18 Search Results for "Ralph, Benjamin"


Document
Formalizing the Hidden Number Problem in Isabelle/HOL

Authors: Sage Binder, Eric Ren, and Katherine Kosaian

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
We formalize the hidden number problem (HNP), as introduced in a seminal work by Boneh and Venkatesan in 1996, in Isabelle/HOL. Intuitively, the HNP involves demonstrating the existence of an algorithm (the "adversary") which can compute (with high probability) a hidden number α given access to a bit-leaking oracle. Originally developed to establish the security of Diffie-Hellman key exchange, the HNP has since been used not only for protocol security but also in cryptographic attacks, including notable ones on DSA and ECDSA. Further, as the HNP establishes an expressive paradigm for reasoning about security in the context of information leakage, many HNP variants for other specialized cryptographic applications have since been developed. A main contribution of our work is explicating and clarifying the HNP proof blueprint from the original source material; naturally, formalization forces us to make all assumptions and proof steps precise and transparent. For example, the source material did not explicitly define the adversary and only abstractly defined what information is being leaked; our formalization concretizes both definitions. Additionally, the HNP makes use of an instance of Babai’s nearest plane algorithm, which solves the approximate closest vector problem; we formalize this as a result of independent interest. Our formalizations of Babai’s algorithm and the HNP adversary are executable, setting up potential future work, e.g. in developing formally verified instances of cryptographic attacks.

Cite as

Sage Binder, Eric Ren, and Katherine Kosaian. Formalizing the Hidden Number Problem in Isabelle/HOL. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 23:1-23:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{binder_et_al:LIPIcs.ITP.2025.23,
  author =	{Binder, Sage and Ren, Eric and Kosaian, Katherine},
  title =	{{Formalizing the Hidden Number Problem in Isabelle/HOL}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{23:1--23:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.23},
  URN =		{urn:nbn:de:0030-drops-246216},
  doi =		{10.4230/LIPIcs.ITP.2025.23},
  annote =	{Keywords: hidden number problem, Babai’s nearest plane algorithm, cryptography, interactive theorem proving, Isabelle/HOL}
}
Document
Barendregt’s Theory of the λ-Calculus, Refreshed and Formalized

Authors: Adrienne Lancelot, Beniamino Accattoli, and Maxime Vemclefs

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Barendregt’s book on the untyped λ-calculus refines the inconsistent view of β-divergence as representation of the undefined via the key concept of head reduction. In this paper, we put together recent revisitations of some key theorems laid out in Barendregt’s book, and we formalize them in the Abella proof assistant. Our work provides a compact and refreshed presentation of the core of the book. The formalization faithfully mimics pen-and-paper proofs. Two interesting aspects are the manipulation of contexts for the study of contextual equivalence and a formal alternative to the informal trick at work in Takahashi’s proof of the genericity lemma. As a by-product, we obtain an alternative definition of contextual equivalence that does not mention contexts.

Cite as

Adrienne Lancelot, Beniamino Accattoli, and Maxime Vemclefs. Barendregt’s Theory of the λ-Calculus, Refreshed and Formalized. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 13:1-13:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{lancelot_et_al:LIPIcs.ITP.2025.13,
  author =	{Lancelot, Adrienne and Accattoli, Beniamino and Vemclefs, Maxime},
  title =	{{Barendregt’s Theory of the \lambda-Calculus, Refreshed and Formalized}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{13:1--13:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.13},
  URN =		{urn:nbn:de:0030-drops-246114},
  doi =		{10.4230/LIPIcs.ITP.2025.13},
  annote =	{Keywords: lambda-calculus, head reduction, equational theory}
}
Document
Games with ω-Automatic Preference Relations

Authors: Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
This paper investigates Nash equilibria (NEs) in multi-player turn-based games on graphs, where player preferences are modeled as ω-automatic relations via deterministic parity automata. Unlike much of the existing literature, which focuses on specific reward functions, our results apply to any preference relation definable by an ω-automatic relation. We analyze the computational complexity of determining the existence of an NE (possibly under some constraints), verifying whether a given strategy profile forms an NE, and checking whether a specific outcome can be realized by an NE. When a (constrained) NE exists, we show that there always exists one with finite-memory strategies. Finally, we explore fundamental properties of ω-automatic relations and their implications in the existence of equilibria.

Cite as

Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin. Games with ω-Automatic Preference Relations. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 31:1-31:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bruyere_et_al:LIPIcs.MFCS.2025.31,
  author =	{Bruy\`{e}re, V\'{e}ronique and Grandmont, Christophe and Raskin, Jean-Fran\c{c}ois},
  title =	{{Games with \omega-Automatic Preference Relations}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{31:1--31:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.31},
  URN =		{urn:nbn:de:0030-drops-241381},
  doi =		{10.4230/LIPIcs.MFCS.2025.31},
  annote =	{Keywords: Games played on graphs, Nash equilibrium, \omega-automatic relations, \omega-recognizable relations, constrained Nash equilibria existence problem}
}
Document
Differentiable Programming of Indexed Chemical Reaction Networks and Reaction-Diffusion Systems

Authors: Inhoo Lee, Salvador Buse, and Erik Winfree

Published in: LIPIcs, Volume 347, 31st International Conference on DNA Computing and Molecular Programming (DNA 31) (2025)


Abstract
Many molecular systems are best understood in terms of prototypical species and reactions. The central dogma and related biochemistry are rife with examples: gene i is transcribed into RNA i, which is translated into protein i; kinase n phosphorylates substrate m; protein p dimerizes with protein q. Engineered nucleic acid systems also often have this form: oligonucleotide i hybridizes to complementary oligonucleotide j; signal strand n displaces the output of seesaw gate m; hairpin p triggers the opening of target q. When there are many variants of a small number of prototypes, it can be conceptually cleaner and computationally more efficient to represent the full system in terms of indexed species (e.g. for dimerization, M_p, D_pq) and indexed reactions (M_p + M_q → D_pq). Here, we formalize the Indexed Chemical Reaction Network (ICRN) model and describe a Python software package designed to simulate such systems in the well-mixed and reaction-diffusion settings, using a differentiable programming framework originally developed for large-scale neural network models, taking advantage of GPU acceleration when available. Notably, this framework makes it straightforward to train the models’ initial conditions and rate constants to optimize a target behavior, such as matching experimental data, performing a computation, or exhibiting spatial pattern formation. The natural map of indexed chemical reaction networks onto neural network formalisms provides a tangible yet general perspective for translating concepts and techniques from the theory and practice of neural computation into the design of biomolecular systems.

Cite as

Inhoo Lee, Salvador Buse, and Erik Winfree. Differentiable Programming of Indexed Chemical Reaction Networks and Reaction-Diffusion Systems. In 31st International Conference on DNA Computing and Molecular Programming (DNA 31). Leibniz International Proceedings in Informatics (LIPIcs), Volume 347, pp. 4:1-4:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{lee_et_al:LIPIcs.DNA.31.4,
  author =	{Lee, Inhoo and Buse, Salvador and Winfree, Erik},
  title =	{{Differentiable Programming of Indexed Chemical Reaction Networks and Reaction-Diffusion Systems}},
  booktitle =	{31st International Conference on DNA Computing and Molecular Programming (DNA 31)},
  pages =	{4:1--4:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-399-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{347},
  editor =	{Schaeffer, Josie and Zhang, Fei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DNA.31.4},
  URN =		{urn:nbn:de:0030-drops-238534},
  doi =		{10.4230/LIPIcs.DNA.31.4},
  annote =	{Keywords: Differentiable Programming, Chemical Reaction Networks, Reaction-Diffusion Systems}
}
Document
Precomputed Topological Relations for Integrated Geospatial Analysis Across Knowledge Graphs

Authors: Katrina Schweikert, David K. Kedrowski, Shirly Stephen, and Torsten Hahmann

Published in: LIPIcs, Volume 346, 13th International Conference on Geographic Information Science (GIScience 2025)


Abstract
Geospatial Knowledge Graphs (GeoKGs) represent a significant advancement in the integration of AI-driven geographic information, facilitating interoperable and semantically rich geospatial analytics across various domains. This paper explores the use of topologically enriched GeoKGs, built on an explicit representation of S2 Geometry alongside precomputed topological relations, for constructing efficient geospatial analysis workflows within and across knowledge graphs (KGs). Using the SAWGraph knowledge graph as a case study focused on enviromental contamination by PFAS, we demonstrate how this framework supports fundamental GIS operations - such as spatial filtering, proximity analysis, overlay operations and network analysis - in a GeoKG setting while allowing for the easy linking of these operations with one another and with semantic filters. This enables the efficient execution of complex geospatial analyses as semantically-explicit queries and enhances the usability of geospatial data across graphs. Additionally, the framework eliminates the need for explicit support for GeoSPARQL’s topological operations in the utilized graph databases and better integrates spatial knowledge into the overall semantic inference process supported by RDFS and OWL ontologies.

Cite as

Katrina Schweikert, David K. Kedrowski, Shirly Stephen, and Torsten Hahmann. Precomputed Topological Relations for Integrated Geospatial Analysis Across Knowledge Graphs. In 13th International Conference on Geographic Information Science (GIScience 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 346, pp. 4:1-4:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{schweikert_et_al:LIPIcs.GIScience.2025.4,
  author =	{Schweikert, Katrina and Kedrowski, David K. and Stephen, Shirly and Hahmann, Torsten},
  title =	{{Precomputed Topological Relations for Integrated Geospatial Analysis Across Knowledge Graphs}},
  booktitle =	{13th International Conference on Geographic Information Science (GIScience 2025)},
  pages =	{4:1--4:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-378-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{346},
  editor =	{Sila-Nowicka, Katarzyna and Moore, Antoni and O'Sullivan, David and Adams, Benjamin and Gahegan, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2025.4},
  URN =		{urn:nbn:de:0030-drops-238332},
  doi =		{10.4230/LIPIcs.GIScience.2025.4},
  annote =	{Keywords: knowledge graph, GeoKG, spatial analysis, ontology, SPARQL, GeoSPARQL, discrete global grid system, S2 geometry, GeoAI, PFAS}
}
Document
Short Paper
Towards Modern and Modular SAT for LCG (Short Paper)

Authors: Jip J. Dekker, Alexey Ignatiev, Peter J. Stuckey, and Allen Z. Zhong

Published in: LIPIcs, Volume 340, 31st International Conference on Principles and Practice of Constraint Programming (CP 2025)


Abstract
Lazy Clause Generation (LCG) is an architecture for building Constraint Programming (CP) solvers using an underlying Boolean Satisfiability (SAT) engine. The CP propagation engine lazily creates clauses that define the integer variables and impose problem restrictions. The SAT engine uses the clausal model to reason and search, including, crucially, the generation of nogoods. However, while SAT solving has made significant advances recently, the underlying SAT technology in most LCG solvers has largely remained the same. Using a new interface to SAT engines, IPASIR-UP, we can construct an LCG solver which can swap out the underlying SAT engine with any that supports the interface. This new approach means we need to revisit many of the design and engineering decisions for LCG solvers, to take maximum advantage of a better underlying SAT engine while adhering to the restrictions of the interface. In this paper, we explore the possibilities and challenges of using IPASIR-UP for LCG, showing that it can be used to create a highly competitive solver.

Cite as

Jip J. Dekker, Alexey Ignatiev, Peter J. Stuckey, and Allen Z. Zhong. Towards Modern and Modular SAT for LCG (Short Paper). In 31st International Conference on Principles and Practice of Constraint Programming (CP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 340, pp. 42:1-42:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dekker_et_al:LIPIcs.CP.2025.42,
  author =	{Dekker, Jip J. and Ignatiev, Alexey and Stuckey, Peter J. and Zhong, Allen Z.},
  title =	{{Towards Modern and Modular SAT for LCG}},
  booktitle =	{31st International Conference on Principles and Practice of Constraint Programming (CP 2025)},
  pages =	{42:1--42:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-380-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{340},
  editor =	{de la Banda, Maria Garcia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2025.42},
  URN =		{urn:nbn:de:0030-drops-239038},
  doi =		{10.4230/LIPIcs.CP.2025.42},
  annote =	{Keywords: Lazy Clause Generation, Boolean Satisfiability, IPASIR-UP}
}
Document
Learn to Unlearn

Authors: Bernhard Gstrein, Florian Pollitt, André Schidler, Mathias Fleury, and Armin Biere

Published in: LIPIcs, Volume 341, 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)


Abstract
Clause learning is a significant milestone in the development of SAT solving. However, keeping all learned clauses without discrimination gradually slows down the solver. Thus, selectively removing some learned clauses during routine database reduction is essential. In this paper, we reexamine and test several long-standing ideas for clause removal in the modern solver Kissat. Our experiments show that retaining all clauses alters performance in all instances. For satisfiable instances, periodically removing all learned clauses surprisingly yields near state-of-the-art performance. For unsatisfiable instances, it is vital to always keep some learned clauses. Building on the influential Glucose paper, we find that it is crucial to always retain the clauses most likely to help, regardless of whether they are ranked by size or LBD in practice. Another key factor is whether a clause was used recently during conflict resolution steps. Eagerly keeping used clauses improves all unlearning strategies.

Cite as

Bernhard Gstrein, Florian Pollitt, André Schidler, Mathias Fleury, and Armin Biere. Learn to Unlearn. In 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 341, pp. 14:1-14:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gstrein_et_al:LIPIcs.SAT.2025.14,
  author =	{Gstrein, Bernhard and Pollitt, Florian and Schidler, Andr\'{e} and Fleury, Mathias and Biere, Armin},
  title =	{{Learn to Unlearn}},
  booktitle =	{28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)},
  pages =	{14:1--14:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-381-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{341},
  editor =	{Berg, Jeremias and Nordstr\"{o}m, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2025.14},
  URN =		{urn:nbn:de:0030-drops-237480},
  doi =		{10.4230/LIPIcs.SAT.2025.14},
  annote =	{Keywords: Satisfiability solving, learned clause recycling, LBD}
}
Document
On the Metric Nature of (Differential) Logical Relations

Authors: Ugo Dal Lago, Naohiko Hoshino, and Paolo Pistone

Published in: LIPIcs, Volume 337, 10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025)


Abstract
Differential logical relations are a method to measure distances between higher-order programs. They differ from standard methods based on program metrics in that differences between functional programs are themselves functions, relating errors in input with errors in output, this way providing a more fine grained, contextual, information. The aim of this paper is to clarify the metric nature of differential logical relations. While previous work has shown that these do not give rise, in general, to (quasi-)metric spaces nor to partial metric spaces, we show that the distance functions arising from such relations, that we call quasi-quasi-metrics, can be related to both quasi-metrics and partial metrics, the latter being also captured by suitable relational definitions. Moreover, we exploit such connections to deduce some new compositional reasoning principles for program differences.

Cite as

Ugo Dal Lago, Naohiko Hoshino, and Paolo Pistone. On the Metric Nature of (Differential) Logical Relations. In 10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 337, pp. 15:1-15:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dallago_et_al:LIPIcs.FSCD.2025.15,
  author =	{Dal Lago, Ugo and Hoshino, Naohiko and Pistone, Paolo},
  title =	{{On the Metric Nature of (Differential) Logical Relations}},
  booktitle =	{10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025)},
  pages =	{15:1--15:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-374-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{337},
  editor =	{Fern\'{a}ndez, Maribel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2025.15},
  URN =		{urn:nbn:de:0030-drops-236300},
  doi =		{10.4230/LIPIcs.FSCD.2025.15},
  annote =	{Keywords: Differential Logical Relations, Quantales, Quasi-Metrics, Partial Metrics}
}
Document
Track A: Algorithms, Complexity and Games
Satisfiability of Commutative vs. Non-Commutative CSPs

Authors: Andrei A. Bulatov and Stanislav Živný

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
The Mermin-Peres magic square is a celebrated example of a system of Boolean linear equations that is not (classically) satisfiable but is satisfiable via linear operators on a Hilbert space of dimension four. A natural question is then, for what kind of problems such a phenomenon occurs? Atserias, Kolaitis, and Severini answered this question for all Boolean Constraint Satisfaction Problems (CSPs): For 0-Valid-SAT, 1-Valid-SAT, 2-SAT, Horn-SAT, and Dual Horn-SAT, classical satisfiability and operator satisfiability is the same and thus there is no gap; for all other Boolean CSPs, these notions differ as there are gaps, i.e., there are unsatisfiable instances that are satisfiable via operators on Hilbert spaces. We generalize their result to CSPs on arbitrary finite domains and give an almost complete classification: First, we show that NP-hard CSPs admit a separation between classical satisfiability and satisfiability via operators on finite- and infinite-dimensional Hilbert spaces. Second, we show that tractable CSPs of bounded width have no satisfiability gaps of any kind. Finally, we show that tractable CSPs of unbounded width can simulate, in a satisfiability-gap-preserving fashion, linear equations over an Abelian group of prime order p; for such CSPs, we obtain a separation of classical satisfiability and satisfiability via operators on infinite-dimensional Hilbert spaces. Furthermore, if p = 2, such CSPs also have gaps separating classical satisfiability and satisfiability via operators on finite- and infinite-dimensional Hilbert spaces.

Cite as

Andrei A. Bulatov and Stanislav Živný. Satisfiability of Commutative vs. Non-Commutative CSPs. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 37:1-37:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bulatov_et_al:LIPIcs.ICALP.2025.37,
  author =	{Bulatov, Andrei A. and \v{Z}ivn\'{y}, Stanislav},
  title =	{{Satisfiability of Commutative vs. Non-Commutative CSPs}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{37:1--37:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.37},
  URN =		{urn:nbn:de:0030-drops-234149},
  doi =		{10.4230/LIPIcs.ICALP.2025.37},
  annote =	{Keywords: constraint satisfaction, quantum CSP, operator CSP}
}
Document
Survey
Uncertainty Management in the Construction of Knowledge Graphs: A Survey

Authors: Lucas Jarnac, Yoan Chabot, and Miguel Couceiro

Published in: TGDK, Volume 3, Issue 1 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 1


Abstract
Knowledge Graphs (KGs) are a major asset for companies thanks to their great flexibility in data representation and their numerous applications, e.g., vocabulary sharing, Q&A or recommendation systems. To build a KG, it is a common practice to rely on automatic methods for extracting knowledge from various heterogeneous sources. However, in a noisy and uncertain world, knowledge may not be reliable and conflicts between data sources may occur. Integrating unreliable data would directly impact the use of the KG, therefore such conflicts must be resolved. This could be done manually by selecting the best data to integrate. This first approach is highly accurate, but costly and time-consuming. That is why recent efforts focus on automatic approaches, which represent a challenging task since it requires handling the uncertainty of extracted knowledge throughout its integration into the KG. We survey state-of-the-art approaches in this direction and present constructions of both open and enterprise KGs. We then describe different knowledge extraction methods and discuss downstream tasks after knowledge acquisition, including KG completion using embedding models, knowledge alignment, and knowledge fusion in order to address the problem of knowledge uncertainty in KG construction. We conclude with a discussion on the remaining challenges and perspectives when constructing a KG taking into account uncertainty.

Cite as

Lucas Jarnac, Yoan Chabot, and Miguel Couceiro. Uncertainty Management in the Construction of Knowledge Graphs: A Survey. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 1, pp. 3:1-3:48, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{jarnac_et_al:TGDK.3.1.3,
  author =	{Jarnac, Lucas and Chabot, Yoan and Couceiro, Miguel},
  title =	{{Uncertainty Management in the Construction of Knowledge Graphs: A Survey}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:48},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.1.3},
  URN =		{urn:nbn:de:0030-drops-233733},
  doi =		{10.4230/TGDK.3.1.3},
  annote =	{Keywords: Knowledge reconciliation, Uncertainty, Heterogeneous sources, Knowledge graph construction}
}
Document
A Strictly Linear Subatomic Proof System

Authors: Victoria Barrett, Alessio Guglielmi, and Benjamin Ralph

Published in: LIPIcs, Volume 326, 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)


Abstract
We present a subatomic deep-inference proof system for a conservative extension of propositional classical logic with decision trees that is strictly linear. In a strictly linear subatomic system, a single linear rule shape subsumes not only the structural rules, such as contraction and weakening, but also the unit equality rules. An interpretation map from subatomic logic to propositional classical logic recovers the usual semantics and proof theoretic properties. By using explicit substitutions that indicate the substitution of one derivation into another, we are able to show that the unit-equality inference steps can be eliminated from a subatomic system for propositional classical logic with only a polynomial complexity cost in the size of the derivation, from which it follows that the system p-simulates Frege systems, and we show cut elimination for the resulting strictly linear system.

Cite as

Victoria Barrett, Alessio Guglielmi, and Benjamin Ralph. A Strictly Linear Subatomic Proof System. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 326, pp. 39:1-39:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{barrett_et_al:LIPIcs.CSL.2025.39,
  author =	{Barrett, Victoria and Guglielmi, Alessio and Ralph, Benjamin},
  title =	{{A Strictly Linear Subatomic Proof System}},
  booktitle =	{33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)},
  pages =	{39:1--39:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-362-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{326},
  editor =	{Endrullis, J\"{o}rg and Schmitz, Sylvain},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2025.39},
  URN =		{urn:nbn:de:0030-drops-227967},
  doi =		{10.4230/LIPIcs.CSL.2025.39},
  annote =	{Keywords: Deep inference, Open deduction, Subatomic logic, Decision trees, Explicit substitutions, Cut elimination, Proof theory}
}
Document
The Lambda Calculus Is Quantifiable

Authors: Valentin Maestracci and Paolo Pistone

Published in: LIPIcs, Volume 326, 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)


Abstract
In this paper we introduce several quantitative methods for the lambda-calculus based on partial metrics, a well-studied variant of standard metric spaces that have been used to metrize non-Hausdorff topologies, like those arising from Scott domains. First, we study quantitative variants, based on program distances, of sensible equational theories for the λ-calculus, like those arising from Böhm trees and from the contextual preorder. Then, we introduce applicative distances capturing higher-order Scott topologies, including reflexive objects like the D_∞ model. Finally, we provide a quantitative insight on the well-known connection between the Böhm tree of a λ-term and its Taylor expansion, by showing that the latter can be presented as an isometric transformation.

Cite as

Valentin Maestracci and Paolo Pistone. The Lambda Calculus Is Quantifiable. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 326, pp. 34:1-34:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{maestracci_et_al:LIPIcs.CSL.2025.34,
  author =	{Maestracci, Valentin and Pistone, Paolo},
  title =	{{The Lambda Calculus Is Quantifiable}},
  booktitle =	{33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)},
  pages =	{34:1--34:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-362-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{326},
  editor =	{Endrullis, J\"{o}rg and Schmitz, Sylvain},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2025.34},
  URN =		{urn:nbn:de:0030-drops-227911},
  doi =		{10.4230/LIPIcs.CSL.2025.34},
  annote =	{Keywords: Lambda-calculus, Scott semantics, Partial metric spaces, B\"{o}hm trees, Taylor expansion}
}
Document
Resource Paper
The Reasonable Ontology Templates Framework

Authors: Martin Georg Skjæveland and Leif Harald Karlsen

Published in: TGDK, Volume 2, Issue 2 (2024): Special Issue on Resources for Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 2, Issue 2


Abstract
Reasonable Ontology Templates (OTTR) is a templating language for representing and instantiating patterns. It is based on simple and generic, but powerful, mechanisms such as recursive macro expansion, term substitution and type systems, and is designed particularly for building and maintaining RDF knowledge graphs and OWL ontologies. In this resource paper, we present the formal specifications that define the OTTR framework. This includes the fundamentals of the OTTR language and the adaptions to make it fit with standard semantic web languages, and two serialization formats developed for semantic web practitioners. We also present the OTTR framework’s support for documenting, publishing and managing template libraries, and for tools for practical bulk instantiation of templates from tabular data and queryable data sources. The functionality of the OTTR framework is available for use through Lutra, an open-source reference implementation, and other independent implementations. We report on the use and impact of OTTR by presenting selected industrial use cases. Finally, we reflect on some design considerations of the language and framework and present ideas for future work.

Cite as

Martin Georg Skjæveland and Leif Harald Karlsen. The Reasonable Ontology Templates Framework. In Special Issue on Resources for Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 2, pp. 5:1-5:54, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{skjaeveland_et_al:TGDK.2.2.5,
  author =	{Skj{\ae}veland, Martin Georg and Karlsen, Leif Harald},
  title =	{{The Reasonable Ontology Templates Framework}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{5:1--5:54},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.2.5},
  URN =		{urn:nbn:de:0030-drops-225896},
  doi =		{10.4230/TGDK.2.2.5},
  annote =	{Keywords: Ontology engineering, Ontology design patterns, Template mechanism, Macros}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Position
Large Language Models and Knowledge Graphs: Opportunities and Challenges

Authors: Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo, Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Hajira Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo Lissandrini, Russa Biswas, Gerard de Melo, Angela Bonifati, Edlira Vakaj, Mauro Dragoni, and Damien Graux

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Large Language Models (LLMs) have taken Knowledge Representation - and the world - by storm. This inflection point marks a shift from explicit knowledge representation to a renewed focus on the hybrid representation of both explicit knowledge and parametric knowledge. In this position paper, we will discuss some of the common debate points within the community on LLMs (parametric knowledge) and Knowledge Graphs (explicit knowledge) and speculate on opportunities and visions that the renewed focus brings, as well as related research topics and challenges.

Cite as

Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo, Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Hajira Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo Lissandrini, Russa Biswas, Gerard de Melo, Angela Bonifati, Edlira Vakaj, Mauro Dragoni, and Damien Graux. Large Language Models and Knowledge Graphs: Opportunities and Challenges. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 2:1-2:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{pan_et_al:TGDK.1.1.2,
  author =	{Pan, Jeff Z. and Razniewski, Simon and Kalo, Jan-Christoph and Singhania, Sneha and Chen, Jiaoyan and Dietze, Stefan and Jabeen, Hajira and Omeliyanenko, Janna and Zhang, Wen and Lissandrini, Matteo and Biswas, Russa and de Melo, Gerard and Bonifati, Angela and Vakaj, Edlira and Dragoni, Mauro and Graux, Damien},
  title =	{{Large Language Models and Knowledge Graphs: Opportunities and Challenges}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:38},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.2},
  URN =		{urn:nbn:de:0030-drops-194766},
  doi =		{10.4230/TGDK.1.1.2},
  annote =	{Keywords: Large Language Models, Pre-trained Language Models, Knowledge Graphs, Ontology, Retrieval Augmented Language Models}
}
  • Refine by Type
  • 18 Document/PDF
  • 15 Document/HTML

  • Refine by Publication Year
  • 12 2025
  • 2 2024
  • 2 2023
  • 1 2017
  • 1 2015

  • Refine by Author
  • 2 Guglielmi, Alessio
  • 2 Pistone, Paolo
  • 2 Ralph, Benjamin
  • 1 Accattoli, Beniamino
  • 1 Aler Tubella, Andrea
  • Show More...

  • Refine by Series/Journal
  • 12 LIPIcs
  • 1 LITES
  • 5 TGDK

  • Refine by Classification
  • 2 Computing methodologies → Ontology engineering
  • 2 Information systems → Graph-based database models
  • 2 Mathematics of computing → Combinatorial optimization
  • 2 Theory of computation → Lambda calculus
  • 2 Theory of computation → Program semantics
  • Show More...

  • Refine by Keyword
  • 2 Large Language Models
  • 1 Address code generation
  • 1 Application-specific processors
  • 1 Babai’s nearest plane algorithm
  • 1 Boolean Satisfiability
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail