URN =		{urn:nbn:de:0030-drops-237046},
  doi =		{10.4230/LIPIcs.CCC.2025.10},
  annote =	{Keywords: Linearity test, 1\% regime, p-biased}
}
Document
Track A: Algorithms, Complexity and Games
Relative-Error Testing of Conjunctions and Decision Lists

Authors: Xi Chen, William Pires, Toniann Pitassi, and Rocco A. Servedio

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We study the relative-error property testing model for Boolean functions that was recently introduced in the work of [X. Chen et al., 2025]. In relative-error testing, the testing algorithm gets uniform random satisfying assignments as well as black-box queries to f, and it must accept f with high probability whenever f has the property that is being tested and reject any f that is relative-error far from having the property. Here the relative-error distance from f to a function g is measured with respect to |f^{-1}(1)| rather than with respect to the entire domain size 2ⁿ as in the Hamming distance measure that is used in the standard model; thus, unlike the standard model, relative-error testing allows us to study the testability of sparse Boolean functions that have few satisfying assignments. It was shown in [X. Chen et al., 2025] that relative-error testing is at least as difficult as standard-model property testing, but for many natural and important Boolean function classes the precise relationship between the two notions is unknown. In this paper we consider the well-studied and fundamental properties of being a conjunction and being a decision list. In the relative-error setting, we give an efficient one-sided error tester for conjunctions with running time and query complexity O(1/ε). Secondly, we give a two-sided relative-error Õ(1/ε) tester for decision lists, matching the query complexity of the state-of-the-art algorithm in the standard model [Nader H. Bshouty, 2020; I. Diakonikolas et al., 2007].

Cite as

Xi Chen, William Pires, Toniann Pitassi, and Rocco A. Servedio. Relative-Error Testing of Conjunctions and Decision Lists. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 52:1-52:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2025.52,
  author =	{Chen, Xi and Pires, William and Pitassi, Toniann and Servedio, Rocco A.},
  title =	{{Relative-Error Testing of Conjunctions and Decision Lists}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{52:1--52:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.52},
  URN =		{urn:nbn:de:0030-drops-234291},
  doi =		{10.4230/LIPIcs.ICALP.2025.52},
  annote =	{Keywords: Property Testing, Relative Error}
}
Document
Invited Talk
Let’s Try to Be More Tolerant: On Tolerant Property Testing and Distance Approximation (Invited Talk)

Authors: Dana Ron

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
This short paper accompanies an invited talk given at ICALP2025. It is an informal, high-level presentation of tolerant testing and distance approximation. It includes some general results as well as a few specific ones, with the aim of providing a taste of this research direction within the area of sublinear algorithms.

Cite as

Dana Ron. Let’s Try to Be More Tolerant: On Tolerant Property Testing and Distance Approximation (Invited Talk). In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 2:1-2:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ron:LIPIcs.ICALP.2025.2,
  author =	{Ron, Dana},
  title =	{{Let’s Try to Be More Tolerant: On Tolerant Property Testing and Distance Approximation}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{2:1--2:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.2},
  URN =		{urn:nbn:de:0030-drops-233798},
  doi =		{10.4230/LIPIcs.ICALP.2025.2},
  annote =	{Keywords: Sublinear Algorithms, Tolerant Property Testing, Distance Approximation}
}
Document
Track A: Algorithms, Complexity and Games
A Near-Optimal Polynomial Distance Lemma over Boolean Slices

Authors: Prashanth Amireddy, Amik Raj Behera, Srikanth Srinivasan, and Madhu Sudan

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
The celebrated Ore-DeMillo-Lipton-Schwartz-Zippel (ODLSZ) lemma asserts that n-variate non-zero polynomial functions of degree d over a field 𝔽, are non-zero over any "grid" (points of the form Sⁿ for finite subset S ⊆ 𝔽) with probability at least max{|S|^{-d/(|S|-1)},1-d/|S|} over the choice of random point from the grid. In particular, over the Boolean cube (S = {0,1} ⊆ 𝔽), the lemma asserts non-zero polynomials are non-zero with probability at least 2^{-d}. In this work we extend the ODLSZ lemma optimally (up to lower-order terms) to "Boolean slices" i.e., points of Hamming weight exactly k. We show that non-zero polynomials on the slice are non-zero with probability (t/n)^{d}(1 - o_{n}(1)) where t = min{k,n-k} for every d ≤ k ≤ (n-d). As with the ODLSZ lemma, our results extend to polynomials over Abelian groups. This bound is tight upto the error term as evidenced by multilinear monomials of degree d, and it is also the case that some corrective term is necessary. A particularly interesting case is the "balanced slice" (k = n/2) where our lemma asserts that non-zero polynomials are non-zero with roughly the same probability on the slice as on the whole cube. The behaviour of low-degree polynomials over Boolean slices has received much attention in recent years. However, the problem of proving a tight version of the ODLSZ lemma does not seem to have been considered before, except for a recent work of Amireddy, Behera, Paraashar, Srinivasan and Sudan (SODA 2025), who established a sub-optimal bound of approximately ((k/n)⋅ (1-(k/n)))^d using a proof similar to that of the standard ODLSZ lemma. While the statement of our result mimics that of the ODLSZ lemma, our proof is significantly more intricate and involves spectral reasoning which is employed to show that a natural way of embedding a copy of the Boolean cube inside a balanced Boolean slice is a good sampler.

Cite as

Prashanth Amireddy, Amik Raj Behera, Srikanth Srinivasan, and Madhu Sudan. A Near-Optimal Polynomial Distance Lemma over Boolean Slices. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 11:1-11:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{amireddy_et_al:LIPIcs.ICALP.2025.11,
  author =	{Amireddy, Prashanth and Behera, Amik Raj and Srinivasan, Srikanth and Sudan, Madhu},
  title =	{{A Near-Optimal Polynomial Distance Lemma over Boolean Slices}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{11:1--11:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.11},
  URN =		{urn:nbn:de:0030-drops-233881},
  doi =		{10.4230/LIPIcs.ICALP.2025.11},
  annote =	{Keywords: Low-degree polynomials, Boolean slices, Schwartz-Zippel Lemma}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Inapproximability of Promise Equations over Finite Groups

Authors: Silvia Butti, Alberto Larrauri, and Stanislav Živný

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
A celebrated result of Håstad established that, for any constant ε > 0, it is NP-hard to find an assignment satisfying a (1/|G|+ε)-fraction of the constraints of a given 3-LIN instance over an Abelian group G even if one is promised that an assignment satisfying a (1-ε)-fraction of the constraints exists. Engebretsen, Holmerin, and Russell showed the same result for 3-LIN instances over any finite (not necessarily Abelian) group. In other words, for almost-satisfiable instances of 3-LIN the random assignment achieves an optimal approximation guarantee. We prove that the random assignment algorithm is still best possible under a stronger promise that the 3-LIN instance is almost satisfiable over an arbitrarily more restrictive group.

Cite as

Silvia Butti, Alberto Larrauri, and Stanislav Živný. Optimal Inapproximability of Promise Equations over Finite Groups. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 38:1-38:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{butti_et_al:LIPIcs.ICALP.2025.38,
  author =	{Butti, Silvia and Larrauri, Alberto and \v{Z}ivn\'{y}, Stanislav},
  title =	{{Optimal Inapproximability of Promise Equations over Finite Groups}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{38:1--38:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.38},
  URN =		{urn:nbn:de:0030-drops-234150},
  doi =		{10.4230/LIPIcs.ICALP.2025.38},
  annote =	{Keywords: promise constraint satisfaction, approximation, linear equations}
}
  • Refine by Type
  • 30 Document/PDF
  • 20 Document/HTML

  • Refine by Publication Year
  • 20 2025
  • 3 2024
  • 3 2023
  • 1 2022
  • 3 2021

  • Refine by Author
  • 9 Minzer, Dor
  • 5 Braverman, Mark
  • 5 Khot, Subhash
  • 2 Chen, Xi
  • 2 Kelman, Esty
  • Show More...

  • Refine by Series/Journal
  • 30 LIPIcs

  • Refine by Classification
  • 7 Theory of computation → Problems, reductions and completeness
  • 6 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 4 Theory of computation → Approximation algorithms analysis
  • 3 Theory of computation → Error-correcting codes
  • 2 Mathematics of computing → Spectra of graphs
  • Show More...

  • Refine by Keyword
  • 3 PCP
  • 3 Parallel Repetition
  • 3 Property Testing
  • 2 Approximation Algorithms
  • 1 1% regime
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail